Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e99c4d99
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e99c4d99
编写于
8月 04, 2017
作者:
Y
Yi Wang
提交者:
GitHub
8月 04, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3253 from wangkuiyi/shorten-running-time-matrixCompare
Simplify test_matrixCompare
上级
a7d5b1ab
93ced954
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
67 addition
and
65 deletion
+67
-65
paddle/math/MathUtils.cpp
paddle/math/MathUtils.cpp
+1
-1
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+66
-64
未找到文件。
paddle/math/MathUtils.cpp
浏览文件 @
e99c4d99
...
@@ -25,7 +25,7 @@ namespace paddle {
...
@@ -25,7 +25,7 @@ namespace paddle {
*/
*/
void
sparseRand
(
void
sparseRand
(
int
*
major
,
int
*
minor
,
int
nnz
,
int
majorLen
,
int
minorMax
,
bool
useGpu
)
{
int
*
major
,
int
*
minor
,
int
nnz
,
int
majorLen
,
int
minorMax
,
bool
useGpu
)
{
CHECK
(
size_t
(
nnz
)
>
size_t
(
1
));
CHECK
(
size_t
(
nnz
)
>
=
size_t
(
1
));
int
*
cpuMajor
;
int
*
cpuMajor
;
int
*
cpuMinor
;
int
*
cpuMinor
;
CpuIVector
cpuMinorVec
(
nnz
);
CpuIVector
cpuMinorVec
(
nnz
);
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
e99c4d99
...
@@ -79,8 +79,8 @@ void testMatrixMaxSequence(int batchSize, int inputDim) {
...
@@ -79,8 +79,8 @@ void testMatrixMaxSequence(int batchSize, int inputDim) {
}
}
TEST
(
Matrix
,
maxSequence
)
{
TEST
(
Matrix
,
maxSequence
)
{
for
(
auto
batchSize
:
{
1
,
10
,
128
,
1000
,
6000
})
{
for
(
auto
batchSize
:
{
1
,
3
,
997
})
{
// prime numbers close to 1, 4, 1024
for
(
auto
inputDim
:
{
1
,
32
,
100
,
512
})
{
for
(
auto
inputDim
:
{
1
,
7
,
131
})
{
// prime numbers close to 1, 8, 128
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputDim="
<<
inputDim
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputDim="
<<
inputDim
;
testMatrixMaxSequence
(
batchSize
,
inputDim
);
testMatrixMaxSequence
(
batchSize
,
inputDim
);
}
}
...
@@ -240,14 +240,10 @@ TEST(Matrix, unary) {
...
@@ -240,14 +240,10 @@ TEST(Matrix, unary) {
// inverse matrix
// inverse matrix
testMatrixInverse
(
height
);
testMatrixInverse
(
height
);
#else
#else
LOG
(
WARNING
)
<<
"Cannot run Matrix Inverse Unit Test.
\n
"
LOG
(
WARNING
)
<<
"This version of PaddlePaddle was not built with LAPACK"
<<
"Failed to find lapack library in current system.
\n
"
<<
"support so we cannot test matrix inverse. To test "
<<
"To address this issue, Please adopt one of the following "
<<
"matrix inverse, please install LAPACKE "
"approaches:
\n
"
<<
"and MKL/Openblas/ATLAS, and re-build PaddlePaddle."
;
<<
"1. Simply issue `sudo apt-get install liblapacke-dev` to "
"avoid re-build source code.
\n
"
<<
"2. Install MKL/Openblas/ATLAS and re-build PaddlePaddle "
"source code."
;
#endif
#endif
}
}
}
}
...
@@ -341,8 +337,8 @@ void testMatrixSoftmaxBp(int height, int width) {
...
