Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e657d706
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
e657d706
编写于
7月 20, 2020
作者:
D
Dong Daxiang
提交者:
GitHub
7月 20, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fleet base initial implementation and the API (#25442)
refactor fleet api under paddle.fleet update DistributedStrategy
上级
214c6fcd
变更
24
显示空白变更内容
内联
并排
Showing
24 changed file
with
1498 addition
and
39 deletion
+1498
-39
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+21
-16
python/paddle/fleet/__init__.py
python/paddle/fleet/__init__.py
+25
-6
python/paddle/fleet/base/distributed_strategy.py
python/paddle/fleet/base/distributed_strategy.py
+68
-0
python/paddle/fleet/base/fleet_base.py
python/paddle/fleet/base/fleet_base.py
+326
-3
python/paddle/fleet/base/meta_optimizer_factory.py
python/paddle/fleet/base/meta_optimizer_factory.py
+13
-5
python/paddle/fleet/base/private_helper_function.py
python/paddle/fleet/base/private_helper_function.py
+55
-0
python/paddle/fleet/base/runtime_factory.py
python/paddle/fleet/base/runtime_factory.py
+27
-0
python/paddle/fleet/base/strategy_compiler.py
python/paddle/fleet/base/strategy_compiler.py
+69
-0
python/paddle/fleet/base/util_factory.py
python/paddle/fleet/base/util_factory.py
+23
-6
python/paddle/fleet/meta_optimizers/__init__.py
python/paddle/fleet/meta_optimizers/__init__.py
+5
-0
python/paddle/fleet/meta_optimizers/graph_execution_optimizer.py
...paddle/fleet/meta_optimizers/graph_execution_optimizer.py
+194
-0
python/paddle/fleet/meta_optimizers/meta_optimizer_base.py
python/paddle/fleet/meta_optimizers/meta_optimizer_base.py
+56
-0
python/paddle/fleet/meta_optimizers/recompute_optimizer.py
python/paddle/fleet/meta_optimizers/recompute_optimizer.py
+59
-0
python/paddle/fleet/runtime/__init__.py
python/paddle/fleet/runtime/__init__.py
+5
-1
python/paddle/fleet/runtime/collective_runtime.py
python/paddle/fleet/runtime/collective_runtime.py
+48
-0
python/paddle/fleet/runtime/runtime_base.py
python/paddle/fleet/runtime/runtime_base.py
+38
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+8
-0
python/paddle/fluid/tests/unittests/test_fleet_base.py
python/paddle/fluid/tests/unittests/test_fleet_base.py
+177
-0
python/paddle/fluid/tests/unittests/test_fleet_distributed_strategy.py
.../fluid/tests/unittests/test_fleet_distributed_strategy.py
+48
-0
python/paddle/fluid/tests/unittests/test_fleet_meta_optimizer.py
...paddle/fluid/tests/unittests/test_fleet_meta_optimizer.py
+76
-0
python/paddle/fluid/tests/unittests/test_fleet_private_function.py
...ddle/fluid/tests/unittests/test_fleet_private_function.py
+47
-0
python/paddle/fluid/tests/unittests/test_fleet_runtime.py
python/paddle/fluid/tests/unittests/test_fleet_runtime.py
+40
-0
python/paddle/fluid/tests/unittests/test_fleet_util.py
python/paddle/fluid/tests/unittests/test_fleet_util.py
+68
-0
python/setup.py.in
python/setup.py.in
+2
-2
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
e657d706
...
...
@@ -33,22 +33,27 @@ message DistributedStrategy {
optional
int32
localsgd_k_step
=
7
[
default
=
4
];
optional
bool
dgc
=
8
[
default
=
false
];
optional
bool
hierachical_allreduce
=
9
[
default
=
false
];
optional
int32
nccl_comm_num
=
10
[
default
=
1
];
optional
bool
gradient_merge
=
11
[
default
=
false
];
optional
int32
gradient_merge_k_step
=
12
[
default
=
1
];
optional
bool
sequential_execution
=
13
[
default
=
false
];
optional
bool
enable_backward_optimizer_op_deps
=
14
[
default
=
true
];
optional
bool
lars
=
15
[
default
=
false
];
optional
bool
lamb
=
16
[
default
=
false
];
optional
bool
fuse_elewise_add_act_ops
=
17
[
default
=
false
];
optional
bool
fuse_bn_act_ops
=
18
[
default
=
false
];
optional
bool
enable_auto_fusion
=
19
[
default
=
false
];
optional
bool
fuse_relu_depthwise_conv
=
20
[
default
=
false
];
optional
bool
enable_inplace
=
21
[
default
=
false
];
optional
bool
fuse_all_reduce_ops
=
22
[
default
=
false
];
optional
int32
num_iteration_per_drop_scope
=
23
[
default
=
1
];
optional
bool
sync_batch_norm
=
24
[
default
=
false
];
optional
bool
fuse_all_optimizer_ops
=
25
[
default
=
false
];
optional
int32
hierachical_allreduce_inter_ranks
=
10
[
default
=
1
];
optional
int32
nccl_comm_num
=
11
[
default
=
1
];
optional
bool
gradient_merge
=
12
[
default
=
false
];
optional
int32
gradient_merge_k_step
=
13
[
default
=
1
];
optional
bool
sequential_execution
=
14
[
default
=
false
];
optional
bool
enable_backward_optimizer_op_deps
=
15
[
default
=
true
];
optional
bool
lars
=
16
[
default
=
false
];
optional
bool
lamb
=
17
[
default
=
false
];
optional
bool
fuse_elewise_add_act_ops
=
18
[
default
=
false
];
optional
bool
fuse_bn_act_ops
=
19
[
default
=
false
];
optional
bool
enable_auto_fusion
=
20
[
default
=
false
];
optional
bool
fuse_relu_depthwise_conv
=
21
[
default
=
false
];
optional
bool
enable_inplace
=
22
[
default
=
false
];
optional
bool
fuse_all_reduce_ops
=
23
[
default
=
false
];
optional
int32
num_iteration_per_drop_scope
=
24
[
default
=
1
];
optional
bool
sync_batch_norm
=
25
[
default
=
false
];
optional
bool
fuse_all_optimizer_ops
=
26
[
default
=
false
];
optional
bool
sync_nccl_allreduce
=
27
[
default
=
true
];
optional
bool
fuse_broadcast_ops
=
28
[
default
=
true
];
optional
int32
num_threads
=
29
[
default
=
1
];
optional
int32
num_iteration_per_run
=
30
[
default
=
1
];
// pipeline training
optional
bool
pipeline
=
101
[
default
=
false
];
...
