Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e5bf9c56
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e5bf9c56
编写于
11月 21, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove vector::eraze
上级
e930f496
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
43 addition
and
57 deletion
+43
-57
paddle/operators/conv_op.h
paddle/operators/conv_op.h
+23
-31
paddle/operators/conv_transpose_op.h
paddle/operators/conv_transpose_op.h
+20
-26
未找到文件。
paddle/operators/conv_op.h
浏览文件 @
e5bf9c56
...
@@ -38,7 +38,7 @@ inline bool IsExpand(std::vector<int64_t>& filter_dim,
...
@@ -38,7 +38,7 @@ inline bool IsExpand(std::vector<int64_t>& filter_dim,
std
::
vector
<
int
>&
dilations
)
{
std
::
vector
<
int
>&
dilations
)
{
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
bool
filter_1
=
true
,
strides_1
=
true
,
padding_0
=
true
,
dilation_1
=
true
;
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
for
(
size_t
j
=
0
;
j
<
strides
.
size
();
++
j
)
{
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
])
==
1
);
filter_1
=
filter_1
&&
(
static_cast
<
int
>
(
filter_dim
[
j
+
2
])
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
strides_1
=
strides_1
&&
(
strides
[
j
]
==
1
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
padding_0
=
padding_0
&&
(
paddings
[
j
]
==
0
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
dilation_1
=
dilation_1
&&
(
dilations
[
j
]
==
1
);
...
@@ -91,24 +91,20 @@ class GemmConvKernel : public framework::OpKernel<T> {
...
@@ -91,24 +91,20 @@ class GemmConvKernel : public framework::OpKernel<T> {
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
// filter_shape_vec: {k_
h, k_w} or {
k_d, k_h, k_w}
// filter_shape_vec: {k_
o, k_i, k_h, k_w} or {k_o, k_i,
k_d, k_h, k_w}
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
filter_shape_vec
.
erase
(
filter_shape_vec
.
begin
(),
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
filter_shape_vec
.
begin
()
+
2
);
// output_shape_vec: {o_h, o_w} or {o_d, o_h, o_w}
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
output_shape_vec
.
erase
(
output_shape_vec
.
begin
(),
output_shape_vec
.
begin
()
+
2
);
// use col_shape in the im2col calculation
// use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
// o_h, o_w}
// o_h, o_w}
std
::
vector
<
int64_t
>
col_shape_vec
;
std
::
vector
<
int64_t
>
col_shape_vec
(
filter_shape_vec
.
size
()
+
col_shape_vec
.
push_back
(
input
->
dims
()[
1
]
/
groups
);
output_shape_vec
.
size
()
-
3
);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
(),
col_shape_vec
.
assign
(
1
,
input
->
dims
()[
1
]
/
groups
);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
()
+
2
,
filter_shape_vec
.
end
());
filter_shape_vec
.
end
());
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
output_shape_vec
.
begin
(),
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
output_shape_vec
.
begin
()
+
2
,
output_shape_vec
.
end
());
output_shape_vec
.
end
());
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
...
@@ -116,7 +112,7 @@ class GemmConvKernel : public framework::OpKernel<T> {
...
@@ -116,7 +112,7 @@ class GemmConvKernel : public framework::OpKernel<T> {
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
// size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
// o_h * o_w)
// o_h * o_w)
framework
::
DDim
col_matrix_shape
=
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
+
1
);
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
-
2
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col
;
...
@@ -159,13 +155,13 @@ class GemmConvKernel : public framework::OpKernel<T> {
...
@@ -159,13 +155,13 @@ class GemmConvKernel : public framework::OpKernel<T> {
col
.
ShareDataWith
(
in_slice
);
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
filter_shape_vec
.
size
()
==
2
)
{
}
else
if
(
filter_shape_vec
.
size
()
==
4
)
{
// im2col
// im2col
im2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
im2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
paddings
[
1
]},
&
col
);
&
col
);
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
}
else
if
(
filter_shape_vec
.
size
()
==
5
)
{
// vol2col
// vol2col
vol2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
vol2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
paddings
,
&
col
);
...
@@ -206,25 +202,21 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
...
