未验证 提交 e59524f8 编写于 作者: W wangchaochaohu 提交者: GitHub

[cherry-pick]Elementwise add grad GPU kernel optimization (#30276)

* elementwise_add_grad Op optimization  (#29575)

* optimize for long width for elementwise (#29602)

* refine (#29622)

* delete the code for fp16 optimization because it is not faster than common template code (#29715)

* fix the shape choose of vectorize for cuda

* optimization for fp16 elementwise add (#29744)

* Fix the compiler error for half type (#29799)

* refine the compiler error for half2 operation (#29816)

* fix the compiler error when gcc4 cuda9.0 (#29997)
上级 d8dfef54
......@@ -13,10 +13,20 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__
#include <cuda.h>
#include <cuda_fp16.h>
#include "cub/cub.cuh"
#endif
#endif
namespace paddle {
namespace operators {
......@@ -116,6 +126,167 @@ elementwise_add_grad(const framework::ExecutionContext &ctx,
default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
T val[Size];
};
template <typename T>
inline int VectorizedSize(const T *pointer) {
uint64_t address = reinterpret_cast<uint64_t>(pointer);
constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value; // NOLINT
if (address % vec4 == 0) {
return 4;
}
return 1;
}
template <typename T, int BLOCK_W, int BLOCK_H>
__global__ void MatrixColReduce(const T *__restrict__ in, T *__restrict__ out,
size_t width, size_t height) {
__shared__ T sdata[BLOCK_H][BLOCK_W + 1];
size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
size_t width_stride = gridDim.x * blockDim.x;
size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
size_t full_height = (height & (~((uint64_t)(BLOCK_H - 1)))) +
((height & (BLOCK_H - 1)) ? BLOCK_H : 0);
#pragma unroll
for (size_t w = idx; w < full_width; w += width_stride) {
sdata[threadIdx.y][threadIdx.x] = 0;
__syncthreads();
size_t offset = w + threadIdx.y * width;
#pragma unroll
for (size_t h = threadIdx.y; h < full_height;
h += BLOCK_H) { // block-stride loop across matrix height
sdata[threadIdx.y][threadIdx.x] +=
(w < width && h < height) ? in[offset] : (static_cast<T>(0));
offset += width * BLOCK_H;
}
__syncthreads();
T val = sdata[threadIdx.x][threadIdx.y];
for (int i = warpSize >> 1; i > 0; i >>= 1)
val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);
__syncthreads();
if (threadIdx.x == 0) sdata[0][threadIdx.y] = val;
__syncthreads();
if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
}
}
#if CUDA_VERSION >= 10000
template <int SIZE>
__global__ void VecFP16MatrixColReduce(const __half2 *__restrict__ in,
__half2 *__restrict__ out, size_t width,
size_t height) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
int idx = threadIdx.x + blockIdx.x * blockDim.x;
int by = blockIdx.y;
__half2 zero = __half2half2(static_cast<__half>(0));
const int cols = width / 2;
for (; idx < cols; idx += blockDim.x * gridDim.x) {
__half2 sum = zero;
for (int row = 0; row < SIZE; row++) {
int index = idx + (row + by * SIZE) * cols;
sum = __hadd2(sum, in[index]);
}
atomicAdd(&(out[idx]), sum);
}
#endif
}
#endif
template <typename T>
__global__ void MatrixReduceLongWidth(const T *__restrict__ in, T *out,
size_t width, size_t height) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
for (; idx < width; idx += blockDim.x * gridDim.x) {
T sum = static_cast<T>(0);
for (int row = 0; row < height; row++) {
sum += in[idx + row * width];
}
out[idx] = sum;
}
}
template <typename T, int VEC_SIZE>
__global__ void VecMatrixReduceLongWidth(const T *__restrict__ in, T *out,
size_t width, size_t height) {
using LoadT = AlignedVector<T, VEC_SIZE>;
int idx = threadIdx.x + blockIdx.x * blockDim.x;
int w = idx * VEC_SIZE;
int width_stride = blockDim.x * gridDim.x * VEC_SIZE;
for (; w < width; w += width_stride) {
T zero = static_cast<T>(0);
T sum[VEC_SIZE] = {zero};
T tmp_vec[VEC_SIZE] = {zero};
LoadT *tmp_ptr = reinterpret_cast<LoadT *>(&tmp_vec);
for (int row = 0; row < height; row++) {
int offset = width * row + w;
*tmp_ptr = *reinterpret_cast<const LoadT *>(&in[offset]);
for (int v = 0; v < VEC_SIZE; v++) {
sum[v] += tmp_vec[v];
}
}
for (int v = 0; v < VEC_SIZE; v++) out[w + v] = sum[v];
}
}
#endif
#endif
bool static RunSpecialDims(const framework::DDim &dx_dims,
const framework::DDim &dy_dims,
const framework::DDim &dout_dims, int axis) {
auto smaller_dims = dx_dims;
auto bigger_dims = dy_dims;
auto smaller_dims_size = smaller_dims.size();
auto bigger_dims_size = bigger_dims.size();
int smaller_ignore_size = 0;
int bigger_ignore_size = 0;
for (int i = 0; i < smaller_dims_size; i++) {
if (smaller_dims[i] == 1)
smaller_ignore_size++;
else
break;
}
for (int i = 0; i < bigger_dims_size; i++) {
if (bigger_dims[i] == 1)
bigger_ignore_size++;