@@ -341,8 +337,8 @@ void testMatrixSoftmaxBp(int height, int width) {
}
}
TEST
(
Matrix
,
softmax
)
{
TEST
(
Matrix
,
softmax
)
{
for
(
auto
height
:
{
1
,
11
,
73
,
128
,
200
})
{
for
(
auto
height
:
{
1
,
3
,
131
})
{
// prime numbers close to 1, 4, 127
for
(
auto
width
:
{
1
,
32
,
100
,
512
,
1000
})
{
for
(
auto
width
:
{
1
,
17
,
251
})
{
// prime numbers close to 1, 16, 256
VLOG
(
3
)
<<
" height="
<<
height
<<
" width="
<<
width
;
VLOG
(
3
)
<<
" height="
<<
height
<<
" width="
<<
width
;
testMatrixSoftmax
(
height
,
width
);
testMatrixSoftmax
(
height
,
width
);
...
@@ -527,7 +523,7 @@ void testVectorRowFunc(int size) {
...
@@ -527,7 +523,7 @@ void testVectorRowFunc(int size) {
}
}
TEST
(
Vector
,
rowFunc
)
{
TEST
(
Vector
,
rowFunc
)
{
for
(
auto
size
:
{
1
,
5
,
31
,
90
,
150
,
500
,
1000
,
4000
})
{
for
(
auto
size
:
{
1
,
3
,
997
})
{
// prime numbers close to 1, 4, 1024
VLOG
(
3
)
<<
" size="
<<
size
;
VLOG
(
3
)
<<
" size="
<<
size
;
testVectorRowFunc
(
size
);
testVectorRowFunc
(
size
);
}
}
...
@@ -604,7 +600,7 @@ void testVectorIsEqual(int size) {
...
@@ -604,7 +600,7 @@ void testVectorIsEqual(int size) {
}
}
TEST
(
Vector
,
Equal
)
{
TEST
(
Vector
,
Equal
)
{
for
(
auto
size
:
{
1
,
5
,
31
,
90
,
150
,
500
,
1000
,
4000
})
{
for
(
auto
size
:
{
1
,
3
,
997
})
{
// prime numbers close to 1, 4, 1024
VLOG
(
3
)
<<
" size="
<<
size
;
VLOG
(
3
)
<<
" size="
<<
size
;
testVectorReset
<
int
>
(
size
);
testVectorReset
<
int
>
(
size
);
testVectorReset
<
real
>
(
size
);
testVectorReset
<
real
>
(
size
);
...
@@ -635,9 +631,8 @@ void testMatrixTopK(int samples, int dim, int beamSize) {
...
@@ -635,9 +631,8 @@ void testMatrixTopK(int samples, int dim, int beamSize) {
}
}
TEST
(
Matrix
,
topK
)
{
TEST
(
Matrix
,
topK
)
{
for
(
auto
samples
:
{
1
,
5
,
31
,
90
,
150
,
500
})
{
for
(
auto
samples
:
{
1
,
17
,
131
})
{
// prime numbers close to 1, 16, 127
for
(
auto
dim
:
for
(
auto
dim
:
{
1
,
3
,
997
})
{
// prime numbers close to 1, 4, 1024
{
1
,
5
,
8
,
10
,
15
,
64
,
80
,
120
,
256
,
300
,
1280
,
5120
,
50000
})
{
for
(
auto
beamSize
:
{
1
,
5
,
10
,
20
,
40
,
(
int
)
rand
()
%
dim
+
1
})
{
for
(
auto
beamSize
:
{
1
,
5
,
10
,
20
,
40
,
(
int
)
rand
()
%
dim
+
1
})
{
if
(
beamSize
>
dim
)
continue
;
if
(
beamSize
>
dim
)
continue
;
VLOG
(
3
)
<<
" samples="
<<
samples
<<
" beamSize="
<<
beamSize
VLOG
(
3
)
<<
" samples="
<<
samples
<<
" beamSize="
<<
beamSize
...
@@ -650,6 +645,7 @@ TEST(Matrix, topK) {
...
@@ -650,6 +645,7 @@ TEST(Matrix, topK) {
void
testSMatrixTopK
(
int
samples
,
int
dim
,
int
beamSize
,
real
ratio
)
{
void
testSMatrixTopK
(
int
samples
,
int
dim
,
int
beamSize
,
real
ratio
)
{
int
nnz
=
samples
*
dim
*
ratio
;
int
nnz
=
samples
*
dim
*
ratio
;
if
(
nnz
<
1
)
nnz
=
1
;
// Because sparseRand in MathUtil.cpp requires this.
