Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e5c59fc9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e5c59fc9
编写于
3月 14, 2022
作者:
Z
zmxdream
提交者:
GitHub
3月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[GPUPS]fix instag lod information (#40483)
上级
e553f758
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
2 addition
and
60 deletion
+2
-60
paddle/fluid/operators/filter_by_instag_op.cu
paddle/fluid/operators/filter_by_instag_op.cu
+2
-60
未找到文件。
paddle/fluid/operators/filter_by_instag_op.cu
浏览文件 @
e5c59fc9
...
...
@@ -96,30 +96,6 @@ __global__ void filter_copy_fuse_kernel(
if
(
N
<
ins_end
)
ins_end
=
N
;
/*
if (!x1_lods_filled) {
for (int p = ins_start; p < ins_end; p++) {
x1_lods_data[p] = p;
}
if (idx == 0) {
x1_lods_data[N] = N;
}
}
if (!x2_lods_filled) {
for (int p = ins_start; p < ins_end; p++) {
x2_lods_data[p] = p;
}
if (idx == 0) {
x2_lods_data[N] = N;
}
}
if (!x1_lods_filled || !x2_lods_filled) {
b.sync();
}
*/
int
flag_data
[
5
];
int
prefix_sum_data
[
5
];
int
prefix_sum_data2
[
5
];
...
...
@@ -173,8 +149,6 @@ __global__ void filter_copy_fuse_kernel(
local_addr
=
prefix_sum_data
[
ins_end
-
1
-
ins_start
];
sum_addr
=
local_addr
;
// flag
// local_flag = 0;
for
(
int
p
=
ins_start
;
p
<
ins_end
;
p
++
)
{
local_flag
+=
flag_data
[
p
-
ins_start
];
}
...
...
@@ -188,7 +162,6 @@ __global__ void filter_copy_fuse_kernel(
sum_out_lods
=
local_out_lods
;
}
// 32 threads
for
(
int
i
=
1
;
i
<
warp_thread_num
;
i
*=
2
)
{
int
temp_addr
=
g
.
shfl_up
(
sum_addr
,
i
);
int
temp_flag
=
g
.
shfl_up
(
sum_flag
,
i
);
...
...
@@ -266,27 +239,16 @@ __global__ void filter_copy_fuse_kernel(
if
(
ins_start
<
ins_end
)
{
int
out_lods_idx
=
p_flag
+
1
;
// ins_start = 1
// BUG fix
for
(
int
p
=
ins_start
;
p
<
ins_end
;
p
++
)
{
if
(
flag_data
[
p
-
ins_start
]
==
1
)
{
// batch_len = 2
// batch_len = 4
size_t
batch_len
=
x1_lods_data
[
p
+
1
]
-
x1_lods_data
[
p
];
// t = 0
// t = 1
int
t
=
out_lods_idx
-
1
;
// out_lods_data[0] = 0;
int
previous
;
if
(
out_lods_idx
==
p_flag
+
1
)
{
// out_lods_data[t] = p_out_lods;
previous
=
p_out_lods
;
}
else
{
previous
=
out_lods_data
[
t
];
}
map_data
[
t
*
3
]
=
(
int64_t
)
previous
;
map_data
[
t
*
3
+
1
]
=
x1_lods_data
[
p
];
map_lods_data
[
t
]
=
t
;
...
...
@@ -300,7 +262,6 @@ __global__ void filter_copy_fuse_kernel(
if
(
sum_out_lods4
>
1
)
{
int
out_data_num
=
sum_out_lods4
-
1
;
int
out_start
=
ins_start
;
if
(
out_start
<
out_data_num
)
{
int
out_end
=
ins_end
>=
out_data_num
?
out_data_num
:
ins_end
;
for
(
int
p
=
out_start
;
p
<
out_end
;
p
++
)
{
...
...