...
python/paddle/fleet/__init__.py
浏览文件 @
e657d706
...
...
@@ -14,10 +14,29 @@
# TODO: define distributed api under this directory,
from
.base.distributed_strategy
import
DistributedStrategy
#from .base.role_maker import PaddleCloudRoleMaker, UserDefinedRoleMaker
#from .base.fleet_base import Fleet
from
.base.fleet_base
import
Fleet
from
.base.util_factory
import
UtilBase
#__all__ = [
# "DistributedStrategy", "PaddleCloudRoleMaker", "UserDefinedRoleMaker"
#]
__all__
=
[
'DistributedStrategy'
]
#from .base.role_maker import PaddleCloudRoleMaker
__all__
=
[
"DistributedStrategy"
,
"UtilBase"
]
fleet
=
Fleet
()
init
=
fleet
.
init
is_first_worker
=
fleet
.
is_first_worker
worker_index
=
fleet
.
worker_index
worker_num
=
fleet
.
worker_num
is_worker
=
fleet
.
is_worker
worker_endpoints
=
fleet
.
worker_endpoints
server_num
=
fleet
.
server_num
server_index
=
fleet
.
server_index
server_endpoints
=
fleet
.
server_endpoints
is_server
=
fleet
.
is_server
util
=
fleet
.
util
barrier_worker
=
fleet
.
barrier_worker
init_worker
=
fleet
.
init_worker
init_server
=
fleet
.
init_server
run_server
=
fleet
.
run_server
stop_worker
=
fleet
.
stop_worker
distributed_optimizer
=
fleet
.
distributed_optimizer
minimize
=
fleet
.
minimize
python/paddle/fleet/base/distributed_strategy.py
浏览文件 @
e657d706
...
...
@@ -14,6 +14,7 @@
from
paddle.fleet.proto
import
distributed_strategy_pb2
from
paddle.fluid.framework
import
Variable
import
google.protobuf.text_format
class
DistributedJobInfo
(
object
):
...
...
@@ -57,6 +58,15 @@ class DistributedStrategy(object):
def
__init__
(
self
):
self
.
strategy
=
distributed_strategy_pb2
.
DistributedStrategy
()
def
save_to_prototxt
(
self
,
output
):
with
open
(
output
,
"w"
)
as
fout
:
fout
.
write
(
str
(
self
.
strategy
))
def
load_from_prototxt
(
self
,
pb_file
):
f
=
open
(
pb_file
,
'r'
)
self
.
strategy
=
google
.
protobuf
.
text_format
.
Merge
(
str
(
f
.
read
()),
self
.
strategy
)
@
property
def
amp
(
self
):
return
self
.
strategy
.
amp
...
...
@@ -189,6 +199,19 @@ class DistributedStrategy(object):
print
(
"WARNING: hierachical_allreduce should have value of bool type"
)
@
property
def
hierachical_allreduce_inter_ranks
(
self
):
return
self
.
strategy
.
hierachical_allreduce_inter_ranks
@
hierachical_allreduce_inter_ranks
.
setter
def
hierachical_allreduce_inter_ranks
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
hierachical_allreduce_inter_ranks
=
flag
else
:
print
(
"WARNING: hierachical_allreduce_inter_ranks should have value of bool type"
)
@
property
def
nccl_comm_num
(
self
):
return
self
.
strategy
.
nccl_comm_num
...
...
@@ -235,6 +258,17 @@ class DistributedStrategy(object):
print
(
"WARNING: sequential_execution should have value of bool type"
)
@
property
def
sync_nccl_allreduce
(
self
):
return
self
.
strategy
.
sync_nccl_allreduce
@
sync_nccl_allreduce
.
setter
def
sync_nccl_allreduce
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
sync_nccl_allreduce
=
flag
else
:
print
(
"WARNING: sync_nccl_allreduce should have avlue of bool type"
)
@
property
def
lars
(
self
):
return
self
.
strategy
.
lars
...
...
@@ -305,6 +339,17 @@ class DistributedStrategy(object):
"WARNING: fuse_relu_depthwise_conv should have value of bool type"
)
@
property
def
fuse_broadcast_ops
(
self
):
return
self
.
strategy
.
fuse_broadcast_ops
@
fuse_broadcast_ops
.
setter
def
fuse_broadcast_ops
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
fuse_broadcast_ops
=
flag
else
:
print
(
"WARNING: fuse_broadcast_ops should have value of bool type"
)
@
property
def
enable_inplace
(
self
):
return
self
.
strategy
.
enable_inplace
...
...
@@ -340,6 +385,18 @@ class DistributedStrategy(object):
"WARNING: num_iteration_per_drop_scope should have value of int type"
)
@
property
def
num_iteration_per_run
(
self
):
return
self
.
strategy
.
num_iteration_per_run
@
num_iteration_per_run
.
setter
def
num_iteration_per_run
(
self
,
value
):
if
isinstance
(
value
,
int
):
self
.
strategy
.
num_iteration_per_run
=
value
else
:
print
(
"WARNING: num_iteration_per_run should have value of int type"
)
@
property
def
sync_batch_norm
(
self
):
return
self
.
strategy
.
sync_batch_norm
...
...
@@ -499,6 +556,17 @@ class DistributedStrategy(object):
else
:
print
(
"WARNING: elastic should have value of bool type"
)
@
property
def
num_threads
(
self
):
return
self
.
strategy
.
num_threads
@
num_threads
.
setter
def
num_threads
(
self
,
value
):
if
isinstance
(
value
,
int
):
self
.
strategy
.
num_threads
=
value
else
:
print
(
"WARNING: num_threads should have value of int type"
)
@
property
def
auto
(
self
):
return
self
.
strategy
.
auto
...
...
python/paddle/fleet/base/fleet_base.py
浏览文件 @
e657d706
...
...