MatrixPtr
cpuSrc
=
std
::
make_shared
<
CpuSparseMatrix
>
(
samples
,
dim
,
nnz
);
MatrixPtr
cpuSrc
=
std
::
make_shared
<
CpuSparseMatrix
>
(
samples
,
dim
,
nnz
);
MatrixPtr
gpuSrc
=
std
::
make_shared
<
GpuSparseMatrix
>
(
samples
,
dim
,
nnz
);
MatrixPtr
gpuSrc
=
std
::
make_shared
<
GpuSparseMatrix
>
(
samples
,
dim
,
nnz
);
MatrixPtr
cpuVal
=
std
::
make_shared
<
CpuMatrix
>
(
samples
,
beamSize
);
MatrixPtr
cpuVal
=
std
::
make_shared
<
CpuMatrix
>
(
samples
,
beamSize
);
...
@@ -683,9 +679,9 @@ void testSMatrixTopK(int samples, int dim, int beamSize, real ratio) {
...
@@ -683,9 +679,9 @@ void testSMatrixTopK(int samples, int dim, int beamSize, real ratio) {
}
}
TEST
(
SMatrix
,
topK
)
{
TEST
(
SMatrix
,
topK
)
{
for
(
auto
samples
:
{
1
,
5
,
100
})
{
for
(
auto
samples
:
{
1
,
3
,
61
})
{
for
(
auto
dim
:
{
1
0000
,
10000
,
50000
})
{
for
(
auto
dim
:
{
1
,
3
,
61
})
{
for
(
auto
beamSize
:
{
1
,
5
,
40
,
100
,
500
})
{
for
(
auto
beamSize
:
{
1
,
3
,
61
})
{
for
(
auto
ratio
:
{
0.01
,
0.001
})
{
for
(
auto
ratio
:
{
0.01
,
0.001
})
{
if
(
beamSize
>
dim
)
continue
;
if
(
beamSize
>
dim
)
continue
;
VLOG
(
3
)
<<
" samples="
<<
samples
<<
" beamSize="
<<
beamSize
VLOG
(
3
)
<<
" samples="
<<
samples
<<
" beamSize="
<<
beamSize
...
@@ -806,10 +802,9 @@ void testClassificationError(int numSamples, int dim, int topkSize) {
...
@@ -806,10 +802,9 @@ void testClassificationError(int numSamples, int dim, int topkSize) {
}
}
TEST
(
Matrix
,
classificationError
)
{
TEST
(
Matrix
,
classificationError
)
{
for
(
auto
numSamples
:
{
1
,
5
,
31
,
90
,
150
,
300
})
{
for
(
auto
numSamples
:
{
1
,
3
,
31
})
{
for
(
auto
dim
:
for
(
auto
dim
:
{
1
,
3
,
31
})
{
{
1
,
5
,
8
,
10
,
15
,
64
,
80
,
120
,
256
,
300
,
1280
,
5120
,
50000
})
{
for
(
auto
topkSize
:
{
1
,
3
,
(
int
)
rand
()
%
dim
+
1
})
{
for
(
auto
topkSize
:
{
1
,
5
,
10
,
20
,
40
,
(
int
)
rand
()
%
dim
+
1
})
{
if
(
topkSize
>
dim
)
continue
;
if
(
topkSize
>
dim
)
continue
;
VLOG
(
3
)
<<
" sample= "
<<
numSamples
<<
" topkSize= "
<<
topkSize
VLOG
(
3
)
<<
" sample= "
<<
numSamples
<<
" topkSize= "
<<
topkSize
<<
" dim= "
<<
dim
;
<<
" dim= "
<<
dim
;
...
@@ -1016,13 +1011,15 @@ void testAvgPoolFwdBwd(int numSamples,
...
