Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e7724a2c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e7724a2c
编写于
7月 17, 2020
作者:
A
Adam
提交者:
GitHub
7月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor of conv fp32 oneDNN operator (#25137) (#25572)
上级
9bf70039
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
467 addition
and
266 deletion
+467
-266
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
+345
-261
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+122
-5
未找到文件。
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
浏览文件 @
e7724a2c
...
...
@@ -26,42 +26,24 @@ using mkldnn::memory;
using
mkldnn
::
primitive
;
using
mkldnn
::
reorder
;
using
mkldnn
::
stream
;
using
platform
::
to_void_cast
;
using
platform
::
GetMKLDNNFormat
;
using
platform
::
to_void_cast
;
inline
void
GetWeightsTz
(
std
::
vector
<
int64_t
>&
weights_tz
,
// NOLINT
int
groups
,
bool
is_conv3d
)
{
const
int
groups
)
{
if
(
groups
>
1
)
{
if
(
is_conv3d
)
{
int
output
=
weights_tz
[
0
];
int
input
=
weights_tz
[
1
];
int
dimension
=
weights_tz
[
2
];
int
height
=
weights_tz
[
3
];
int
width
=
weights_tz
[
4
];
weights_tz
.
resize
(
6
);
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
output
/
groups
;
weights_tz
[
2
]
=
input
;
weights_tz
[
3
]
=
dimension
;
weights_tz
[
4
]
=
height
;
weights_tz
[
5
]
=
width
;
}
else
{
int
output
=
weights_tz
[
0
];
int
input
=
weights_tz
[
1
];
int
height
=
weights_tz
[
2
];
int
width
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
output
/
groups
;
weights_tz
[
2
]
=
input
;
weights_tz
[
3
]
=
height
;
weights_tz
[
4
]
=
width
;
}
// if (is_conv3d) [o, i, d, h, w]->[g, o/g, i, d, h, w]
// else [o, i, h, w] -> [g, o/g, i, h, w]
weights_tz
.
push_back
(
0
);
std
::
rotate
(
weights_tz
.
begin
(),
weights_tz
.
end
()
-
1
,
weights_tz
.
end
());
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
weights_tz
[
1
]
/
groups
;
}
}
inline
MKLDNNMemoryFormat
GetWeightsFormat
(
MKLDNNMemoryFormat
format
,
int
groups
,
bool
is_conv3d
)
{
inline
MKLDNNMemoryFormat
GetWeightsFormat
(
const
MKLDNNMemoryFormat
format
,
const
int
groups
,
const
bool
is_conv3d
)
{
if
(
is_conv3d
)
{
return
(
groups
==
1
)
?
format
:
MKLDNNMemoryFormat
::
goidhw
;
}
else
{
...
...
@@ -90,284 +72,386 @@ static mkldnn::memory::data_type GetDstType(bool is_int8,
return
dst_dt
;
}
template
<
typename
T
,
typename
K
>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
template
<
typename
T
>
class
ConvMKLDNNHandlerT
:
public
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
convolution_forward
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
bool
is_INT8
=
std
::
is_same
<
T
,
int8_t
>::
value
||
std
::
is_same
<
T
,
uint8_t
>::
value
;
if
(
!
is_INT8
)
{
ComputeFP32
(
ctx
);
}
else
{
std
::
string
fuse_activation
=
ctx
.
Attr
<
std
::
string
>
(
"fuse_activation"
);
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
bool
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
dst_dt
=
GetDstType
(
true
,
force_fp32_output
,
fuse_activation
,
fuse_residual_conn
,
residual_param
);
if
(
dst_dt
==
mkldnn
::
memory
::
data_type
::
f32
)
{
ComputeINT8
<
float
>
(
ctx
);
}
else
if
(
dst_dt
==
mkldnn
::
memory
::
data_type
::
u8
)
{
ComputeINT8
<
uint8_t
>
(
ctx
);
}
else
if
(
dst_dt
==
mkldnn
::
memory
::
data_type
::
s8
)
{
ComputeINT8
<
int8_t
>
(
ctx
);
}
}
}
ConvMKLDNNHandlerT
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
const
mkldnn
::
engine
mkldnn_engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
input
,
const
Tensor
*
filter
,
const
Tensor
*
bias
,
Tensor
*
output
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
convolution_forward
>
(
dev_ctx
,
mkldnn_engine
,
cpu_place
,
platform
::
CreateKey
(
framework
::
vectorize
(
input
->
dims
()),
unique_name
))
{
if
(
!
this
->
isCached
())
{
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"The input tensor's layout should be %d, but got %d."