@@ -13,7 +13,330 @@
# limitations under the License.
from
__future__
import
print_function
from
paddle.fleet
import
RoleMakerBase
from
.
import
obj_creator
import
paddle
from
.strategy_compiler
import
StrategyCompiler
from
.meta_optimizer_factory
import
MetaOptimizerFactory
from
.runtime_factory
import
RuntimeFactory
from
.util_factory
import
UtilFactory
# __all__ = ['Fleet']
__all__
=
[
'Fleet'
]
class
Fleet
(
object
):
"""
Unified API for distributed training of PaddlePaddle
Please reference the https://github.com/PaddlePaddle/Fleet for details
Returns:
Fleet: A Fleet instance
Examples:
.. code-block:: python
import paddle.fleet as fleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
if fleet.is_first_worker():
print("this is first worker")
print("current node index: {}".format(fleet.worker_index()))
print("total number of worker num: {}".format(fleet.worker_num()))
if fleet.is_worker():
print("this is worker")
print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
print("server num: {}".format(fleet.server_num()))
print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
if fleet.is_server():
print("this is server")
fleet.stop_worker()
"""
def
__init__
(
self
):
self
.
_runtime_handle
=
None
self
.
_util
=
None
def
init
(
self
,
role_maker
):
self
.
_role_maker
=
role_maker
self
.
strategy_compiler
=
StrategyCompiler
()
def
is_first_worker
(
self
):
"""
Check whether the node is the first instance of worker.
Returns:
bool: True if this is the first node of worker,
False if not.
"""
return
self
.
_role_maker
.
is_first_worker
()
def
worker_index
(
self
):
"""
Get current worker index.
Returns:
int: node id
"""
return
self
.
_role_maker
.
worker_index
()
def
worker_num
(
self
):
"""
Get current total worker number.
Returns:
int: worker numbers
"""
return
self
.
_role_maker
.
worker_num
()
def
is_worker
(
self
):
"""
Check whether the node is an instance of worker.
Returns:
bool: True if this is a node of worker,
False if not.
"""
return
self
.
_role_maker
.
is_worker
()
def
worker_endpoints
(
self
,
to_string
=
False
):
"""
Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
Returns:
list/string: server endpoints
"""
'''
if to_string:
return ",".join(self._role_maker.get_trainer_endpoints())
else:
return self._role_maker.get_trainer_endpoints()
'''
return
[
"127.0.0.1:1001"
,
"127.0.0.1:1002"
]
def
server_num
(
self
):
"""
Get current total worker number.
Returns:
int: server number
"""
return
len
(
self
.
_role_maker
.
get_pserver_endpoints
())
def
server_index
(
self
):
"""
Get current server index.
Returns:
int: node id
"""
return
self
.
_role_maker
.
server_index
()
def
server_endpoints
(
self
,
to_string
=
False
):
"""
Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
Returns:
list/string: server endpoints
"""
'''
if to_string:
return ",".join(self._role_maker.get_pserver_endpoints())
else:
return self._role_maker.get_pserver_endpoints()
'''
return
[
"127.0.0.1:1001"
,
"127.0.0.1:1002"
]
def
is_server
(
self
):
"""
Check whether the node is an instance of server.
Returns:
bool: True if this is a node of server,
False if not.
"""
return
self
.
_role_maker
.
is_server
()
@
property
def
util
(
self
):
"""
Utility functions that can be used under certain runtime
return util
"""
return
self
.
_util
@
util
.
setter
def
util
(
self
,
util
):
"""
Set Utility functions for userd-defined runtime
set util
"""
self
.
_util
=
util
def
barrier_worker
(
self
):
"""
barrier between workers
"""
self
.
_role_maker
.
barrier_worker
()
def
init_worker
(
self
):
"""
init worker
"""
assert
self
.
_runtime_handle
is
not
None
self
.
_runtime_handle
.
_init_worker
()
def
init_server
(
self
,
model_dir
=
None
):
"""
init server
"""
assert
self
.
_runtime_handle
is
not
None
self
.
_runtime_handle
.
_init_server
()
def
run_server
(
self
):
"""
run server
"""
assert
self
.
_runtime_handle
is
not
None
self
.
_runtime_handle
.
_run_server
()
def
stop_worker
(
self
):
"""
stop worker
"""
assert
self
.
_runtime_handle
is
not
None
self
.
_runtime_handle
.
_stop_worker
()
def
distributed_optimizer
(
self
,
optimizer
,
strategy
):
"""
distirbuted_optimizer
Returns:
Fleet instance with minimize interface like optimizers
Examples:
.. code-block:: python
import paddle.fleet as fleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
"""
self
.
user_defined_optimizer
=
optimizer
self
.
user_defined_strategy
=
strategy
return
self
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
Add distributed operations to minimize ``loss`` by updating ``parameter_list``.
Args:
loss (Variable): A ``Variable`` containing the value to minimize.
startup_program (Program, optional): :ref:`api_fluid_Program` for
initializing parameters in ``parameter_list``. The default value
is None, at this time :ref:`api_fluid_default_startup_program` will be used.
parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
to minimize ``loss``. The default value is None, at this time all parameters
will be updated.
no_grad_set (set, optional): Set of ``Variable`` or ``Variable.name`` that don't need
to be updated. The default value is None.
Returns:
tuple: tuple (optimize_ops, params_grads), A list of operators appended
by minimize and a list of (param, grad) variable pairs, param is
``Parameter``, grad is the gradient value corresponding to the parameter.
The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
indicate program pruning. If so, the program will be pruned by ``feed`` and
``fetch_list`` before run, see details in ``Executor``.
Examples:
import paddle
import paddle.fleet as fleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
fc_1 = paddle.layers.fc(input=input_x, size=hid_dim, act='tanh')
fc_2 = paddlen.layers.fc(input=fc_1, size=hid_dim, act='tanh')
prediction = paddle.layers.fc(input=[fc_2], size=label_dim, act='softmax')
cost = paddle.layers.cross_entropy(input=prediction, label=input_y)
avg_cost = paddle.layers.mean(x=cost)
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
# for more examples, please reference https://github.com/PaddlePaddle/Fleet
"""
# cache original feed forward program
self
.
origin_main_program
=
loss
.
block
.
program
if
startup_program
==
None
:
self
.
origin_startup_program
=
\
paddle
.
default_startup_program
().
clone
(
for_test
=
False
)
startup_program
=
paddle
.
default_startup_program
()
else
:
self
.
origin_startup_program
=
\
startup_program
.
clone
(
for_test
=
False
)
# compile time
distributed_optimizer_list
=
\
MetaOptimizerFactory
().
