diff --git a/paddle/fluid/operators/pixel_shuffle_op.cc b/paddle/fluid/operators/pixel_shuffle_op.cc index ee72b3e501fe7ebecf6db8e06efa719067ba00d0..1ed7988dcfcc0831156c09a72e958852f3d45fb5 100644 --- a/paddle/fluid/operators/pixel_shuffle_op.cc +++ b/paddle/fluid/operators/pixel_shuffle_op.cc @@ -20,17 +20,27 @@ class PixelShuffleOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of PixelShuffleOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output(Out) of PixelShuffleOp should not be null."); + PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, + platform::errors::NotFound( + "Input(X) of PixelShuffleOp should not be null.")); + PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, + platform::errors::NotFound( + "Output(Out) of PixelShuffleOp should not be null.")); auto input_dims = ctx->GetInputDim("X"); - PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW."); + PADDLE_ENFORCE_EQ( + input_dims.size(), 4, + platform::errors::InvalidArgument( + "Input should be a 4-D tensor of format [N, C, H, W], but got %u.", + input_dims.size())); + auto upscale_factor = ctx->Attrs().Get("upscale_factor"); - PADDLE_ENFORCE(input_dims[1] % (upscale_factor * upscale_factor) == 0, - "Upscale_factor should devide the number of channel"); + PADDLE_ENFORCE_EQ(input_dims[1] % (upscale_factor * upscale_factor), 0, + platform::errors::InvalidArgument( + "The square of upscale_factor[%u] should divide the " + "number of channel[%u]", + input_dims[1], upscale_factor * upscale_factor)); auto output_dims = input_dims; output_dims[0] = input_dims[0]; @@ -57,7 +67,8 @@ class PixelShuffleOpMaker : public framework::OpProtoAndCheckerMaker { .SetDefault(1) .AddCustomChecker([](const int& upscale_factor) { PADDLE_ENFORCE_GE(upscale_factor, 1, - "upscale_factor should be larger than 0."); + platform::errors::InvalidArgument( + "upscale_factor should be larger than 0.")); }); AddComment(R"DOC( @@ -95,13 +106,19 @@ class PixelShuffleGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), - "Input(Out@Grad) should not be null"); - PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), - "Output(X@Grad) should not be null"); + PADDLE_ENFORCE_EQ( + ctx->HasInput(framework::GradVarName("Out")), true, + platform::errors::NotFound("Input(Out@Grad) should not be null")); + PADDLE_ENFORCE_EQ( + ctx->HasOutput(framework::GradVarName("X")), true, + platform::errors::NotFound("Output(X@Grad) should not be null")); auto do_dims = ctx->GetInputDim(framework::GradVarName("Out")); - PADDLE_ENFORCE(do_dims.size() == 4, "The layout of input is NCHW."); + PADDLE_ENFORCE_EQ( + do_dims.size(), 4, + platform::errors::InvalidArgument( + "Input should be a 4-D tensor of format [N, C, H, W], but got %u.", + do_dims.size())); auto upscale_factor = ctx->Attrs().Get("upscale_factor"); diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 8bd500b9d0fb9a595e6dc0e385d50bcfc7b9669b..90cf1ce11cffce9defc516c87691f4b284a9df5f 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -13452,6 +13452,7 @@ def pixel_shuffle(x, upscale_factor): """ + check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle') helper = LayerHelper("pixel_shuffle", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype)