未验证 提交 ea5b2f26 编写于 作者: D danleifeng 提交者: GitHub

add fused_seqpool_cvm op (#37928)

* add fused_seqpool_cvm op;test=develop
上级 822a2d1f
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fused_seqpool_cvm_op.h"
#include <string>
namespace paddle {
namespace operators {
class FusedSeqpoolCVMOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_GE(
ctx->Inputs("X").size(), 1UL,
platform::errors::InvalidArgument(
"Inputs(X) of FusedSeqpoolCVMOp should not be empty."));
PADDLE_ENFORCE_GE(
ctx->Outputs("Out").size(), 1UL,
platform::errors::InvalidArgument(
"Outputs(Out) of FusedSeqpoolCVMOp should not be empty."));
auto cvm_dims = ctx->GetInputDim("CVM");
PADDLE_ENFORCE_EQ(
cvm_dims.size(), 2UL,
platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));
PADDLE_ENFORCE_EQ(cvm_dims[1], 2UL, platform::errors::InvalidArgument(
"The 2nd dimension of "
"Input(CVM) should be 2."));
auto ins_dims = ctx->GetInputsDim("X");
const int cvm_offset = ctx->Attrs().Get<int>("cvm_offset");
const size_t num_inputs = ins_dims.size();
std::vector<framework::DDim> outs_dims;
outs_dims.resize(num_inputs);
bool use_cvm = ctx->Attrs().Get<bool>("use_cvm");
PADDLE_ENFORCE_GT(num_inputs, 0UL,
platform::errors::InvalidArgument(
"Input tensors count should be greater than 0, "
"but received value is %d.",
num_inputs));
// The output height should be confirmed in Compute,
// since input lod is not accessible here.
PADDLE_ENFORCE_EQ(ins_dims[0].size(), 2,
platform::errors::InvalidArgument(
"The dims size of first input should be equal to 2, "
"but received value is %d.",
ins_dims[0].size()));
for (size_t i = 0; i < num_inputs; ++i) {
const auto dims = ins_dims[i];
int rank = dims.size();
if (use_cvm) {
PADDLE_ENFORCE_GT(
dims[rank - 1], 2,
platform::errors::InvalidArgument(
"Shape error in %lu id, the last dimension(embedding) of the "
"'X' tensor must be larger than 2.",
i));
}
// input lod is not accessible here
std::vector<int64_t> out_dim;
if (use_cvm) {
out_dim = {-1, dims[rank - 1]};
} else {
out_dim = {-1, dims[rank - 1] - cvm_offset};
}
outs_dims[i] = phi::make_ddim(out_dim);
}
ctx->SetOutputsDim("Out", outs_dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto inputs = ctx.MultiInput<LoDTensor>("X");
auto input_data_type = framework::proto::VarType::Type(0);
bool flag = 0;
for (auto* input : inputs) {
if (input->IsInitialized() && input->numel() > 0) {
input_data_type = framework::TransToProtoVarType(input->dtype());
flag = 1;
break;
}
}
PADDLE_ENFORCE_EQ(flag, 1,
platform::errors::InvalidArgument(
"All Inputs of fused_seqpool_cvm OP are Empty!"));
return framework::OpKernelType(input_data_type, ctx.GetPlace());
// return framework::OpKernelType(framework::proto::VarType::FP32,
// ctx.device_context());
// return framework::OpKernelType(
// OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
class FusedSeqpoolCVMOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(vector<LoDTensor>) The input tensors of"
" operator.")
.AsDuplicable();
AddInput("CVM",
"(Tensor), a 2-D Tensor with shape [N x 2], where N is the batch "
"size, 2 is show and click.");
AddOutput("Out",
"(vector<Tensor>) The output of Op does not contain LoD "
"information.")
.AsDuplicable();
AddAttr<std::string>("pooltype",
"(string, default 'SUM') the pooling pooltype of "
"SequencePoolOp, only support SUM now.")
.SetDefault("SUM")
.InEnum({"SUM"});
AddAttr<float>("pad_value",
"(float, default 0.0) The value to pad for empty sequence.")
.SetDefault(0.0);
AddAttr<bool>("use_cvm", "bool, use cvm or not").SetDefault(true);
AddAttr<int>("cvm_offset", "(int, default 2)").SetDefault(2);
AddComment(R"DOC(
Fuse multiple pairs of Sequence Pool and CVM Operator.