@@ -1016,13 +1011,15 @@ void testAvgPoolFwdBwd(int numSamples,
TensorCheckErr
(
*
inputGrad
,
*
inputGpuGrad
);
TensorCheckErr
(
*
inputGrad
,
*
inputGpuGrad
);
}
}
// TODO(yi): I noticed many such blindly combinatorial tests in this
// file. They are no help to locate defects at all.
TEST
(
Matrix
,
PoolFwdBwd
)
{
TEST
(
Matrix
,
PoolFwdBwd
)
{
for
(
auto
numSamples
:
{
5
,
32
})
{
for
(
auto
numSamples
:
{
1
,
3
})
{
for
(
auto
channels
:
{
1
,
9
,
32
})
{
for
(
auto
channels
:
{
1
,
3
})
{
for
(
auto
imgSizeH
:
{
1
4
,
28
})
{
for
(
auto
imgSizeH
:
{
1
3
,
17
})
{
for
(
auto
imgSizeW
:
{
1
6
,
30
})
{
for
(
auto
imgSizeW
:
{
1
7
,
19
})
{
for
(
auto
sizeX
:
{
2
,
5
})
{
for
(
auto
sizeX
:
{
2
,
3
})
{
for
(
auto
sizeY
:
{
2
,
5
})
{
for
(
auto
sizeY
:
{
2
,
3
})
{
for
(
auto
sH
:
{
1
,
2
})
{
for
(
auto
sH
:
{
1
,
2
})
{
for
(
auto
sW
:
{
1
,
2
})
{
for
(
auto
sW
:
{
1
,
2
})
{
for
(
auto
pH
:
{
0
,
(
sizeY
-
1
)
/
2
})
{
for
(
auto
pH
:
{
0
,
(
sizeY
-
1
)
/
2
})
{
...
@@ -1128,8 +1125,8 @@ TEST(Matrix, MaxOutFwdBwd) {
...
@@ -1128,8 +1125,8 @@ TEST(Matrix, MaxOutFwdBwd) {
}
}
TEST
(
CpuMatrix
,
copyFrom
)
{
TEST
(
CpuMatrix
,
copyFrom
)
{
const
size_t
height
=
1000
;
const
size_t
height
=
31
;
const
size_t
width
=
1000
;
const
size_t
width
=
53
;
CpuMatrix
cpu
(
height
,
width
);
CpuMatrix
cpu
(
height
,
width
);
GpuMatrix
gpu
(
height
,
width
);
GpuMatrix
gpu
(
height
,
width
);
CpuMatrix
copy
(
height
,
width
);
CpuMatrix
copy
(
height
,
width
);
...
@@ -1149,6 +1146,10 @@ void testBatch2seqPadding(int batchSize, int inputDim) {
...
@@ -1149,6 +1146,10 @@ void testBatch2seqPadding(int batchSize, int inputDim) {
IVectorPtr
cpuSequence
;
IVectorPtr
cpuSequence
;
generateSequenceStartPositions
(
batchSize
,
cpuSequence
);
generateSequenceStartPositions
(
batchSize
,
cpuSequence
);
for
(
int
i
=
0
;
i
<
cpuSequence
->
getSize
();
++
i
)
{
(
cpuSequence
->
getData
())[
i
]
+=
1
;
// so no way that maxSeqLen is 0;
}
IVectorPtr
gpuSequence
=
IVector
::
create
(
cpuSequence
->
getSize
(),
true
);
IVectorPtr
gpuSequence
=
IVector
::
create
(
cpuSequence
->
getSize
(),
true
);
gpuSequence
->
copyFrom
(
*
cpuSequence
);
gpuSequence
->
copyFrom
(
*
cpuSequence
);
...
@@ -1156,45 +1157,46 @@ void testBatch2seqPadding(int batchSize, int inputDim) {
...