@@ -314,11 +275,8 @@ __global__ void filter_copy_fuse_kernel(
if
(
flag_data
[
p
-
ins_start
]
==
1
)
{
auto
output_start_idx
=
prefix_sum_data2
[
p
-
ins_start
];
T
*
dst
=
out_data
+
output_start_idx
*
x1_embed_size
;
const
T
*
src_start
=
x1_data
+
x1_lods_data
[
p
]
*
x1_embed_size
;
const
T
*
src_end
=
x1_data
+
x1_lods_data
[
p
+
1
]
*
x1_embed_size
;
// optimized
for
(
const
T
*
j
=
src_start
;
j
!=
src_end
;
dst
++
,
j
++
)
{
*
dst
=
*
j
;
}
...
...
@@ -338,12 +296,10 @@ __global__ void copy_grad_kernel(const size_t N, const int ins_per_thread,
int
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
ins_start
=
idx
*
ins_per_thread
;
int
ins_end
=
(
idx
+
1
)
*
ins_per_thread
;
if
(
ins_start
>=
N
)
{
return
;
}
if
(
ins_end
>
N
)
ins_end
=
N
;
for
(
int
p
=
ins_start
;
p
<
ins_end
;
p
++
)
{
T
*
dst
=
x1_grad_data
+
map_data
[
p
*
3
+
1
]
*
x1_embed_size
;
const
T
*
src_start
=
out_grad_data
+
map_data
[
p
*
3
]
*
x1_embed_size
;
...
...
@@ -394,21 +350,17 @@ class FilterByInstagGPUKernel : public framework::OpKernel<T> {
const
Tensor
*
x3
=
context
.
Input
<
Tensor
>
(
"Filter_tag"
);
const
int64_t
*
x3_data
=
x3
->
data
<
int64_t
>
();
// int x2_lods_filled = 1;
Vector
<
size_t
>
x2_lods
;
// Vector, in GPU
if
(
x2
->
lod
().
size
()
!=
0
)
{
// lod_level = 1
x2_lods
=
x2
->
lod
()[
0
];
// x2_lods_filled = 1;
}
else
{
// lod_level = 0
const
size_t
x2_lods_size
=
x2
->
dims
()[
0
];
const
size_t
instag_per_num
=
x2
->
dims
()[
1
];
// x2_lods.resize(x2->dims()[0] + 1);
// move to cuda
x2_lods
.
push_back
(
0
);
for
(
size_t
i
=
0
;
i
<
x2_lods_size
;
i
++
)
{
x2_lods
.
push_back
(
i
+
1
);
x2_lods
.
push_back
(
x2_lods
.
back
()
+
instag_per_num
);
}
}
...
...
@@ -417,13 +369,8 @@ class FilterByInstagGPUKernel : public framework::OpKernel<T> {
size_t
*
x2_lods_data
=
mixv_x2_lods
.
CUDAMutableData
(
gpu_place
);
// Vector, in GPU
// int x1_lods_filled = 1;
Vector
<
size_t
>
x1_lods
;
if
(
!
is_x1_lod
)
{
// move to cuda
// x1_lods.resize(x1->dims()[0] + 1);
x1_lods
.
push_back
(
0
);
for
(
int
i
=
0
;
i
<
x1
->
dims
()[
0
];
i
++
)
{
x1_lods
.
push_back
(
i
+
1
);
...
...
@@ -432,7 +379,6 @@ class FilterByInstagGPUKernel : public framework::OpKernel<T> {
// x1_lods = context.Input<LoDTensor>("Ins")->lod()[0];
// new: lod_level=0 => lod() return {}
if
(
x1
->
lod
().
size
()
!=
0
)
{
// lod_level = 1
// x1_lods_filled = 1;
x1_lods
=
x1
->
lod
()[
0
];
}
else
{
// lod_level = 0
// x1_lods.resize(x1->dims()[0] + 1);
...
...
@@ -458,10 +404,6 @@ class FilterByInstagGPUKernel : public framework::OpKernel<T> {
LoDTensor
*
loss_weight
=
context
.
Output
<
LoDTensor
>
(
"LossWeight"
);
int
out_first
=
x1_lods
.
back
();
// int out_first = x1->dims()[0];
// if (x1_lods_filled) {
// out_first = x1_lods.back();
// }
out
->
Resize
(
phi
::
make_ddim
({(
int64_t
)
out_first
,
(
int64_t
)
x1_embed_size
}));
map
->
Resize
(
phi
::
make_ddim
({(
int64_t
)
x2_lods_size
,
3
}));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录