Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e61a1b95
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e61a1b95
编写于
1月 16, 2019
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
差异文件
merge develop test=develop
上级
b2ba3471
01dc15ce
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
212 addition
and
0 deletion
+212
-0
paddle/fluid/imperative/README.md
paddle/fluid/imperative/README.md
+212
-0
未找到文件。
paddle/fluid/imperative/README.md
0 → 100644
浏览文件 @
e61a1b95
# Overview
Imperative Programming is easier to learn, debug and try new ideas.
# Related Works
## Pytorch
https://pytorch.org/
## TensorFlow Eager
https://www.tensorflow.org/guide/eager
# Design
## API
```
python
class
Layer
(
object
):
def
__call__
(
inputs
):
# build some parameter once.
# ...
return
self
.
apply
(
inputs
):
def
forward
(
inputs
):
# forward logic with paddle operators. backward auto-generated.
class
PyLayer
(
core
.
PyLayer
):
def
__call__
(
cls
,
inputs
):
# trace the logic.
@
staticmethod
def
forward
(
inputs
):
# any forward logic implemented with numpy io.
@
staticmethod
def
backward
(
inputs
):
# any backward logic implemented with numpy io.
```
## Tracer
Current: Python Variable -> C++ VarBase -> C++ Variable -> C++ Tensor
Longer term.
```
python
# Parent class.
class
PyVarBase
(
object
):
pass
# Current python variable.
class
Variable
(
PyVarBase
):
pass
class
IVariable
(
PyVarBase
):
def
__init__
(
self
):
self
.
_ivar
=
core
.
VarBase
()
# Move var to a device.
def
to
(
device
):
pass
# Get var value.
def
value
():
pass
# Trigger backward.
def
backward
():
pass
# Get var's gradient value.
def
gradient_value
():
pass
# operators to override.
```
```
cpp
class
Tracer
{
public:
explicit
Tracer
(
framework
::
BlockDesc
*
root_block
)
:
root_block_
(
root_block
)
{}
virtual
~
Tracer
()
{}
void
Trace
(
OpBase
*
op
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>&
inputs
,
const
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>&
outputs
,
framework
::
BlockDesc
*
block
,
const
bool
stop_gradient
=
false
);
std
::
vector
<
VarBase
*>
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
bool
stop_gradient
=
false
);
};
```
*
Trace forward operations
*
Perform quick shape/type infer, push kernel execution engine and return to user.
*
Perform autograd to generate gradients.
*
Clear trace.
*
Apply gradients with optimizers
## Autodiff
Lots of research already.
https://autodiff-workshop.github.io/
https://en.wikipedia.org/wiki/Automatic_differentiation
Basically, trace the forward execution, and perform autodiff
when needed.
*
Can be triggered by
`backward()`
.
*
Can select a block of code to trace and autodiff.
*
Use
`require_grad`
to drop some forward subgraph that doesn't need autodiff.
## Execution Engine
Lazy execution of pushed C++ operations.
## Device Placement
*
Operator executes on the inputs' device.
*
All inputs should live on the same device.
*
use
`Var.to()`
to explicitly move var to a device.
## Save/Load Models
TODO
## I/O
TODO
## Refactor
*
All function layers with parameters converted to class Layers.
*
Existing models converted to imperative mode.
*
All op tests run once in static graph, once in imperative mode.
# Examples
```
python
class
MyLayer
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
MyLayer
,
self
).
__init__
()
def
forward
(
self
,
inputs
):
x
=
fluid
.
layers
.
relu
(
inputs
)
x
=
fluid
.
layers
.
elementwise_mul
(
x
,
x
)
x
=
fluid
.
layers
.
reduce_sum
(
x
)
return
[
x
]
class
MyPyLayer
(
fluid
.
imperative
.
PyLayer
):
def
__init__
(
self
):
super
(
MyPyLayer
,
self
).
__init__
()
@
staticmethod
def
forward
(
inputs
):
return
np
.
tanh
(
inputs
[
0
])
@
staticmethod
def
backward
(
inputs
):
return
np
.
array
(
dout
)
*
(
1
-
np
.
square
(
np
.
array
(
out
)))
np_inp
=
np
.
ones
([
2
,
2
],
np
.
float32
)
with
fluid
.
imperative
.
guard
():
my_py_layer
=
MyPyLayer
()
outs
=
my_py_layer
(
np_inp
)
dy_out
=
np
.
sum
(
outs
[
0
].
_numpy
())
outs
[
0
].
_backward
()
dy_grad
=
var_inp
.
_gradient
()
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
MLP
,
self
).
__init__
()
self
.
_fc1
=
FC
(
3
,
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
self
.
_fc2
=
FC
(
4
,
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc2
(
x
)
x
=
fluid
.
layers
.
reduce_sum
(
x
)
return
x
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
mlp
=
MLP
()
out
=
mlp
(
var_inp
)
dy_out
=
out
.
_numpy
()
out
.
_backward
()
```
# Plan
2.
1,3 fulltime, Can run a few simple models. (Currently, 2 20% engs)
4.
1, 4 fulltime, Can run 6 models, Performance 70% Pytorch. Release alpha.
6.
1, 5 fulltime, Performance close to Pytorch, can run multi-devices. Release Beta.
8.
1, 5 fulltime, Works in general. Update existing models. Can compile to static graph, support more optimizations.
12.
1 Done.
# Discussion
TODO.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录