_get_valid_meta_optimizers
(
self
.
user_defined_optimizer
)
valid_optimizer_list
=
[]
valid_graph_optimizer_list
=
[]
# recall meta optimizers for ranking
for
opt
in
distributed_optimizer_list
:
opt
.
_set_basic_info
(
loss
,
self
.
_role_maker
,
self
.
user_defined_optimizer
,
self
.
user_defined_strategy
)
if
opt
.
_can_apply
()
and
not
opt
.
_is_graph_out
():
valid_optimizer_list
.
append
(
opt
)
if
opt
.
_can_apply
()
and
opt
.
_is_graph_out
():
valid_graph_optimizer_list
.
append
(
opt
)
# combine recalled meta optimizers to be a valid meta optimizer
meta_optimizer
,
graph_optimizer
,
final_dist_strategy
=
\
self
.
strategy_compiler
.
generate_optimizer
(
loss
,
self
.
_role_maker
,
self
.
user_defined_optimizer
,
self
.
user_defined_strategy
,
valid_optimizer_list
,
valid_graph_optimizer_list
)
optimize_ops
=
[]
params_grads
=
[]
if
meta_optimizer
:
optimize_ops
,
params_grads
=
meta_optimizer
.
minimize
(
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
if
graph_optimizer
:
optimizer_ops
,
params_grads
=
graph_optimizer
.
minimize
(
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
# since we do not encourage users to use graph operations
# if a graph optimizer takes effect, mostly
# optimizers_ops and params_grads are None
# i.e. users can not modify current computation graph anymore
if
self
.
_runtime_handle
is
None
:
self
.
_runtime_handle
=
RuntimeFactory
().
_create_runtime
(
final_dist_strategy
,
self
.
_role_maker
,
optimize_ops
,
params_grads
)
if
self
.
_util
is
None
:
self
.
_util
=
UtilFactory
().
_create_util
(
final_dist_strategy
,
self
.
_role_maker
,
optimize_ops
,
params_grads
)
return
optimize_ops
,
params_grads
python/paddle/fleet/base/
obj_creator
.py
→
python/paddle/fleet/base/
meta_optimizer_factory
.py
浏览文件 @
e657d706
...
...
@@ -12,12 +12,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
util_base
import
UtilBase
from
..meta_optimizers
import
RecomputeOptimizer
from
..meta_optimizers
import
GraphExecutionOptimizer
__all__
=
[
"MetaOptimizerFactory"
]
def
_create_fleet_obj_from_role_maker
(
role_maker
):
pass
meta_optimizer_names
=
[
"RecomputeOptimizer"
,
"GraphExecutionOptimizer"
]
def
_create_fleet_util_from_role_maker
(
role_maker
):
class
MetaOptimizerFactory
(
object
):
def
__init__
(
self
):
pass
def
_get_valid_meta_optimizers
(
self
,
user_defined_optimizer
):
opt_list
=
[]
for
opt_name
in
meta_optimizer_names
:
opt_list
.
append
(
globals
()[
opt_name
](
user_defined_optimizer
))
return
opt_list
python/paddle/fleet/base/private_helper_function.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
time
import
socket
from
contextlib
import
closing
from
six
import
string_types
def
wait_server_ready
(
endpoints
):
"""
Wait until parameter servers are ready, use connext_ex to detect
port readiness.
Args:
endpoints (list): endpoints string list, like:
["127.0.0.1:8080", "127.0.0.1:8081"]
Examples:
.. code-block:: python
wait_server_ready(["127.0.0.1:8080", "127.0.0.1:8081"])
"""
assert
not
isinstance
(
endpoints
,
str
)
while
True
:
all_ok
=
True
not_ready_endpoints
=
[]
for
ep
in
endpoints
:
ip_port
=
ep
.
split
(
":"
)
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
sock
:
sock
.
settimeout
(
2
)
result
=
sock
.
connect_ex
((
ip_port
[
0
],
int
(
ip_port
[
1
])))
if
result
!=
0
:
all_ok
=
False
not_ready_endpoints
.
append
(
ep
)
if
not
all_ok
:
sys
.
stderr
.
write
(
"server not ready, wait 3 sec to retry...
\n
"
)
sys
.
stderr
.
write
(
"not ready endpoints:"
+
str
(
not_ready_endpoints
)
+
"
\n
"
)
sys
.
stderr
.
flush
()
time
.
sleep
(
3
)
else
:
break
python/paddle/fleet/base/runtime_factory.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
..runtime.collective_runtime
import
CollectiveRuntime
class
RuntimeFactory
(
object
):
def
__init__
(
self
):
pass
def
_create_runtime
(
self
,
final_dist_strategy
,
role_maker
,
opt_ops
,
params_grads
):
if
role_maker
.
_is_collective
:
collective_runtime
=
CollectiveRuntime
()
collective_runtime
.
_set_basic_info
(
final_dist_strategy
,
role_maker
,
opt_ops
,
params_grads
)
return
collective_runtime
python/paddle/fleet/base/strategy_compiler.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def
maximum_path_len_algo
(
optimizer_list
):
max_idx
=
0
max_len
=
0
candidates
=
[]
for
idx
,
opt
in
enumerate
(
optimizer_list
):
local_buffer
=
[
opt
]
for
opt_inner
in
optimizer_list
:
if
opt
.
_can_update
(
opt_inner
):
local_buffer
.
append
(
opt_inner
)
if
len
(
local_buffer
)
>
max_len
:
max_idx
=
idx
max_len
=
len
(
local_buffer
)
candidates
.
append
(
local_buffer
)
if
len
(
candidates
)
==
0
:
return
None
for
idx
,
opt
in
enumerate
(
candidates
[
max_idx
][:
-
1
]):
opt
.