@@ -206,25 +202,21 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
// filter_shape_vec: {k_
h, k_w} or {
k_d, k_h, k_w}
// filter_shape_vec: {k_
o, k_i, k_h, k_w} or {k_o, k_i,
k_d, k_h, k_w}
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
filter_shape_vec
.
erase
(
filter_shape_vec
.
begin
(),
// output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
filter_shape_vec
.
begin
()
+
2
);
// output_shape_vec: {o_h, o_w} or {o_d, o_h, o_w}
std
::
vector
<
int64_t
>
output_shape_vec
(
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output_grad
->
dims
()));
framework
::
vectorize
(
output_grad
->
dims
()));
output_shape_vec
.
erase
(
output_shape_vec
.
begin
(),
output_shape_vec
.
begin
()
+
2
);
// use col_shape in the im2col calculation
// use col_shape in the im2col calculation
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
// col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
// o_h, o_w}
// o_h, o_w}
std
::
vector
<
int64_t
>
col_shape_vec
;
std
::
vector
<
int64_t
>
col_shape_vec
(
filter_shape_vec
.
size
()
+
col_shape_vec
.
push_back
(
input
->
dims
()[
1
]
/
groups
);
output_shape_vec
.
size
()
-
3
);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
(),
col_shape_vec
.
assign
(
1
,
input
->
dims
()[
1
]
/
groups
);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
()
+
2
,
filter_shape_vec
.
end
());
filter_shape_vec
.
end
());
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
output_shape_vec
.
begin
(),
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
output_shape_vec
.
begin
()
+
2
,
output_shape_vec
.
end
());
output_shape_vec
.
end
());
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
...
@@ -233,7 +225,7 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
...
@@ -233,7 +225,7 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
// or
// or
// (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
// (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
framework
::
DDim
col_matrix_shape
=
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
+
1
);
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
-
2
+
1
);
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
...
@@ -294,12 +286,12 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
...
@@ -294,12 +286,12 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
out_grad_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
out_grad_slice
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
));
T
(
0.0
));
if
(
is_expand
&&
filter_shape_vec
.
size
()
==
2
)
{
if
(
is_expand
&&
filter_shape_vec
.
size
()
==
4
)
{
col2im
(
context
.
device_context
(),
col
,
dilations
,
strides
,
col2im
(
context
.
device_context
(),
col
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
paddings
[
1
]},
&
in_grad_slice
);
&
in_grad_slice
);
}
else
if
(
is_expand
&&
filter_shape_vec
.
size
()
==
3
)
{
}
else
if
(
is_expand
&&
filter_shape_vec
.
size
()
==
5
)
{
col2vol
(
context
.
device_context
(),
col
,
dilations
,
strides
,
paddings
,
col2vol
(
context
.
device_context
(),
col
,
dilations
,
strides
,
paddings
,
&
in_grad_slice
);
&
in_grad_slice
);
}
}
...
@@ -328,12 +320,12 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
...
@@ -328,12 +320,12 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
col
.
ShareDataWith
(
in_slice
);
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
filter_shape_vec
.
size
()
==
2
)
{
}
else
if
(
filter_shape_vec
.
size
()
==
4
)
{
im2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
im2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
paddings
[
1
]},
&
col
);
&
col
);
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
}
else
if
(
filter_shape_vec
.
size
()
==
5
)
{
vol2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
vol2col
(
context
.
device_context
(),
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
paddings
,
&
col
);
}
}
...
...
paddle/operators/conv_transpose_op.h
浏览文件 @
e5bf9c56
...
@@ -68,30 +68,27 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -68,30 +68,27 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
// input_shape_vec: {
h, w} or {
d, h, w}
// input_shape_vec: {
n, c, h, w} or {n, c,
d, h, w}
std
::
vector
<
int64_t
>
input_shape_vec
=
framework
::
vectorize
(
input
->
dims
());
std
::
vector
<
int64_t
>
input_shape_vec
=
framework
::
vectorize
(
input
->
dims
());
input_shape_vec
.
erase
(
input_shape_vec
.
begin
(),
input_shape_vec
.
begin
()
+
2
);
// filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std
::
vector
<
int64_t
>
filter_shape_vec
=
framework
::
vectorize
(
filter
.
dims
());
std
::
vector
<
int64_t
>
filter_shape_vec
=
framework
::
vectorize
(
filter
.
dims
());
filter_shape_vec
.
erase
(
filter_shape_vec
.
begin
(),
filter_shape_vec
.
begin
()
+
2
);
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
std
::
vector
<
int64_t
>
col_shape_vec
;
std
::
vector
<
int64_t
>
col_shape_vec
(
filter_shape_vec
.
size
()
+
col_shape_vec
.
push_back
(
output
->
dims
()[
1
]);
input_shape_vec
.
size
()
-
3
);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
(),
col_shape_vec
.
assign
(
1
,
output
->
dims
()[
1
]);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
()
+
2
,
filter_shape_vec
.
end
());
filter_shape_vec
.
end
());
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
input_shape_vec
.
begin
(),
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
input_shape_vec
.
begin
()
+
2
,
input_shape_vec
.
end
());
input_shape_vec
.
end
());
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// use col_matrix_shape in the gemm calculation
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim
col_matrix_shape
=
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
+
1
);
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
-
2
+
1
);
Tensor
col
;
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
@@ -136,7 +133,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -136,7 +133,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
if
(
filter_shape_vec
.
size
()
==
2
)
{
if
(
filter_shape_vec
.
size
()
==
4
)
{
// col2im: col_matrix -> dy
// col2im: col_matrix -> dy
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
col2im
(
context
.
device_context
(),
col
,
col2im
(
context
.
device_context
(),
col
,
...