,
DataLayout
::
kMKLDNN
,
input
->
layout
()));
PADDLE_ENFORCE_NE
(
input
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor"
));
void
ComputeFP32
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
{
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
PADDLE_ENFORCE_EQ
(
filter
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"The Filter tensor's layout should be %d, but got %d."
,
DataLayout
::
kMKLDNN
,
filter
->
layout
()));
PADDLE_ENFORCE_NE
(
filter
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Filter tensor"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
PADDLE_ENFORCE_GE
(
input
->
dims
().
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"Input must be with 4 or 5 dimensions, i.e. NCHW or "
"NCDHW, but got dimension = %d ."
,
input
->
dims
().
size
()));
PADDLE_ENFORCE_LE
(
input
->
dims
().
size
(),
5
,
platform
::
errors
::
InvalidArgument
(
"Input must be with 4 or 5 dimensions, i.e. NCHW or "
"NCDHW, but got dimension = %d ."
,
input
->
dims
().
size
()));
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
bias
=
ctx
.
HasInput
(
"Bias"
)
?
ctx
.
Input
<
Tensor
>
(
"Bias"
)
:
nullptr
;
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
PADDLE_ENFORCE_GE
(
filter
->
dims
().
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"Filter must be with 4 or 5 dimensions, i.e. OIHW or "
"OIDHW, but got dimension = %d ."
,
filter
->
dims
().
size
()));
PADDLE_ENFORCE_LE
(
filter
->
dims
().
size
(),
5
,
platform
::
errors
::
InvalidArgument
(
"Filter must be with 4 or 5 dimensions, i.e. OIHW or "
"OIDHW, but got dimension = %d ."
,
filter
->
dims
().
size
()));
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"The input tensor's layout should be %d, but got %d."
,
DataLayout
::
kMKLDNN
,
input
->
layout
()));
PADDLE_ENFORCE_NE
(
input
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor"
));
if
(
bias
)
{
PADDLE_ENFORCE_EQ
(
bias
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"The Bias tensor's layout should be %d, but got %d."
,
DataLayout
::
kMKLDNN
,
bias
->
layout
()));
PADDLE_ENFORCE_NE
(
bias
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Got wrong format for Bias tensor."
));
PADDLE_ENFORCE_EQ
(
filter
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"The Filter tensor's layout should be %d, but got %d."
,
DataLayout
::
kMKLDNN
,
filter
->
layout
()));
PADDLE_ENFORCE_NE
(
filter
->
format
(),
MKLDNNMemoryFormat
::
undef
,
"Wrong format set for Filter tensor"
);
PADDLE_ENFORCE_EQ
(
bias
->
dims
().
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Bias must only have 1 dimension, "
"i.e. X, but got dimension = %d ."
,
bias
->
dims
().
size
()));
}
PADDLE_ENFORCE_GE
(
input
->
dims
().
size
(),
4
,
"Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW"
);
PADDLE_ENFORCE_LE
(
input
->
dims
().
size
(),
5
,
"Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW"
);
const
std
::
string
fuse_activation
=
ctx
.
Attr
<
std
::
string
>
(
"fuse_activation"
);
const
float
fuse_alpha
=
ctx
.
Attr
<
float
>
(
"fuse_alpha"
);
const
float
fuse_beta
=
ctx
.
Attr
<
float
>
(
"fuse_beta"
);
const
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
const
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
PADDLE_ENFORCE_GE
(
filter
->
dims
().
size
(),
4
,
"Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW"
);
PADDLE_ENFORCE_LE
(
filter
->
dims
().
size
(),
5
,
"Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW"
);
const
auto
input_dims
=
input
->
dims
();
const
auto
data_dims
=
framework
::
slice_ddim
(
input_dims
,
2
,
input_dims
.
size
()
);
const
auto
filter_dims
=
filter
->
dims
();
const
auto
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
()
);
if
(
bias
)
{
PADDLE_ENFORCE_EQ
(
bias
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"The Bias tensor's layout should be %d, but got %d."