_update_inner_optimizer
(
candidates
[
max_idx
][
idx
+
1
])
return
candidates
[
max_idx
][
0
]
class
StrategyCompilerBase
(
object
):
def
__init__
(
self
):
pass
class
StrategyCompiler
(
StrategyCompilerBase
):
"""
StrategyCompiler is responsible for meta optimizers combination
Generally, a user can define serveral distributed strategies that
can generate serveral meta optimizer. The combination of these
meta optimizers should have the right order to apply the optimizers'
minimize function.
This class is responsible for the executable distributed optimizer
generation.
"""
def
__init__
(
self
):
super
(
StrategyCompiler
,
self
).
__init__
()
def
generate_optimizer
(
self
,
loss
,
role_maker
,
optimizer
,
userd_defined_strategy
,
meta_optimizer_list
,
graph_optimizer_list
):
if
len
(
meta_optimizer_list
)
==
0
and
len
(
graph_optimizer_list
)
==
0
:
return
optimizer
,
None
else
:
# currently, we use heuristic algorithm to select
# meta optimizers combinations
meta_optimizer
=
maximum_path_len_algo
(
meta_optimizer_list
)
graph_optimizer
=
maximum_path_len_algo
(
graph_optimizer_list
)
# should design a distributed strategy update interface
# when we have finally decided the combination of meta_optimizer
# and graph_optimizer, the corresponding distributed strategy
# should be updated.
return
meta_optimizer
,
graph_optimizer
,
None
python/paddle/fleet/base/util_
base
.py
→
python/paddle/fleet/base/util_
factory
.py
浏览文件 @
e657d706
...
...
@@ -16,13 +16,30 @@
"""basic collective operations in python"""
"""remote file system"""
# __all__ = ['UtilBase']
'''
__all__
=
[
'UtilBase'
]
class
UtilFactory
(
object
):
def
_create_util
(
self
,
dist_strategy
,
role_maker
,
optimize_ops
,
params_grads
):
util
=
UtilBase
()
util
.
_set_strategy
(
dist_strategy
)
util
.
_set_role_maker
(
role_maker
)
return
util
class
UtilBase
(
object
):
def __init__(self, role_maker, fleet_obj):
self.role_maker = roke_maker
self.fleet_obj = fleet_obj
def
__init__
(
self
):
self
.
role_maker
=
None
self
.
dist_strategy
=
None
def
_set_strategy
(
self
,
dist_strategy
):
self
.
dist_strategy
=
dist_strategy
def
_set_role_maker
(
self
,
role_maker
):
self
.
role_maker
=
role_maker
'''
def set_file_system(self, fs_client):
self.fs_client = fs_client
...
...
@@ -61,4 +78,4 @@ class UtilBase(object):
def print_on_rank(self):
pass
'''
'''
python/paddle/fleet/
collective
/__init__.py
→
python/paddle/fleet/
meta_optimizers
/__init__.py
浏览文件 @
e657d706
...
...
@@ -10,3 +10,8 @@
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
.recompute_optimizer
import
RecomputeOptimizer
from
.graph_execution_optimizer
import
GraphExecutionOptimizer
__all__
=
[
'RecomputeOptimizer'
]
python/paddle/fleet/meta_optimizers/graph_execution_optimizer.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
paddle
from
paddle.fluid.framework
import
core
from
paddle.fluid
import
compiler
from
.meta_optimizer_base
import
MetaOptimizerBase
from
..base.private_helper_function
import
wait_server_ready
def
get_build_strategy
(
dist_strategy
):
build_strategy
=
paddle
.
BuildStrategy
()
build_strategy
.
enable_sequential_execution
=
\
dist_strategy
.
sequential_execution
build_strategy
.
remove_unnecessary_lock
=
True
build_strategy
.
fuse_elewise_add_act_ops
=
\
dist_strategy
.
fuse_elewise_add_act_ops
build_strategy
.
fuse_bn_act_ops
=
\
dist_strategy
.
fuse_bn_act_ops
build_strategy
.
enable_auto_fusion
=
\
dist_strategy
.
enable_auto_fusion
build_strategy
.
fuse_relu_depthwise_conv
=
\
dist_strategy
.
fuse_relu_depthwise_conv
build_strategy
.
fuse_broadcast_ops
=
\
dist_strategy
.
fuse_broadcast_ops
build_strategy
.
sync_batch_norm
=
\
dist_strategy
.
sync_batch_norm
return
build_strategy
def
get_execution_strategy
(
dist_strategy
):
execution_strategy
=
paddle
.
ExecutionStrategy
()
execution_strategy
.
num_threads
=
\
dist_strategy
.
num_threads
execution_strategy
.
num_iteration_per_drop_scope
=
\
dist_strategy
.
num_iteration_per_drop_scope
execution_strategy
.
num_iteration_per_run
=
\
dist_strategy
.
num_iteration_per_run
execution_strategy
.
use_thread_barrier
=
\
dist_strategy
.
use_thread_barrier
return
execution_strategy
class
GraphExecutionOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
GraphExecutionOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[]
def
_is_graph_out
(
self
):
return
True
def
_can_apply
(
self
):
"""
Basically, this is PE, and almost all programs can be executed here
"""
return
True
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
pass
# should fix the variable
def
_setup_nccl_op
(
self
,
startup_program
,
main_program
):
trainer_endpoints
=
self
.
role_maker
.
get_trainer_endpoints
()
trainers
=
trainer_endpoints
trainer_id
=
self
.
role_maker
.
worker_index
()
current_endpoint
=
self
.
role_maker
.
get_trainer_endpoints
()[
trainer_id
]
trainer_endpoints_env
=
","
.
join
(
trainer_endpoints
)
trainers_num
=
self
.
role_maker
.
worker_num
()
trainer_endpoints
.
remove
(
current_endpoint
)
if
trainer_id
==
0
:
wait_server_ready
(
trainer_endpoints
)
nccl_id_var
=
startup_program
.
global_block
().
create_var
(
name
=
"NCCLID"
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
for
i
in
range
(
1
,
self
.
user_defined_strategy
.
nccl_comm_num
):
startup_program
.
global_block
().
create_var
(
name
=
"NCCLID_{}"
.
format
(
i
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
if
self
.
user_defined_strategy
.
hierachical_allreduce
:
for
i
in
range
(
0
,
self
.
user_defined_strategy
.
nccl_comm_num
):
startup_program
.
global_block
().
create_var
(
name
=
"Hierarchical_inter_NCCLID_{}"
.