)DOC");
}
};
class FusedSeqpoolCVMGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
auto og_dims = ctx->GetInputsDim(framework::GradVarName("Out"));
auto x_dims = ctx->GetInputsDim("X");
auto cvm_dims = ctx->GetInputDim("CVM");
const int cvm_offset = ctx->Attrs().Get<int>("cvm_offset");
bool use_cvm = ctx->Attrs().Get<bool>("use_cvm");
PADDLE_ENFORCE_EQ(
cvm_dims.size(), 2,
platform::errors::InvalidArgument("Input(CVM)'s rank should be 2."));
for (size_t i = 0; i < og_dims.size(); i++) {
PADDLE_ENFORCE_EQ(
og_dims[i].size(), x_dims[i].size(),
platform::errors::InvalidArgument(
"The rank of output grad must equal to Input(X). But "
"received: input rank %u, input shape [%s].",
og_dims[i].size(), og_dims[i]));
if (use_cvm) {
auto o_dim = og_dims[i][og_dims[i].size() - 1];
PADDLE_ENFORCE_EQ(
o_dim, x_dims[i][og_dims[i].size() - 1],
platform::errors::InvalidArgument(
"The dimension mismatch between Input(OUT@GRAD) and "
"Input(X). Received Input(OUT@GRAD): input rank %u, "
"input shape [%s]; received Input(X): input rank %u, "
"input shape [%s].",
og_dims[i].size(), og_dims[i], x_dims[i].size(), x_dims[i]));
} else {
PADDLE_ENFORCE_EQ(
og_dims[i][og_dims[i].size() - 1],
x_dims[i][og_dims[i].size() - 1] - cvm_offset,
platform::errors::InvalidArgument(
"The dimension mismatch between Input(OUT@GRAD) and "
"Input(X). Received Input(OUT@GRAD): input rank %u, "
"input shape [%s]; received Input(X): input rank %u, "
"input shape [%s].",
og_dims[i].size(), og_dims[i], x_dims[i].size(), x_dims[i]));
}
}
for (size_t i = 0; i < x_dims.size(); ++i) {
ctx->ShareLoD("X", framework::GradVarName("X"), i, i);
ctx->ShareDim("X", framework::GradVarName("X"), i, i);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};
template <typename T>
class FusedSeqpoolCVMGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op_desc_ptr) const override {
op_desc_ptr->SetType("fused_seqpool_cvm_grad");
op_desc_ptr->SetInput("X", this->Input("X"));
op_desc_ptr->SetInput("CVM", this->Input("CVM"));
op_desc_ptr->SetInput(framework::GradVarName("Out"),
this->OutputGrad("Out"));
op_desc_ptr->SetOutput(framework::GradVarName("X"),
this->InputGrad("X", false));
op_desc_ptr->SetOutput(framework::GradVarName("CVM"),
this->InputGrad("CVM"));
op_desc_ptr->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(fused_seqpool_cvm, ops::FusedSeqpoolCVMOp,
ops::FusedSeqpoolCVMOpMaker,
ops::FusedSeqpoolCVMGradOpMaker<paddle::framework::OpDesc>,
ops::FusedSeqpoolCVMGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_seqpool_cvm_grad, ops::FusedSeqpoolCVMGradOp)
REGISTER_OP_CPU_KERNEL(fused_seqpool_cvm,
ops::FusedSeqpoolCVMOpCPUKernel<float>)
REGISTER_OP_CPU_KERNEL(fused_seqpool_cvm_grad,
ops::FusedSeqpoolCVMGradOpCPUKernel<float>)
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/operators/fused/fused_seqpool_cvm_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
namespace paddle {
namespace operators {
template <typename T>
using Vector = framework::Vector<T>;
#define CUDA_KERNEL_LOOP(i, n) \
for (auto i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
// normal
template <typename T>
__global__ void FusedSeqpoolKernelNormal(const size_t N, T **input_values,
T **seqpool_output_values,
size_t **lods_values,
const int batch_size,
const int embedding_size,
const float pad_value) {
CUDA_KERNEL_LOOP(i, N) {
int key = i / embedding_size;
int offset = i % embedding_size;
int x = key / batch_size; // slot id
int y = key % batch_size; // ins id
auto &start = *(lods_values[x] + y);