,
DataLayout
::
kMKLDNN
,
bias
->
layout
()));
PADDLE_ENFORCE_NE
(
bias
->
format
(),
MKLDNNMemoryFormat
::
undef
,
"Wrong format set for Bias tensor"
);
const
auto
ksize
=
framework
::
vectorize
(
filter_data_dims
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
PADDLE_ENFORCE_EQ
(
bias
->
dims
().
size
(),
1
,
"Bias must only have 1 dimension, i.e. X"
);
}
auto
strides_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int64_t
>
strides
(
begin
(
strides_temp
),
end
(
strides_temp
));
std
::
vector
<
int
>
strides_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"stride
s"
);
std
::
vector
<
int64_t
>
strides
(
begin
(
strides_temp
),
end
(
stride
s_temp
));
auto
paddings_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"padding
s"
);
std
::
vector
<
int64_t
>
paddings
(
begin
(
paddings_temp
),
end
(
padding
s_temp
));
std
::
vector
<
int
>
paddings_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int64_t
>
paddings
(
begin
(
paddings_temp
),
end
(
paddings_temp
));
auto
dilations_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
std
::
vector
<
int64_t
>
dilations
(
begin
(
dilations_temp
),
end
(
dilations_temp
));
std
::
vector
<
int
>
dilations_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
std
::
vector
<
int64_t
>
dilations
(
begin
(
dilations_temp
),
end
(
dilations_temp
));
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
const
bool
is_conv3d
=
strides
.
size
()
==
3U
;
std
::
string
fuse_activation
=
ctx
.
Attr
<
std
::
string
>
(
"fuse_activation"
);
float
fuse_alpha
=
ctx
.
Attr
<
float
>
(
"fuse_alpha"
);
float
fuse_beta
=
ctx
.
Attr
<
float
>
(
"fuse_beta"
);
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
bool
is_conv3d
=
strides
.
size
()
==
3U
;
PADDLE_ENFORCE_EQ
(
is_conv3d
?
dilations
.
size
()
==
3
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
&&
dilations
[
2
]
==
1
:
dilations
.
size
()
==
2
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
true
,
platform
::
errors
::
Unimplemented
(
"Dilation in oneDNN convolution is not implemented yet"
))
;
auto
input_dims
=
input
->
dims
();
auto
data_dims
=
framework
::
slice_ddim
(
input_dims
,
2
,
input_dims
.
size
());
auto
filter_dims
=
filter
->
dims
();
auto
filter_data_dims
=
framework
::
slice_ddim
(
filter_dims
,
2
,
filter_dims
.
size
());
const
auto
src_tz
=
paddle
::
framework
::
vectorize
(
input
->
dims
());
auto
ksize
=
framework
::
vectorize
(
filter_data_dims
);
auto
weights_tz
=
paddle
::
framework
::
vectorize
(
filter
->
dims
());
GetWeightsTz
(
weights_tz
,
groups
);
UpdatePaddingAndDilation
(
&
paddings
,
&
dilations
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
const
auto
dst_tz
=
paddle
::
framework
::
vectorize
(
output
->
dims
());
std
::
vector
<
primitive
>
pipeline
;
const
mkldnn
::
memory
::
dims
stride_dims
=
strides
;
const
auto
mkldnn_paddings
=
platform
::
ToMkldnnPadding
(
paddings
);
PADDLE_ENFORCE
(
is_conv3d
?
dilations
.
size
()
==
3
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
&&
dilations
[
2
]
==
1
:
dilations
.
size
()
==
2
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
"dilation in convolution is not implemented yet"
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
// TODO(jczaja): This is workaround to make grad op UT's numerical
// gradient computation proper as this op is called directly without
// fetch op following it , so numercial grad is computed (in python)
// using block formats which will give wrong results
const
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
is_test
?