format
(
i
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_program
.
global_block
().
create_var
(
name
=
"Hierarchical_exter_NCCLID_{}"
.
format
(
i
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_program
.
global_block
().
append_op
(
type
=
"gen_nccl_id"
,
inputs
=
{},
outputs
=
{
"NCCLID"
:
nccl_id_var
},
attrs
=
{
"trainers"
:
trainers
,
"trainer_id"
:
trainer_id
,
"nccl_comm_num"
:
self
.
user_defined_strategy
.
nccl_comm_num
,
"use_hierarchical_allreduce"
:
self
.
user_defined_strategy
.
hierachical_allreduce
,
"hierarchical_allreduce_inter_ranks"
:
self
.
user_defined_strategy
.
hierachical_allreduce_inter_ranks
})
def
_try_to_compile
(
self
,
startup_program
,
main_program
,
loss
):
build_strategy
=
get_build_strategy
(
self
.
user_defined_strategy
)
exe_strategy
=
get_execution_strategy
(
self
.
user_defined_strategy
)
node_num
=
self
.
role_maker
.
worker_num
()
if
self
.
role_maker
.
_is_collective
:
assert
node_num
>=
1
,
"nccl2 node_num must >= 1, now:{}"
%
node_num
if
node_num
<=
1
:
# local mode
if
self
.
user_defined_strategy
.
nccl_comm_num
>
1
:
logging
.
warn
(
"set nccl_comm_num=1 since you only have 1 node."
)
self
.
user_defined_strategy
.
nccl_comm_num
=
1
if
self
.
user_defined_strategy
.
hierachical_allreduce
:
logging
.
warn
(
"set hierachical_allreduce=False since you only have 1 node."
)
self
.
user_defined_strategy
.
hierachical_allreduce
=
False
sync_allreduce
=
self
.
user_defined_strategy
.
sync_nccl_allreduce
if
sync_allreduce
:
exe_strategy
.
num_threads
=
self
.
user_defined_strategy
.
nccl_comm_num
+
1
if
self
.
user_defined_strategy
.
hierachical_allreduce
:
exe_strategy
.
num_threads
=
2
*
self
.
user_defined_strategy
.
nccl_comm_num
+
1
if
exe_strategy
.
num_threads
>
4
:
logging
.
warn
(
"if you use hierachical_allreduce or "
"with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0"
)
# TODO(guru4elephant): should be an independent optimizer
sync_batch_norm
=
self
.
user_defined_strategy
.
sync_batch_norm
if
sync_batch_norm
:
self
.
user_defined_strategy
.
nccl_comm_num
=
1
self
.
user_defined_strategy
.
hierachical_allreduce
=
False
exe_strategy
.
num_threads
=
1
logging
.
warn
(
"use sync_batch_norm will hang when set num_threads > 1, so "
"set num_threads=1, nccl_comm_num=1, hierachical_allreduce=False."
)
# TODO(guru4elephant): should be an independent optimizer
self
.
_setup_nccl_op
(
startup_program
,
main_program
)
build_strategy
.
num_trainers
=
self
.
role_maker
.
worker_num
()
build_strategy
.
trainer_id
=
self
.
role_maker
.
worker_index
()
build_strategy
.
trainers_endpoints
=
self
.
role_maker
.
get_trainer_endpoints
(
)
build_strategy
.
enable_backward_optimizer_op_deps
=
True
self
.
_compiled_program
=
compiler
.
CompiledProgram
(
main_program
)
self
.
_compiled_program
.
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exe_strategy
,
share_vars_from
=
None
)
return
self
.
_compiled_program
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
if
startup_program
==
None
:
startup_program
=
paddle
.
default_startup_program
()
compiled_program
=
self
.
_try_to_compile
(
startup_program
,
loss
.
block
.
program
,
loss
)
loss
.
block
.
program
.
graph
=
compiled_program
# just return self.optimizer_ops and self.param_grads
return
None
,
None
python/paddle/fleet/meta_optimizers/meta_optimizer_base.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[
"MetaOptimizerBase"
]
class
MetaOptimizerBase
(
object
):
def
__init__
(
self
,
optimizer
):
pass
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
self
.
loss
=
loss
self
.
role_maker
=
role_maker
self
.
user_defined_optimizer
=
user_defined_optimizer
self
.
user_defined_strategy
=
user_defined_strategy
def
_update_inner_optimier
(
self
,
optimizer
):
self
.
inner_opt
=
optimizer
def
_can_apply
(
self
):
return
False
def
_is_graph_out
(
self
):
return
False
def
_can_update
(
self
,
optimizer
):
if
str
(
optimizer
.
__class__
.
__name__
)
in
self
.
meta_optimizers_white_list
:
return
True
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
raise
NotImplementedError
(
"meta optimizer not implemented"
)
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
optimize_ops
,
params_grads
=
self
.
minimize_impl
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
return
optimize_ops
,
params_grads
python/paddle/fleet/meta_optimizers/recompute_optimizer.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
paddle.fluid.optimizer
import
RecomputeOptimizer
as
RO
from
.meta_optimizer_base
import
MetaOptimizerBase
__all__
=
[
"RecomputeOptimizer"
]
class
RecomputeOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
RecomputeOptimizer
,
self
).
__init__
(
optimizer
)
#self.inner_opt = RO(optimizer)
self
.
inner_opt
=
optimizer
self
.
wrapped_opt
=
RO
(
optimizer
)
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[]
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
super
(
RecomputeOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
self
.
wrapped_opt
.
_set_checkpoints
([])
def
_can_apply
(
self
):
if
self
.
user_defined_strategy
.
recompute
==
True
:
if
len
(
self
.
user_defined_strategy
.
recompute_checkpoints
)
==
0
:
return
False
else
:
return
True
def
backward
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
callbacks
=
None
):
return
self
.
wrapped_opt
.
backward
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
,
callbacks
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
optimize_ops
,
params_grads
=
\
self
.
wrapped_opt
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
return
optimize_ops
,
params_grads
python/paddle/fleet/
parameter_server
/__init__.py
→
python/paddle/fleet/
runtime
/__init__.py
浏览文件 @
e657d706
...
...