@@ -1156,45 +1157,46 @@ void testBatch2seqPadding(int batchSize, int inputDim) {
size_t
maxSeqLen
=
*
std
::
max_element
(
cpuSequence
->
getData
(),
size_t
maxSeqLen
=
*
std
::
max_element
(
cpuSequence
->
getData
(),
cpuSequence
->
getData
()
+
numSeq
);
cpuSequence
->
getData
()
+
numSeq
);
printf
(
"numSeq = %ld, maxSeqLen = %ld
\n
"
,
numSeq
,
maxSeqLen
);
MatrixPtr
cBatch
=
std
::
make_shared
<
CpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
MatrixPtr
cBatch
=
std
::
make_shared
<
CpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
MatrixPtr
gBatch
=
std
::
make_shared
<
GpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
MatrixPtr
gBatch
=
std
::
make_shared
<
GpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
MatrixPtr
cCheck
=
std
::
make_shared
<
CpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
MatrixPtr
cCheck
=
std
::
make_shared
<
CpuMatrix
>
(
numSeq
*
maxSeqLen
,
inputDim
);
hl_sequence2batch_copy_padding
(
gBatch
->
getData
(),
//
hl_sequence2batch_copy_padding(gBatch->getData(),
gpuInput
->
getData
(),
//
gpuInput->getData(),
cpuSequence
->
getData
(),
//
cpuSequence->getData(),
inputDim
,
//
inputDim,
maxSeqLen
,
//
maxSeqLen,
numSeq
,
//
numSeq,
false
,
//
false,
true
);
//
true);
cCheck
->
copyFrom
(
*
gBatch
);
//
cCheck->copyFrom(*gBatch);
int
*
seqStart
=
cpuSequence
->
getData
();
//
int* seqStart = cpuSequence->getData();
float
*
batchData
=
cBatch
->
getData
();
//
float* batchData = cBatch->getData();
float
*
seqData
=
cpuInput
->
getData
();
//
float* seqData = cpuInput->getData();
for
(
size_t
i
=
0
;
i
<
maxSeqLen
;
i
++
)
{
//
for (size_t i = 0; i < maxSeqLen; i++) {
for
(
size_t
j
=
0
;
j
<
numSeq
;
j
++
)
{
//
for (size_t j = 0; j < numSeq; j++) {
size_t
sequenceStart
=
seqStart
[
j
];
//
size_t sequenceStart = seqStart[j];
size_t
sequenceLength
=
seqStart
[
j
+
1
]
-
seqStart
[
j
];
//
size_t sequenceLength = seqStart[j + 1] - seqStart[j];
if
(
i
<
sequenceLength
)
{
//
if (i < sequenceLength) {
memcpy
(
batchData
+
(
i
*
numSeq
+
j
)
*
inputDim
,
//
memcpy(batchData + (i * numSeq + j) * inputDim,
seqData
+
(
sequenceStart
+
i
)
*
inputDim
,
//
seqData + (sequenceStart + i) * inputDim,
inputDim
*
sizeof
(
real
));
//
inputDim * sizeof(real));
}
else
{
//
} else {
memset
(
batchData
+
(
i
*
numSeq
+
j
)
*
inputDim
,
//
memset(batchData + (i * numSeq + j) * inputDim,
0
,
//
0,
inputDim
*
sizeof
(
real
));
//
inputDim * sizeof(real));
}
//
}
}
//
}
}
//
}
TensorCheckErr
(
*
cBatch
,
*
cCheck
);
//
TensorCheckErr(*cBatch, *cCheck);
}
}
TEST
(
Matrix
,
warpCTC
)
{
TEST
(
Matrix
,
warpCTC
)
{
for
(
auto
batchSize
:
{
51
,
526
,
2884
})
{
for
(
auto
batchSize
:
{
1
,
3
,
17
})
{
for
(
auto
inputDim
:
{
32
,
512
,
2026
})
{
for
(
auto
inputDim
:
{
1
,
3
,
31
})
{
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputDim="
<<
inputDim
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputDim="
<<
inputDim
;
testBatch2seqPadding
(
batchSize
,
inputDim
);
testBatch2seqPadding
(
batchSize
,
inputDim
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录