auto &end = *(lods_values[x] + y + 1);
T val = static_cast<T>(pad_value);
for (auto k = start; k < end; ++k) {
val += *(input_values[x] + k * embedding_size + offset);
}
*(seqpool_output_values[x] + y * embedding_size + offset) = val;
}
}
// join need show click input
template <typename T>
__global__ void FusedCVMKernelWithCVM(const size_t N, T **output_values,
T **seqpool_output_values,
const int batch_size,
const int embedding_size,
const int cvm_offset) {
CUDA_KERNEL_LOOP(i, N) {
int key = i / embedding_size;
int offset = i % embedding_size;
int x = key / batch_size; // slot id
int y = key % batch_size; // ins id
if (offset == 0) { // show
*(output_values[x] + y * embedding_size) =
log(*(seqpool_output_values[x] + y * embedding_size) + 1);
} else if (offset == 1) { // click
*(output_values[x] + y * embedding_size + offset) =
log(*(seqpool_output_values[x] + y * embedding_size + 1) + 1) -
log(*(seqpool_output_values[x] + y * embedding_size) + 1);
} else {
*(output_values[x] + y * embedding_size + offset) =
*(seqpool_output_values[x] + y * embedding_size + offset);
}
}
}
// update not need show click input
template <typename T>
__global__ void FusedCVMKernelNoCVM(const size_t N, T **output_values,
T **seqpool_output_values,
const int batch_size,
const int no_cvm_embedding_size,
const int cvm_offset) {
CUDA_KERNEL_LOOP(i, N) {
int key = i / no_cvm_embedding_size;
int offset = i % no_cvm_embedding_size;
int x = key / batch_size; // slot id
int y = key % batch_size; // ins id
// no cvm
*(output_values[x] + y * no_cvm_embedding_size + offset) =
*(seqpool_output_values[x] + y * (no_cvm_embedding_size + cvm_offset) +
offset + cvm_offset);
}
}
template <typename T>
void FusedSeqpoolCVM(const framework::ExecutionContext
&ctx, // const paddle::platform::Place &place,
const std::vector<const T *> &input_data,
const std::vector<T *> &output_data,
const std::vector<T *> &seqpool_output_data,
std::vector<const size_t *> lods, const int batch_size,
const int slot_num, const int embedding_size,
const float padding_value, const bool use_cvm,
const int cvm_offset) {
auto stream =
ctx.template device_context<platform::CUDADeviceContext>().stream();
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
size_t total_ptr_len = input_data.size() + output_data.size() +
seqpool_output_data.size() + lods.size();
auto temp_ptr =
memory::AllocShared(ctx.GetPlace(), total_ptr_len * sizeof(void *));
void *ptr = temp_ptr->ptr();
#ifdef PADDLE_WITH_HIP
T **gpu_input_values = reinterpret_cast<T **>(temp_ptr->ptr());
platform::GpuMemcpyAsync(gpu_input_values, input_data.data(),
input_data.size() * sizeof(T *),
hipMemcpyHostToDevice, stream);
T **gpu_output_values =
reinterpret_cast<T **>(&gpu_input_values[input_data.size()]);
platform::GpuMemcpyAsync(gpu_output_values, output_data.data(),
output_data.size() * sizeof(T *),
hipMemcpyHostToDevice, stream);
T **gpu_seqpool_output_values =
reinterpret_cast<T **>(&gpu_output_values[output_data.size()]);
platform::GpuMemcpyAsync(
gpu_seqpool_output_values, seqpool_output_data.data(),
seqpool_output_data.size() * sizeof(T *), hipMemcpyHostToDevice, stream);
size_t **lods_values = reinterpret_cast<size_t **>(
&gpu_seqpool_output_values[seqpool_output_data.size()]);
platform::GpuMemcpyAsync(lods_values, lods.data(),
lods.size() * sizeof(size_t *),
hipMemcpyHostToDevice, stream);
#else
T **gpu_input_values = reinterpret_cast<T **>(temp_ptr->ptr());
platform::GpuMemcpyAsync(gpu_input_values, input_data.data(),