@@ -11,3 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.collective_runtime
import
CollectiveRuntime
__all__
=
[
"CollectiveRuntime"
]
python/paddle/fleet/runtime/collective_runtime.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.runtime_base
import
RuntimeBase
import
logging
class
CollectiveRuntime
(
RuntimeBase
):
def
__init__
(
self
):
super
(
CollectiveRuntime
,
self
).
__init__
()
def
_init_worker
(
self
):
logging
.
warn
(
"You should not call 'init_worker' method for collective mode."
)
pass
def
_run_worker
(
self
):
logging
.
warn
(
"You should not call 'run_worker' method for collective mode."
)
pass
def
_init_server
(
self
):
logging
.
warn
(
"You should not call 'init_server' method for collective mode."
)
pass
def
_run_server
(
self
):
logging
.
warn
(
"You should not call 'run_server' method for collective mode."
)
pass
def
_stop_worker
(
self
):
logging
.
warn
(
"You should not call 'stop_worker' method for collective mode."
)
pass
# save inference model should be added here
python/paddle/fleet/runtime/runtime_base.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[]
class
RuntimeBase
(
object
):
def
__init__
(
self
):
pass
def
_set_basic_info
(
self
,
loss
,
role_maker
,
optimizer
,
strategy
):
self
.
loss
=
loss
self
.
role_maker
=
role_maker
self
.
optimizer
=
optimizer
self
.
strategy
=
strategy
def
_run_worker
(
self
):
pass
def
_init_server
(
self
):
pass
def
_run_server
(
self
):
pass
def
_stop_worker
(
self
):
pass
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
e657d706
...
...
@@ -32,6 +32,9 @@ list(APPEND MIXED_DIST_TEST_OPS test_communicator_sync)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_api_input
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_checkpoint
)
list
(
APPEND MIXED_DIST_TEST_OPS test_collective_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_base
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_private_function
)
foreach
(
TEST_OP
${
MIXED_DIST_TEST_OPS
}
)
list
(
REMOVE_ITEM TEST_OPS
${
TEST_OP
}
)
endforeach
()
...
...
@@ -339,6 +342,11 @@ if(WITH_DISTRIBUTE)
py_test_modules
(
test_communicator_half_async MODULES test_communicator_half_async ENVS
${
dist_ENVS
}
FLAGS_communicator_send_queue_size=1 FLAGS_communicator_max_merge_var_num=1
)
py_test_modules
(
test_communicator_sync MODULES test_communicator_sync ENVS
${
dist_ENVS
}
FLAGS_communicator_send_queue_size=1 FLAGS_communicator_max_merge_var_num=1
)
py_test_modules
(
test_collective_optimizer MODULES test_collective_optimizer
)
if
(
NOT APPLE
)
py_test_modules
(
test_fleet_base MODULES test_fleet_base ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_meta_optimizer MODULES test_fleet_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_private_function MODULES test_fleet_private_function ENVS
${
dist_ENVS
}
)
endif
(
NOT APPLE
)
if
(
WITH_DGC
)
# if with dgc, test all dgc tests.
# NOTE. dist dgc tests is already in DIST_TEST_OPS
...
...
python/paddle/fluid/tests/unittests/test_fleet_base.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
os
class
TestFleetBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"POD_IP"
]
=
"127.0.0.1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"2"
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
]
=
\
"127.0.0.1:36001,127.0.0.2:36001"
def
test_init
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
def
test_is_first_worker
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_first_worker
():
print
(
"test fleet first worker done."
)
def
test_worker_index
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
print
(
fleet
.
worker_index
())
def
test_worker_num
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
print
(
fleet
.
worker_num
())
def
test_is_worker
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_worker
():
print
(
"test fleet is worker"
)
def
test_worker_endpoints
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
print
(
fleet
.
worker_endpoints
(
to_string
=
True
))
def
test_server_num
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_server
():
print
(
"fleet server num: {}"
.
format
(
fleet
.
server_num
()))
def
test_server_index
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_server
():
print
(
"fleet server index: {}"
.
format
(
fleet
.
server_index
()))
def
test_server_endpoints
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_server
():
print
(
"fleet server index: {}"
.
format
(
fleet
.
server_endpoints
(
to_string
=
True
)))
def
test_is_server
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_server
():
print
(
"test fleet is server"
)
def
test_util
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
self
.
assertEqual
(
fleet
.
util
,
None
)
def
test_barrier_worker
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_worker
():
fleet
.
barrier_worker
()
def
test_init_worker
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_worker
():
fleet
.
init_worker
()
def
test_run_server
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_worker
():
fleet
.
run_worker
()
def
test_stop_worker
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
if
fleet
.
is_worker
():
fleet
.
stop_worker
()
def
test_distributed_optimizer
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
strategy
=
fleet
.
DistributedStrategy
()
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
def
test_minimize
(
self
):
import
paddle
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
64
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
strategy
=
fleet
.
DistributedStrategy
()
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_distributed_strategy.py
浏览文件 @
e657d706
...
...
@@ -109,6 +109,13 @@ class TestStrategyConfig(unittest.TestCase):
strategy
.
hierachical_allreduce
=
"True"
self
.
assertEqual
(
strategy
.
hierachical_allreduce
,
False
)
def
test_hierachical_allreduce_inter_ranks
(
self
):
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
hierachical_allreduce_inter_ranks
=
1
self
.
assertEqual
(
strategy
.
hierachical_allreduce_inter_ranks
,
1
)
strategy
.
hierachical_allreduce_inter_ranks
=
"2"
self
.
assertEqual
(
strategy
.
hierachical_allreduce_inter_ranks
,
1
)
def
test_nccl_comm_num
(
self
):
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
nccl_comm_num
=
1
...
...
@@ -220,6 +227,13 @@ class TestStrategyConfig(unittest.TestCase):
strategy
.
num_iteration_per_drop_scope
=
0.1
self
.
assertEqual
(
strategy
.
num_iteration_per_drop_scope
,
1
)
def
test_num_iteration_per_run
(
self
):
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
num_iteration_per_run
=
1
self
.
assertEqual
(
strategy
.
num_iteration_per_run
,
1
)
strategy
.
num_iteration_per_run
=
0.1
self
.
assertEqual
(
strategy
.
num_iteration_per_run
,
1
)
def
test_sync_batch_norm
(
self
):
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
sync_batch_norm
=
True
...