else
break;
}
int smaller_real_size = smaller_dims.size() - smaller_ignore_size;
int bigger_real_size = bigger_dims.size() - bigger_ignore_size;
if (smaller_real_size == bigger_real_size) return false;
if (bigger_real_size < smaller_real_size) {
smaller_dims = dy_dims;
bigger_dims = dx_dims;
std::swap(smaller_real_size, bigger_real_size);
}
int big_size = bigger_dims.size();
int small_size = smaller_dims.size();
for (int i = 1; i <= smaller_real_size; i++) {
if (bigger_dims[big_size - i] != smaller_dims[small_size - i]) return false;
}
if (axis != -1 && (axis != (bigger_real_size - smaller_real_size))) {
return false;
}
return true;
}
#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
......@@ -144,6 +315,100 @@ class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
// skip out
auto *out = dout;
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__
int axis = ctx.Attr<int>("axis");
if (ctx.GetPlace() == platform::CUDAPlace() && dx != nullptr &&
dy != nullptr && dout != nullptr && dx->numel() != dy->numel() &&
RunSpecialDims(dx->dims(), dy->dims(), dout->dims(), axis)) {
auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
auto *dout_data = dout->data<T>();
auto stream = ctx.cuda_device_context().stream();
auto *out_data = dx_data;
int width = dx->numel();
int height = dout->numel() / width;
if (dx->dims() == dout->dims()) {
width = dy->numel();
height = dout->numel() / width;
out_data = dy_data;
framework::TensorCopy(
*dout, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dx);
} else {
framework::TensorCopy(
*dout, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dy);
}
// special optimization using cub
if (width == 1) {
int nums = height;
size_t temp_storage_bytes = 0;
auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes,
dout_data, out_data, nums, stream);
PADDLE_ENFORCE_CUDA_SUCCESS(err);
framework::Tensor tmp;
auto *temp_storage = tmp.mutable_data<uint8_t>(
framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
ctx.GetPlace());
err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes,
dout_data, out_data, nums, stream);
PADDLE_ENFORCE_CUDA_SUCCESS(err);
return;
}
constexpr int block_x = 32;
constexpr int block_y = 32;
dim3 blocks(block_x, block_y);
int max_physical_threads =
ctx.cuda_device_context().GetMaxPhysicalThreadCount();
int max_blocks = std::max(max_physical_threads / (block_x * block_y), 1);
int theory_block = (width + blocks.x - 1) / blocks.x;
dim3 grids(std::min(theory_block, max_blocks));
#if CUDA_VERSION >= 10000
if (std::is_same<T, paddle::platform::float16>::value && width < 2048 &&
width % 2 == 0 && height % 64 == 0) {
auto &dev_ctx =
ctx.template device_context<platform::CUDADeviceContext>();
math::SetConstant<platform::CUDADeviceContext, T> functor;
if (dout->dims() == dx->dims())
functor(dev_ctx, dy, static_cast<T>(0));
else
functor(dev_ctx, dx, static_cast<T>(0));
const __half2 *ptr1 = reinterpret_cast<const __half2 *>(dout_data);
__half2 *ptr2 = reinterpret_cast<__half2 *>(out_data);
const int threads = 128;
dim3 grid(1, (height + 64 - 1) / 64);
VecFP16MatrixColReduce<64><<<grid, threads, 0, stream>>>(ptr1, ptr2,
width, height);
return;
}
#endif
if (width / height < 32) {
MatrixColReduce<T, block_x, block_y><<<grids, blocks, 0, stream>>>(
dout_data, out_data, width, height);
} else {
size_t thread_nums = 1024;
size_t block_nums = (width + thread_nums - 1) / thread_nums;
int vec_size = VectorizedSize<T>(dout_data);
if (vec_size == 4 && width % 4 == 0) {
block_nums = (width / vec_size + thread_nums - 1) / thread_nums;
VecMatrixReduceLongWidth<T,
4><<<block_nums, thread_nums, 0, stream>>>(
dout_data, out_data, width, height);
} else {
MatrixReduceLongWidth<T><<<block_nums, thread_nums, 0, stream>>>(
dout_data, out_data, width, height);
}
}
return;
}
#endif
#endif
// Special case when dy is not needed and dx doesn't reduce
if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
VLOG(4) << "Special case when dy is not needed and dx doesn't "
......
......@@ -351,6 +351,16 @@ class TestElementwiseAddOp_commonuse_add1(TestElementwiseAddOp):
self.axis = -1
class TestElementwiseFP16AddOp_commonuse_add1(TestFP16ElementwiseAddOp):
def init_input_output(self):
self.x = np.random.rand(20, 30, 100).astype(self.dtype)
self.y = np.random.rand(1, 1, 100).astype(self.dtype)
self.out = self.x + self.y
def init_axis(self):
self.axis = -1
class TestElementwiseAddOp_commonuse_add2(TestElementwiseAddOp):
def init_input_output(self):
self.x = np.random.rand(10, 3, 1, 4).astype(self.dtype)
......@@ -501,4 +511,5 @@ class TestRealComplexElementwiseAddOp(TestComplexElementwiseAddOp):
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册