input_data.size() * sizeof(T *),
cudaMemcpyHostToDevice, stream);
T **gpu_output_values =
reinterpret_cast<T **>(&gpu_input_values[input_data.size()]);
platform::GpuMemcpyAsync(gpu_output_values, output_data.data(),
output_data.size() * sizeof(T *),
cudaMemcpyHostToDevice, stream);
T **gpu_seqpool_output_values =
reinterpret_cast<T **>(&gpu_output_values[output_data.size()]);
platform::GpuMemcpyAsync(
gpu_seqpool_output_values, seqpool_output_data.data(),
seqpool_output_data.size() * sizeof(T *), cudaMemcpyHostToDevice, stream);
size_t **lods_values = reinterpret_cast<size_t **>(
&gpu_seqpool_output_values[seqpool_output_data.size()]);
platform::GpuMemcpyAsync(lods_values, lods.data(),
lods.size() * sizeof(size_t *),
cudaMemcpyHostToDevice, stream);
#endif
size_t N = static_cast<size_t>(batch_size * slot_num * embedding_size);
platform::GpuLaunchConfig config = GetGpuLaunchConfig1D(dev_ctx, N);
// first sum pool
FusedSeqpoolKernelNormal<<<config.block_per_grid.x, config.thread_per_block.x,
0, stream>>>(
N, gpu_input_values, gpu_seqpool_output_values, lods_values, batch_size,
embedding_size, padding_value);
// second log
if (use_cvm) {
FusedCVMKernelWithCVM<<<config.block_per_grid.x, config.thread_per_block.x,
0, stream>>>(N, gpu_output_values,
gpu_seqpool_output_values, batch_size,
embedding_size, cvm_offset);
} else {
// not need show click input
N = static_cast<size_t>(batch_size * slot_num *
(embedding_size - cvm_offset));
platform::GpuLaunchConfig config = GetGpuLaunchConfig1D(dev_ctx, N);
FusedCVMKernelNoCVM<<<config.block_per_grid.x, config.thread_per_block.x, 0,
stream>>>(N, gpu_output_values,
gpu_seqpool_output_values, batch_size,
(embedding_size - cvm_offset), cvm_offset);
}
}
// join grad
template <typename T>
__global__ void FusedSeqpoolCVMGradKernelWithCVM(
const size_t N, T **out_grads_values, T **in_grads_values, T **cvm_values,
size_t **lods_values, const int batch_size, const int embedding_size,
const int cvm_offset) {
CUDA_KERNEL_LOOP(i, N) {
int key = i / embedding_size;
int offset = i % embedding_size; // embedx offset
int x = key / batch_size; // slot id
int y = key % batch_size; // ins id
T &val = (offset < cvm_offset)
? *(cvm_values[x] + y * cvm_offset + offset)
: *(out_grads_values[x] + y * embedding_size + offset);
auto &start = *(lods_values[x] + y);
auto &end = *(lods_values[x] + y + 1);
for (auto k = start; k < end; ++k) {
*(in_grads_values[x] + k * embedding_size + offset) = val;
}
}
}
// join only show not has click
template <typename T>
__global__ void FusedSeqpoolCVMGradKernelWithShow(
const size_t N, T **out_grads_values, T **in_grads_values, T **cvm_values,
size_t **lods_values, const int batch_size, const int embedding_size,
const int cvm_offset) {
CUDA_KERNEL_LOOP(i, N) {
int key = i / embedding_size;
int offset = i % embedding_size; // embedx offset
int x = key / batch_size; // slot id
int y = key % batch_size; // ins id
T &val =
(offset < cvm_offset)
? *(cvm_values[x] + y * cvm_offset + offset)
: *(out_grads_values[x] + y * (embedding_size - 1) + offset - 1);
auto &start = *(lods_values[x] + y);
auto &end = *(lods_values[x] + y + 1);
for (auto k = start; k < end; ++k) {
*(in_grads_values[x] + k * embedding_size + offset) = val;
}
}
}
// update grad
template <typename T>
__global__ void FusedSeqpoolCVMGradKernelNoCVM(
const size_t N, T **out_grads_values, T **in_grads_values, T **cvm_values,
size_t **lods_values, const int batch_size, const int embedding_size,
const int cvm_offset) {