...
@@ -336,6 +350,40 @@ class TestStrategyConfig(unittest.TestCase):
strategy
.
auto
=
"True"
self
.
assertEqual
(
strategy
.
auto
,
False
)
def
test_sync_nccl_allreduce
(
self
):
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
sync_nccl_allreduce
=
True
self
.
assertEqual
(
strategy
.
sync_nccl_allreduce
,
True
)
strategy
.
sync_nccl_allreduce
=
False
self
.
assertEqual
(
strategy
.
sync_nccl_allreduce
,
False
)
strategy
.
sync_nccl_allreduce
=
"True"
self
.
assertEqual
(
strategy
.
sync_nccl_allreduce
,
False
)
def
test_fuse_broadcast_ops
(
self
):
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
fuse_broadcast_ops
=
True
self
.
assertEqual
(
strategy
.
fuse_broadcast_ops
,
True
)
strategy
.
fuse_broadcast_ops
=
False
self
.
assertEqual
(
strategy
.
fuse_broadcast_ops
,
False
)
strategy
.
fuse_broadcast_ops
=
"True"
self
.
assertEqual
(
strategy
.
fuse_broadcast_ops
,
False
)
def
test_num_threads
(
self
):
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
num_threads
=
1
self
.
assertEqual
(
strategy
.
num_threads
,
1
)
strategy
.
num_threads
=
0.1
self
.
assertEqual
(
strategy
.
num_threads
,
1
)
def
test_strategy_prototxt
(
self
):
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
sync_nccl_allreduce
=
True
strategy
.
save_to_prototxt
(
"dist_strategy.prototxt"
)
strategy2
=
paddle
.
fleet
.
DistributedStrategy
()
strategy2
.
load_from_prototxt
(
"dist_strategy.prototxt"
)
self
.
assertEqual
(
strategy
.
sync_nccl_allreduce
,
strategy2
.
sync_nccl_allreduce
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_meta_optimizer.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
os
class
TestFleetMetaOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"POD_IP"
]
=
"127.0.0.1"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"2"
os
.
environ
[
"PADDLE_PSERVERS_IP_PORT_LIST"
]
=
\
"127.0.0.1:36001,127.0.0.2:36001"
def
test_graph_execution_optimizer
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
64
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
def
test_recompute_optimizer
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
64
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
fleet
.
DistributedStrategy
()
strategy
.
recompute
=
True
strategy
.
recompute_checkpoints
=
[
fc_2
]
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_private_function.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
os
import
paddle
import
socket
import
threading
class
TestFleetPrivateFunction
(
unittest
.
TestCase
):
def
test_wait_port
(
self
):
def
init_server
(
port
):
import
time
time
.
sleep
(
5
)
sock
=
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
)
sock
.
bind
((
"127.0.0.1"
,
port
))
sock
.
listen
(
10
)
while
True
:
c
,
addr
=
sock
.
accept
()
c
.
send
(
"0"
)
c
.
close
()
break
thr
=
threading
.
Thread
(
target
=
init_server
,
args
=
(
9292
,
))
thr
.
start
()
import
paddle.fleet
as
fleet
ep
=
[
"127.0.0.1:9292"
]
fleet
.
base
.
private_helper_function
.
wait_server_ready
(
ep
)
thr
.
join
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_runtime.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
os
class
TestFleetRuntime
(
unittest
.
TestCase
):
def
test_fleet_runtime_base
(
self
):
import
paddle.fleet.runtime
base
=
paddle
.
fleet
.
runtime
.
runtime_base
.
RuntimeBase
()
base
.
_run_worker
()
base
.
_init_server
()
base
.
_run_server
()
base
.
_stop_worker
()
def
test_fleet_collective_runtime
(
self
):
import
paddle.fleet.runtime
collective_runtime
=
paddle
.
fleet
.
runtime
.
CollectiveRuntime
()
collective_runtime
.
_init_worker
()
collective_runtime
.
_run_worker
()
collective_runtime
.
_init_worker
()
collective_runtime
.
_run_server
()
collective_runtime
.
_stop_worker
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_util.py
0 → 100644
浏览文件 @
e657d706
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle
import
os
class
TestFleetUtil
(
unittest
.
TestCase
):
def
test_util_base
(
self
):
import
paddle.fleet
as
fleet
util
=
fleet
.
UtilBase
()
strategy
=
fleet
.
DistributedStrategy
()
util
.
_set_strategy
(
strategy
)
role_maker
=
None
# should be fleet.PaddleCloudRoleMaker()
util
.
_set_role_maker
(
role_maker
)
def
test_util_factory
(
self
):
import
paddle.fleet
as
fleet
factory
=
fleet
.
base
.
util_factory
.
UtilFactory
()
strategy
=
fleet
.
DistributedStrategy
()
role_maker
=
None
# should be fleet.PaddleCloudRoleMaker()
optimize_ops
=
[]
params_grads
=
[]
util
=
factory
.
_create_util
(
strategy
,
role_maker
,
optimize_ops
,
params_grads
)
self
.
assertEqual
(
util
.
role_maker
,
None
)
def
test_get_util
(
self
):
import
paddle.fleet
as
fleet
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
default_util
=
fleet
.
util
self
.
assertEqual
(
default_util
,
None
)
def
test_set_user_defined_util
(
self
):
import
paddle.fleet
as
fleet
class
UserDefinedUtil
(
fleet
.
UtilBase
):
def
__init__
(
self
):
super
(
UserDefinedUtil
,
self
).
__init__
()
def
get_user_id
(
self
):
return
10
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
my_util
=
UserDefinedUtil
()
fleet
.
util
=
my_util
user_id
=
fleet
.
util
.
get_user_id
()
self
.
assertEqual
(
user_id
,
10
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/setup.py.in
浏览文件 @
e657d706
...
...
@@ -145,10 +145,10 @@ packages=['paddle',
'paddle.incubate.complex.tensor',
'paddle.fleet',
'paddle.fleet.base',
'paddle.fleet.collective',
'paddle.fleet.meta_optimizers',
'paddle.fleet.runtime',
'paddle.fleet.dataset',
'paddle.fleet.metrics',
'paddle.fleet.parameter_server',
'paddle.fleet.proto',
'paddle.framework',
'paddle.fluid',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录