MKLDNNMemoryFormat
::
any
:
platform
::
data_format_to_memory_format
(
data_format
);
// Check the format for user's special output
if
(
chosen_memory_format
!=
MKLDNNMemoryFormat
::
any
)
{
if
(
is_conv3d
)
{
chosen_memory_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
chosen_memory_format
);
}
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
const
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
const
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
src_tz
=
paddle
::
framework
::
vectorize
(
input
->
dims
());
auto
weights_tz
=
paddle
::
framework
::
vectorize
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
const
auto
fwd_prop_kind
=
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
;
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
const
mkldnn
::
primitive_attr
conv_attr
=
CreatePostOps
(
fuse_activation
,
fuse_alpha
,
fuse_beta
,
fuse_residual_conn
);
auto
dst_tz
=
paddle
::
framework
::
vectorize
(
output
->
dims
());
if
(
bias
)
{
auto
bias_tz
=
framework
::
vectorize
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
x
);
this
->
AcquireForwardPrimitiveDescriptor
(
conv_attr
,
fwd_prop_kind
,
dnnl
::
algorithm
::
convolution_direct
,
src_md
,
weights_md
,
bias_md
,
dst_md
,
stride_dims
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
}
else
{
this
->
AcquireForwardPrimitiveDescriptor
(
conv_attr
,
fwd_prop_kind
,
dnnl
::
algorithm
::
convolution_direct
,
src_md
,
weights_md
,
dst_md
,
stride_dims
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
}
}
}
// Get unique name for storing MKLDNN primitives
const
std
::
string
key
=
platform
::
CreateKey
(
src_tz
,
ctx
.
InputName
(
"Input"
)
+
ctx
.
InputName
(
"Filter"
));
mkldnn
::
primitive_attr
CreatePostOps
(
std
::
string
fuse_activation
,
float
fuse_alpha
,
float
fuse_beta
,
bool
fuse_residual_conn
,
const
std
::
vector
<
float
>
output_shift_scale
=
{},
float
sum_scale
=
1.0
f
)
{
mkldnn
::
primitive_attr
conv_attr
;
mkldnn
::
post_ops
post_operations
;
if
(
output_shift_scale
.
size
()
>
0
)
{
int
mask
=
output_shift_scale
.
size
()
>
1
?
1
<<
1
:
0
;
conv_attr
.
set_output_scales
(
mask
,
output_shift_scale
);
}
auto
src_format
=
input
->
format
();
MKLDNNMemoryFormat
weights_format
=
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
// Fusion with Elementwise layer relies on adding a sum post-operation with
// the scale parameter. It is assumed that when fuse_residual_connection is
// true, the output tensor contains the data coming from residual
// connection. The result of this post_op is:
// Output = scale * Output + Conv_Out.
if
(
fuse_residual_conn
)
{
post_operations
.
append_sum
(
sum_scale
);
}
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
if
(
fuse_activation
==
"relu"
||
fuse_activation
==
"leaky_relu"
)
{
constexpr
float
scale
=
1.0
f
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_relu
,
fuse_alpha
,
fuse_beta
);
}
else
if
(
fuse_activation
==
"relu6"
)
{
constexpr
float
scale
=
1.0
f
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_bounded_relu
,
fuse_alpha
,
fuse_beta
);
}
else
if
(
fuse_activation
==
"swish"
)
{
constexpr
float
scale
=
1.0
f
;
post_operations
.
append_eltwise
(
scale
,
mkldnn
::
algorithm
::
eltwise_swish
,
fuse_alpha
,
fuse_beta
);
}
conv_attr
.
set_post_ops
(
post_operations
);
return
conv_attr
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemoryWithReorder
(
const
framework
::
Tensor
*
input
)
{
const
T
*
input_data
=
input
->
data
<
T
>
();
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
src_format
);
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
weights_format
);
framework
::
vectorize
(
input
->
dims
()),
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
// TODO(jczaja): This is workaround to make grad op UT's numerical
// gradient computation proper as this op is called directly without
// fetch op following it , so numercial grad is computed (in python)
// using block formats which will give wrong results
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
auto
chosen_memory_format
=
is_test
?
MKLDNNMemoryFormat
::
any
:
platform
::
data_format_to_memory_format
(
data_format
);
return
this
->
AcquireMemoryWithReorder
(
user_src_md
,
this
->
fwd_pd_
->
src_desc
(),
to_void_cast
<
T
>
(
input_data
),
"@src_mem_p"
);
}
weights_format
=
MKLDNNMemoryFormat
::
any
;
// Check the format for user's special output
if
(
chosen_memory_format
!=
MKLDNNMemoryFormat
::
any
)
{
if
(
is_conv3d
)
{
chosen_memory_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
chosen_memory_format
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWeightsMemoryWithReorder
(
const
framework
::
Tensor
*
filter
,
const
int
groups
,
const
bool
is_conv3d
,
const
bool
is_test
)
{
// This is workaround to make execution faster, delete
// if statement after including md inside Tensor
auto
weights_mem_p
=
this
->
AcquireMemory
(
"@weights_mem_p_target"
);
if
(
is_test
&&
weights_mem_p
)
{
return
weights_mem_p
;
}
else
{
const
T
*
filter_data
=
filter
->
data
<
T
>
();
auto
weights_tz
=
framework
::
vectorize
(
filter
->
dims
());
GetWeightsTz
(
weights_tz
,
groups
);
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
GetWeightsFormat
(
filter
->
format
(),
groups
,
is_conv3d
));
return
this
->
AcquireMemoryWithReorder
(
user_src_md
,
this
->
fwd_pd_
->
weights_desc
(),
to_void_cast
<
T
>
(
filter_data
),
"@weights_mem_p"
,
is_test
);
}
}
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
weights_format
);
std
::
vector
<
int64_t
>
bias_tz
;
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBiasMemoryWithReorder
(
const
framework
::
Tensor
*
bias
,
const
bool
is_test
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
framework
::
vectorize
(
bias
->
dims
()),
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
x
);
return
this
->
AcquireMemoryWithReorder
(
user_bias_md
,
this
->
fwd_pd_
->
bias_desc
(),
to_void_cast
<
T
>
(
bias_data
),
"@bias_mem_p"
,
is_test
);
}
platform
::
ConvMKLDNNHandler
handler
(
dev_ctx
,
mkldnn_engine
,
key
);
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireResidualMemory
(
const
framework
::
Tensor
*
residual_param
)
{
const
T
*
residual_data
=
residual_param
->
data
<
T
>
();
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
framework
::
vectorize
(
residual_param
->
dims
()),
framework
::
ToMKLDNNDataType
(
residual_param
->
type
()),
residual_param
->
format
());
return
this
->
AcquireMemoryFromPrimitive
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_data
),
"@user_residual_data_mem_p"
);
}
// create a conv primitive descriptor and save it for usage in backward
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
auto
fwd_prop_kind
=
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
;
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
x
);
conv_pd
=
handler
.
AcquireConvolutionPrimitiveDescriptor
(
src_md
,
weights_md
,
bias_md
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_activation
,
fuse_alpha
,
fuse_beta
,
fuse_residual_conn
,
fwd_prop_kind
);
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemoryWithResidual
(
framework
::
Tensor
*
output
,
const
framework
::
Tensor
*
residual_param
)
{
std
::
shared_ptr
<
dnnl
::
memory
>
dst_memory_p
;
if
(
residual_param
->
format
()
!=
platform
::
GetMKLDNNFormat
(
this
->
fwd_pd_
->
dst_desc
()))
{
auto
residual_memory_p
=
this
->
AcquireResidualMemory
(
residual_param
);
dst_memory_p
=
this
->
AcquireDstMemory
(
output
);
this
->
AcquireReorder
(
residual_memory_p
,
dst_memory_p
,
"@residual_dst"
);
}
else
{
conv_pd
=
handler
.
AcquireConvolutionPrimitiveDescriptor
(
src_md
,
weights_md
,
boost
::
none
,
dst_md
,
strides
,
paddings
,
mkldnn_engine
,
fuse_activation
,
fuse_alpha
,
fuse_beta
,
fuse_residual_conn
,
fwd_prop_kind
);
// Changing ShareDataWith to TensorCopy results in performance drop
// on ResNet architectures
// (https://github.com/PaddlePaddle/Paddle/issues/22964)
output
->
ShareDataWith
(
*
residual_param
);
dst_memory_p
=
this
->
AcquireDstMemory
(
output
);
}
return
dst_memory_p
;
}
};
// create mkldnn memory from input tensors (data/weights)
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
T
>
(
filter_data
));
template
<
typename
T
,
typename
K
>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Operator DNNL Conv must use CPUPlace"
));
bool
is_INT8
=
std
::
is_same
<
T
,
int8_t
>::
value
||
std
::
is_same
<
T
,
uint8_t
>::
value
;
if
(
!
is_INT8
)
{
ComputeFP32
(
ctx
);
}
else
{
std
::
string
fuse_activation
=
ctx
.
Attr
<
std
::
string
>
(
"fuse_activation"
);
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
bool
force_fp32_output
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
dst_dt
=
GetDstType
(
true
,
force_fp32_output
,
fuse_activation
,
fuse_residual_conn
,
residual_param
);
if
(
dst_dt
==
mkldnn
::
memory
::
data_type
::
f32
)
{
ComputeINT8
<
float
>
(
ctx
);
}
else
if
(
dst_dt
==
mkldnn
::
memory
::
data_type
::
u8
)
{
ComputeINT8
<
uint8_t
>
(
ctx
);
}
else
if
(
dst_dt
==
mkldnn
::
memory
::
data_type
::
s8
)
{
ComputeINT8
<
int8_t
>
(
ctx
);
}
}
}
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
handler
.
AcquireSrcMemoryFromPrimitive
(
user_src_memory_p
,
pipeline
);
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryFromPrimitive
(
user_weights_memory_p
,
pipeline
,
is_test
);
void
ComputeFP32
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
std
::
shared_ptr
<
mkldnn
::
memory
>
dst_memory_p
,
user_residual_memory_p
;
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
bool
is_conv3d
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
).
size
()
==
3U
;
const
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
if
(
fuse_residual_conn
)
{
auto
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_param_data
=
residual_param
->
data
<
T
>
();
PADDLE_ENFORCE_NE
(
residual_param_data
,
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
PADDLE_ENFORCE_EQ
(
output
->
dims
(),
residual_param
->
dims
(),
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
if
(
residual_param
->
format
()
!=
handler
.
GetDstFormat
())
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
auto
residual_data_tz
=
paddle
::
framework
::
vectorize
(
residual_param
->
dims
());
auto
residual_data_type
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
const
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
const
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
const
auto
*
bias
=
ctx
.
HasInput
(
"Bias"
)
?
ctx
.
Input
<
Tensor
>
(
"Bias"
)
:
nullptr
;
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
T
>
(
residual_param_data
));
ConvMKLDNNHandlerT
<
T
>
handler
(
ctx
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
input
,
filter
,
bias
,
output
,
ctx
.
InputName
(
"Input"
)
+
ctx
.
InputName
(
"Filter"
));
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
T
>
(
output_data
),
pipeline
);
}
else
{
// Changing ShareDataWith to TensorCopy results in performance drop
// on ResNet architectures
// (https://github.com/PaddlePaddle/Paddle/issues/22964)
output
->
ShareDataWith
(
*
residual_param
);
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
else
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
auto
src_memory_p
=
handler
.
AcquireSrcMemoryWithReorder
(
input
);
auto
conv_p
=
handler
.
AcquireConvolution
();
auto
weights_memory_p
=
handler
.
AcquireWeightsMemoryWithReorder
(
filter
,
ctx
.
Attr
<
int
>
(
"groups"
),
is_conv3d
,
is_test
);
mkldnn
::
stream
astream
(
mkldnn_engine
);
if
(
bias
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
auto
user_bias_md
=
platform
::
MKLDNNMemDesc
(
{
bias_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
x
);
auto
user_bias_memory_p
=
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
T
>
(
bias_data
));
std
::
shared_ptr
<
dnnl
::
memory
>
dst_memory_p
;
if
(
fuse_residual_conn
)
{
auto
*
residual_param
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
dst_memory_p
=
handler
.
AcquireDstMemoryWithResidual
(
output
,
residual_param
);
}
else
{
dst_memory_p
=
handler
.
AcquireDstMemory
(
output
);
}
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
);
auto
conv_p
=
handler
.
AcquireForwardPrimitive
();
conv_p
->
execute
(
astream
,
{{
MKLDNN_ARG_SRC
,
*
src_memory_p
},
{
MKLDNN_ARG_WEIGHTS
,
*
weights
_memory_p
},
{
MKLDNN_ARG_BIAS
,
*
bia
s_memory_p
},
{
MKLDNN_ARG_DST
,
*
dst_memory_p
}})
;
std
::
unordered_map
<
int
,
dnnl
::
memory
>
args
=
{
{
MKLDNN_ARG_SRC
,
*
src
_memory_p
},
{
MKLDNN_ARG_WEIGHTS
,
*
weight
s_memory_p
},
{
MKLDNN_ARG_DST
,
*
dst_memory_p
}}
;
}
else
{
conv_p
->
execute
(
astream
,
{{
MKLDNN_ARG_SRC
,
*
src_memory_p
},
{
MKLDNN_ARG_WEIGHTS
,
*
weights_memory_p
},
{
MKLDNN_ARG_DST
,
*
dst_memory_p
}});
if
(
bias
)
{
auto
bias_memory_p
=
handler
.
AcquireBiasMemoryWithReorder
(
bias
,
is_test
);
args
.
insert
({
MKLDNN_ARG_BIAS
,
*
bias_memory_p
});
}
mkldnn
::
stream
astream
(
mkldnn_engine
);
conv_p
->
execute
(
astream
,
args
);
astream
.
wait
();
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
template
<
typename
T_out
>
void
ComputeINT8
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
{
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
...
...
@@ -516,7 +600,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
weights_tz
=
paddle
::
framework
::
vectorize
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
GetWeightsTz
(
weights_tz
,
g
);
auto
dst_tz
=
paddle
::
framework
::
vectorize
(
output
->
dims
());
PADDLE_ENFORCE_EQ
(
...
...
@@ -562,9 +646,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
((
g
)
==
1
)
?
MKLDNNMemoryFormat
::
oihw
:
MKLDNNMemoryFormat
::
goihw
);
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
auto
chosen_memory_format
=
MKLDNNMemoryFormat
::
any
;
std
::
vector
<
int64_t
>
bias_tz
;
...
...
@@ -823,7 +907,7 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto
weights_tz
=
paddle
::
framework
::
vectorize
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
GetWeightsTz
(
weights_tz
,
g
);
auto
dst_tz
=
paddle
::
framework
::
vectorize
(
output_grad
->
dims
());
auto
src_format
=
input
->
format
();
...
...
@@ -836,7 +920,7 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
const
std
::
string
key
=
platform
::
CreateKey
(
src_tz
,
ctx
.
InputName
(
"Input"
)
+
ctx
.
InputName
(
"Filter"
));
const
std
::
string
key_conv_pd
=
key
+
"@
conv
_pd"
;
const
std
::
string
key_conv_pd
=
key
+
"@
forward
_pd"
;
std
::
vector
<
primitive
>
pipeline
;
// Create user memory descriptors
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
e7724a2c
...
...
@@ -108,8 +108,20 @@ class MKLDNNHandlerT {
}
protected:
template
<
typename
...
Args
>
void
AcquireForwardPrimitiveDescriptor
(
Args
&&
...
args
)
{
bool
isCached
()
{
const
std
::
string
key_pd
=
key_common_
+
"@forward_pd"
;
fwd_pd_
=
std
::
static_pointer_cast
<
typename
TForward
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
key_pd
));
const
std
::
string
key_p
=
key_
+
"@forward_p"
;
return
(
dev_ctx_
.
GetBlob
(
key_p
)
!=
nullptr
);
}
// If your primitive descriptor requires attributes, pass them as a
// first argument and paramters to descriptor constructor in the following
// arguments. Otherwise, all arguments will be forwarded to descriptor
// constructor, including the first one.
template
<
typename
Arg
,
typename
...
Args
>
void
AcquireForwardPrimitiveDescriptor
(
Arg
&&
first_arg
,
Args
&&
...
args
)
{
// Forward PD has to be passed to Grad op that
// may be executed by diffrent thread, hence
// for that one we use key that does not contain TID
...
...
@@ -123,14 +135,34 @@ class MKLDNNHandlerT {
fwd_pd_
=
std
::
static_pointer_cast
<
typename
TForward
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
key_pd
));
if
(
fwd_pd_
==
nullptr
)
{
auto
fwd_desc
=
typename
TForward
::
desc
(
std
::
forward
<
Args
>
(
args
)...);
fwd_pd_
=
std
::
make_shared
<
typename
TForward
::
primitive_desc
>
(
fwd_desc
,
engine_
);
CreateForwardPrimitiveDescriptor
(
first_arg
,
std
::
forward
<
Args
>
(
args
)...);
dev_ctx_
.
SetBlob
(
key_pd
,
fwd_pd_
);
}
}
}
// Using sfinae to specialise variadic function. Workaround for not having
// if constexpr in C++ 11.
template
<
class
First
,
class
...
Args
>
typename
std
::
enable_if
<
std
::
is_same
<
typename
std
::
decay
<
First
>::
type
,
dnnl
::
primitive_attr
>::
value
>::
type
CreateForwardPrimitiveDescriptor
(
First
&&
first
,
Args
&&
...
args
)
{
auto
fwd_desc
=
typename
TForward
::
desc
(
std
::
forward
<
Args
>
(
args
)...);
fwd_pd_
=
std
::
make_shared
<
typename
TForward
::
primitive_desc
>
(
fwd_desc
,
first
,
engine_
);
}
template
<
class
First
,
class
...