CUDA_KERNEL_LOOP(i, N) {
int key = i / embedding_size;
int offset = i % embedding_size; // embedx offset
int x = key / batch_size; // slot id
int y = key % batch_size; // ins id
T &val = (offset < cvm_offset)
? *(cvm_values[x] + y * cvm_offset + offset)
: *(out_grads_values[x] + y * (embedding_size - cvm_offset) +
offset - cvm_offset);
auto &start = *(lods_values[x] + y);
auto &end = *(lods_values[x] + y + 1);
for (auto k = start; k < end; ++k) {
*(in_grads_values[x] + k * embedding_size + offset) = val;
}
}
}
template <typename T>
void FusedSeqpoolCVMGrad(const framework::ExecutionContext &ctx,
const std::vector<const T *> &out_grads_data,
const std::vector<T *> &in_grads_data,
const std::vector<const T *> &cvm_data,
const std::vector<const size_t *> &lods,
const int batch_size, const int slot_num,
const int embedding_size, const bool use_cvm,
const int cvm_offset) {
auto stream =
ctx.template device_context<platform::CUDADeviceContext>().stream();
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
size_t total_ptr_len = out_grads_data.size() + in_grads_data.size() +
cvm_data.size() + lods.size();
auto temp_ptr =
memory::AllocShared(ctx.GetPlace(), total_ptr_len * sizeof(void *));
#ifdef PADDLE_WITH_HIP
T **gpu_out_grads_values = reinterpret_cast<T **>(temp_ptr->ptr());
platform::GpuMemcpyAsync(gpu_out_grads_values, out_grads_data.data(),
out_grads_data.size() * sizeof(T *),
hipMemcpyHostToDevice, stream);
T **gpu_in_grads_values =
reinterpret_cast<T **>(&gpu_out_grads_values[out_grads_data.size()]);
platform::GpuMemcpyAsync(gpu_in_grads_values, in_grads_data.data(),
in_grads_data.size() * sizeof(T *),
hipMemcpyHostToDevice, stream);
T **gpu_cvm_values =
reinterpret_cast<T **>(&gpu_in_grads_values[in_grads_data.size()]);
platform::GpuMemcpyAsync(gpu_cvm_values, cvm_data.data(),
cvm_data.size() * sizeof(T *), hipMemcpyHostToDevice,
stream);
size_t **lods_values =
reinterpret_cast<size_t **>(&gpu_cvm_values[cvm_data.size()]);
platform::GpuMemcpyAsync(lods_values, lods.data(),
lods.size() * sizeof(size_t *),
hipMemcpyHostToDevice, stream);
#else
T **gpu_out_grads_values = reinterpret_cast<T **>(temp_ptr->ptr());
platform::GpuMemcpyAsync(gpu_out_grads_values, out_grads_data.data(),
out_grads_data.size() * sizeof(T *),
cudaMemcpyHostToDevice, stream);
T **gpu_in_grads_values =
reinterpret_cast<T **>(&gpu_out_grads_values[out_grads_data.size()]);
platform::GpuMemcpyAsync(gpu_in_grads_values, in_grads_data.data(),
in_grads_data.size() * sizeof(T *),
cudaMemcpyHostToDevice, stream);
T **gpu_cvm_values =
reinterpret_cast<T **>(&gpu_in_grads_values[in_grads_data.size()]);
platform::GpuMemcpyAsync(gpu_cvm_values, cvm_data.data(),
cvm_data.size() * sizeof(T *),
cudaMemcpyHostToDevice, stream);
size_t **lods_values =
reinterpret_cast<size_t **>(&gpu_cvm_values[cvm_data.size()]);
platform::GpuMemcpyAsync(lods_values, lods.data(),
lods.size() * sizeof(size_t *),
cudaMemcpyHostToDevice, stream);
#endif
size_t N = static_cast<size_t>(batch_size * slot_num * embedding_size);
auto config = GetGpuLaunchConfig1D(dev_ctx, N);
if (use_cvm) {
// join grad
FusedSeqpoolCVMGradKernelWithCVM<<<config.block_per_grid.x,
config.thread_per_block.x, 0, stream>>>(
N, gpu_out_grads_values, gpu_in_grads_values, gpu_cvm_values,
lods_values, batch_size, embedding_size, cvm_offset);
} else {
// update grad
FusedSeqpoolCVMGradKernelNoCVM<<<config.block_per_grid.x,
config.thread_per_block.x, 0, stream>>>(
N, gpu_out_grads_values, gpu_in_grads_values, gpu_cvm_values,