@@ -144,7 +141,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
...
@@ -144,7 +141,7 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
paddings
[
1
]},
&
output_batch
);
&
output_batch
);
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
}
else
if
(
filter_shape_vec
.
size
()
==
5
)
{
// col2vol: col_matrix -> dy
// col2vol: col_matrix -> dy
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
col2vol
(
context
.
device_context
(),
col
,
dilations
,
strides
,
paddings
,
col2vol
(
context
.
device_context
(),
col
,
dilations
,
strides
,
paddings
,
...
@@ -176,30 +173,27 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -176,30 +173,27 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
// input_shape_vec: {
h, w} or {
d, h, w}
// input_shape_vec: {
n, c, h, w} or {n, c,
d, h, w}
std
::
vector
<
int64_t
>
input_shape_vec
=
framework
::
vectorize
(
input
->
dims
());
std
::
vector
<
int64_t
>
input_shape_vec
=
framework
::
vectorize
(
input
->
dims
());
input_shape_vec
.
erase
(
input_shape_vec
.
begin
(),
input_shape_vec
.
begin
()
+
2
);
// filter_shape_vec: {k_o, k_c, k_h, k_w} or {k_o, k_c, k_d, k_h, k_w}
// filter_shape_vec: {k_h, k_w} or {k_d, k_h, k_w}
std
::
vector
<
int64_t
>
filter_shape_vec
=
framework
::
vectorize
(
filter
.
dims
());
std
::
vector
<
int64_t
>
filter_shape_vec
=
framework
::
vectorize
(
filter
.
dims
());
filter_shape_vec
.
erase
(
filter_shape_vec
.
begin
(),
filter_shape_vec
.
begin
()
+
2
);
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// use col_shape in the im2col and col2im (or vol2col and col2vol)
// calculation
// calculation
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
// col_shape_vec: {c, k_h, k_w, h, w} or {c, k_d, k_h, k_w, d, h, w}
std
::
vector
<
int64_t
>
col_shape_vec
;
std
::
vector
<
int64_t
>
col_shape_vec
(
filter_shape_vec
.
size
()
+
col_shape_vec
.
push_back
(
output_grad
->
dims
()[
1
]);
input_shape_vec
.
size
()
-
3
);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
(),
col_shape_vec
.
assign
(
1
,
output_grad
->
dims
()[
1
]);
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
filter_shape_vec
.
begin
()
+
2
,
filter_shape_vec
.
end
());
filter_shape_vec
.
end
());
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
input_shape_vec
.
begin
(),
col_shape_vec
.
insert
(
col_shape_vec
.
end
(),
input_shape_vec
.
begin
()
+
2
,
input_shape_vec
.
end
());
input_shape_vec
.
end
());
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
// use col_matrix_shape in the gemm calculation
// use col_matrix_shape in the gemm calculation
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
// size: (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
DDim
col_matrix_shape
=
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
+
1
);
framework
::
flatten_to_2d
(
col_shape
,
filter_shape_vec
.
size
()
-
2
+
1
);
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
// output size: (c, o_h, o_w) or (c, o_d, o_h, o_w)
DDim
output_shape
=
framework
::
slice_ddim
(
output_grad
->
dims
(),
1
,
DDim
output_shape
=
framework
::
slice_ddim
(
output_grad
->
dims
(),
1
,
...
@@ -248,7 +242,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -248,7 +242,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
Tensor
output_grad_batch
=
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
if
(
filter_shape_vec
.
size
()
==
2
)
{
if
(
filter_shape_vec
.
size
()
==
4
)
{
// im2col: dy -> col matrix
// im2col: dy -> col matrix
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
im2col
(
context
.
device_context
(),
output_grad_batch
,
im2col
(
context
.
device_context
(),
output_grad_batch
,
...
@@ -256,7 +250,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -256,7 +250,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
paddings
[
1
]},
&
col
);
&
col
);
}
else
if
(
filter_shape_vec
.
size
()
==
3
)
{
}
else
if
(
filter_shape_vec
.
size
()
==
5
)
{
// vol2col: dy -> col_matrix
// vol2col: dy -> col_matrix
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
vol2col
(
context
.
device_context
(),
output_grad_batch
,
dilations
,
vol2col
(
context
.
device_context
(),
output_grad_batch
,
dilations
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录