Args
>
typename
std
::
enable_if
<!
std
::
is_same
<
typename
std
::
decay
<
First
>::
type
,
dnnl
::
primitive_attr
>::
value
>::
type
CreateForwardPrimitiveDescriptor
(
First
&&
first
,
Args
&&
...
args
)
{
auto
fwd_desc
=
typename
TForward
::
desc
(
std
::
forward
<
First
>
(
first
),
std
::
forward
<
Args
>
(
args
)...);
fwd_pd_
=
std
::
make_shared
<
typename
TForward
::
primitive_desc
>
(
fwd_desc
,
engine_
);
}
template
<
typename
...
Args
>
void
AcquireBackwardPrimitiveDescriptor
(
Args
&&
...
args
)
{
const
std
::
string
key_fwd_pd
=
key_common_
+
"@forward_pd"
;
...
...
@@ -162,6 +194,91 @@ class MKLDNNHandlerT {
return
mem_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryFromPrimitive
(
mkldnn
::
memory
::
desc
md
,
const
std
::
string
&
suffix
)
{
const
auto
local_key
=
key_
+
suffix
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
md
,
engine_
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
return
mem_p
;
}
void
AcquireReorder
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
user_memory_p
,
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
target_memory_p
,
const
std
::
string
&
suffix
)
{
const
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
auto
reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
key_reorder_p
));
if
(
reorder_p
==
nullptr
)
{
reorder_p
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
user_memory_p
,
*
target_memory_p
);
dev_ctx_
.
SetBlob
(
key_reorder_p
,
reorder_p
);
}
mkldnn
::
stream
astream
(
engine_
);
reorder_p
->
execute
(
astream
,
{{
MKLDNN_ARG_FROM
,
*
user_memory_p
},
{
MKLDNN_ARG_TO
,
*
target_memory_p
}});
astream
.
wait
();
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryWithReorder
(
const
mkldnn
::
memory
::
desc
&
user_md
,
const
mkldnn
::
memory
::
desc
&
target_md
,
void
*
ptr
,
const
std
::
string
&
suffix
,
bool
is_persistent
=
false
)
{
const
auto
target_key
=
key_
+
suffix
+
"_target"
;
const
auto
key_reorder_p
=
key_
+
suffix
+
"reorder_p"
;
const
auto
user_key
=
key_
+
suffix
+
"_user"
;
auto
target_memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
target_key
));
if
(
target_memory_p
==
nullptr
)
{
auto
user_memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
user_md
,
engine_
,
ptr
);
if
(
user_md
!=
target_md
)
{
target_memory_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
target_md
,
engine_
);
auto
reorder_p
=
std
::
make_shared
<
dnnl
::
reorder
>
(
*
user_memory_p
,
*
target_memory_p
);
dev_ctx_
.
SetBlob
(
key_reorder_p
,
reorder_p
);
mkldnn
::
stream
astream
(
engine_
);
reorder_p
->
execute
(
astream
,
{{
MKLDNN_ARG_FROM
,
*
user_memory_p
},
{
MKLDNN_ARG_TO
,
*
target_memory_p
}});
astream
.
wait
();
}
else
{
target_memory_p
=
user_memory_p
;
}
dev_ctx_
.
SetBlob
(
user_key
,
user_memory_p
);
dev_ctx_
.
SetBlob
(
target_key
,
target_memory_p
);
}
else
if
(
!
is_persistent
)
{
mkldnn
::
stream
astream
(
engine_
);
auto
user_memory_p
=
std
::
static_pointer_cast
<
dnnl
::
memory
>
(
dev_ctx_
.
GetBlob
(
user_key
));
user_memory_p
->
set_data_handle
(
ptr
);
auto
reorder_p
=
std
::
static_pointer_cast
<
mkldnn
::
reorder
>
(
dev_ctx_
.
GetBlob
(
key_reorder_p
));
if
(
reorder_p
!=
nullptr
)
{
reorder_p
->
execute
(
astream
,
{{
MKLDNN_ARG_FROM
,
*
user_memory_p
},
{
MKLDNN_ARG_TO
,
*
target_memory_p
}});
astream
.
wait
();
}
}
return
target_memory_p
;
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemory
(
const
std
::
string
&
suffix
)
{
const
auto
local_key
=
key_
+
suffix
;
return
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
}
const
MKLDNNDeviceContext
&
dev_ctx_
;
mkldnn
::
engine
engine_
;
platform
::
Place
place_
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录