lods_values, batch_size, embedding_size, cvm_offset);
}
}
template <typename T>
class FusedSeqpoolCVMCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto inputs = ctx.MultiInput<LoDTensor>("X");
auto outputs = ctx.MultiOutput<framework::Tensor>("Out");
const auto slot_size = inputs.size();
std::vector<const float *> input_data(slot_size);
std::vector<const size_t *> lods_data(slot_size);
std::vector<T *> output_data(slot_size);
std::vector<LoDTensor> seqpool_outputs(slot_size);
std::vector<T *> seqpool_output_data(slot_size);
auto padding_value = ctx.Attr<float>("pad_value");
auto use_cvm = ctx.Attr<bool>("use_cvm");
const int cvm_offset = ctx.Attr<int>("cvm_offset");
int embedding_size = inputs[0]->numel() / inputs[0]->dims()[0];
int batch_size = -1;
std::vector<paddle::framework::MixVector<size_t> *> mix_lods_v(slot_size);
for (size_t i = 0; i < slot_size; ++i) {
const auto *input = inputs[i];
Vector<size_t> lods;
if (input->lod().size() != 0) {
auto lod = input->lod();
lods = lod[0];
} else {
lods.push_back(0);
for (int i = 0; i < input->dims()[0]; i++) {
lods.push_back(i + 1);
}
}
int cur_batch_size =
input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
if (batch_size == -1) {
batch_size = cur_batch_size;
} else {
PADDLE_ENFORCE_EQ(batch_size, cur_batch_size,
platform::errors::PreconditionNotMet(
"The batch size of all input should be same, "
"please cheack, last batchsize is %d, current "
"batchsize is %d",
batch_size, cur_batch_size));
}
input_data[i] = reinterpret_cast<const T *>(input->data<T>());
auto *output = outputs[i];
if (use_cvm) {
output->Resize({batch_size, embedding_size});
} else {
output->Resize({batch_size, embedding_size - cvm_offset});
}
output_data[i] =
reinterpret_cast<T *>(output->mutable_data<T>(ctx.GetPlace()));
mix_lods_v[i] = new paddle::framework::MixVector<size_t>(&lods);
lods_data[i] = mix_lods_v[i]->CUDAData(ctx.GetPlace());
seqpool_output_data[i] =
reinterpret_cast<T *>(seqpool_outputs[i].mutable_data<T>(
{batch_size, embedding_size}, ctx.GetPlace()));
}
FusedSeqpoolCVM(ctx, input_data, output_data, seqpool_output_data,
lods_data, batch_size, slot_size, embedding_size,
padding_value, use_cvm, cvm_offset);
for (int i = 0; i < slot_size; i++) {
delete mix_lods_v[i];
}
}
};
template <typename T>
class FusedSeqpoolCVMGradCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto out_grads = ctx.MultiInput<LoDTensor>(framework::GradVarName("Out"));
auto in_grads = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));
auto *cvm = ctx.Input<LoDTensor>("CVM");
std::string pooltype = ctx.Attr<std::string>("pooltype");
auto use_cvm = ctx.Attr<bool>("use_cvm");
const int cvm_offset = ctx.Attr<int>("cvm_offset");
const auto slot_size = in_grads.size();
std::vector<const T *> out_grads_data(slot_size);
std::vector<T *> in_grads_data(slot_size);
std::vector<const T *> cvm_data(slot_size);
std::vector<const size_t *> lods_data(slot_size);
int embedding_size = in_grads[0]->numel() / in_grads[0]->dims()[0];
int batch_size = -1;
std::vector<paddle::framework::MixVector<size_t> *> mix_lods_v(slot_size);
for (size_t i = 0; i < slot_size; ++i) {
auto *in_grad = in_grads[i];
Vector<size_t> lods;
if (in_grad->lod().size() != 0) {
auto lod = in_grad->lod();
lods = lod[0];
} else {
lods.push_back(0);
for (int i = 0; i < in_grad->dims()[0]; i++) {
lods.push_back(i + 1);
}
}
int cur_batch_size = in_grad->lod().size() ? in_grad->lod()[0].size() - 1
: in_grad->dims()[0];
if (batch_size == -1) {
batch_size = cur_batch_size;
} else {
PADDLE_ENFORCE_EQ(batch_size, cur_batch_size,
platform::errors::PreconditionNotMet(
"The batch size of all input should be same, "
"please cheack, last batchsize is %d, current "
"batchsize is %d",
batch_size, cur_batch_size));
}
auto *out_grad = out_grads[i];
out_grads_data[i] = reinterpret_cast<const T *>(out_grad->data<T>());
in_grads_data[i] =
reinterpret_cast<T *>(in_grad->mutable_data<T>(ctx.GetPlace()));
mix_lods_v[i] = new paddle::framework::MixVector<size_t>(&lods);
lods_data[i] = mix_lods_v[i]->CUDAData(ctx.GetPlace());
cvm_data[i] = reinterpret_cast<const T *>(cvm->data<T>());
}
FusedSeqpoolCVMGrad(ctx, out_grads_data, in_grads_data, cvm_data, lods_data,
batch_size, slot_size, embedding_size, use_cvm,
cvm_offset);
for (int i = 0; i < slot_size; i++) {
delete mix_lods_v[i];
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(fused_seqpool_cvm,
ops::FusedSeqpoolCVMCUDAKernel<float>);
REGISTER_OP_CUDA_KERNEL(fused_seqpool_cvm_grad,
ops::FusedSeqpoolCVMGradCUDAKernel<float>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace operators {
using LoDTensor = framework::LoDTensor;
template <typename T>
class FusedSeqpoolCVMOpCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_THROW(platform::errors::Unimplemented(
"Unimplemented CPU kernel for FusedSeqpoolCVMOp, only support GPU "
"now."));
}
};
template <typename T>
class FusedSeqpoolCVMGradOpCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_THROW(platform::errors::Unimplemented(
"Unimplemented CPU kernel for FusedSeqpoolCVMGradOp, only support GPU "
"now."));
}
};
} // namespace operators
} // namespace paddle
......@@ -44,7 +44,7 @@ __all__ = [
'multiclass_nms2', 'search_pyramid_hash', 'shuffle_batch', 'partial_concat',
'sparse_embedding', 'partial_sum', 'tdm_child', 'rank_attention',
'tdm_sampler', 'batch_fc', '_pull_box_extended_sparse', 'bilateral_slice',
'correlation', 'fused_bn_add_act'
'correlation', 'fused_bn_add_act', 'fused_seqpool_cvm'
]
......@@ -523,6 +523,64 @@ def fused_embedding_seq_pool(input,
return out
def fused_seqpool_cvm(input,
pool_type,
cvm,
pad_value=0.0,
use_cvm=True,
cvm_offset=2):
"""
**Embedding Sequence pool**
This layer is the fusion of sequence_pool and continuous_value_model.
**Notes: The Op only receives List of LoDTensor as input, only support SUM pooling now.
Args:
input(Variable|list of Variable): Input is List of LoDTensor.
pool_type(str): pooling type, only support SUM pooling now.
cvm(Variable): cvm Variable.
pad_value(float): padding value of sequence pool.
use_cvm(bool): use cvm or not.
Returns:
Variable|list of Variable: The tensor variable storing sequence pool and cvm
of input.
"""
helper = LayerHelper('fused_seqpool_cvm', **locals())
if pool_type.upper() != 'SUM':
raise ValueError(
"fused_seqpool_cvm only support SUM pooling now, and your type is: "
+ pool_type)
check_type(input, 'input', list, 'fused_seqpool_cvm')
if isinstance(input, list):
for _input in input:
check_variable_and_dtype(_input, 'input', ['float32'],
'fused_seqpool_cvm')
dtype = helper.input_dtype()
inputs = helper.multiple_input()
outs = [
helper.create_variable_for_type_inference(dtype)
for i in range(len(inputs))
]
helper.append_op(
type="fused_seqpool_cvm",
inputs={"X": inputs,
"CVM": cvm},
outputs={"Out": outs},
attrs={
"pooltype": pool_type.upper(),
"pad_value": pad_value,
"use_cvm": use_cvm,
"cvm_offset": cvm_offset,
})
return outs
def multiclass_nms2(bboxes,
scores,
score_threshold,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册