Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e550fc02
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e550fc02
编写于
9月 25, 2020
作者:
W
WangXi
提交者:
GitHub
9月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fleet2.0 add fp16 grad compression (#27480)
上级
c5c13473
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
370 addition
and
0 deletion
+370
-0
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+23
-0
python/paddle/distributed/fleet/meta_optimizers/__init__.py
python/paddle/distributed/fleet/meta_optimizers/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_optimizers/fp16_allreduce_optimizer.py
...ributed/fleet/meta_optimizers/fp16_allreduce_optimizer.py
+146
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/dist_mnist_fp16_allreduce.py
...paddle/fluid/tests/unittests/dist_mnist_fp16_allreduce.py
+63
-0
python/paddle/fluid/tests/unittests/test_dist_mnist_fp16_allreduce.py
...e/fluid/tests/unittests/test_dist_mnist_fp16_allreduce.py
+33
-0
python/paddle/fluid/tests/unittests/test_fleet_distributed_strategy.py
.../fluid/tests/unittests/test_fleet_distributed_strategy.py
+10
-0
python/paddle/fluid/tests/unittests/test_fleet_fp16_allreduce_meta_optimizer.py
...sts/unittests/test_fleet_fp16_allreduce_meta_optimizer.py
+91
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
e550fc02
...
...
@@ -127,6 +127,7 @@ message DistributedStrategy {
optional
int32
conv_workspace_size_limit
=
22
[
default
=
4000
];
optional
bool
cudnn_batchnorm_spatial_persistent
=
23
[
default
=
true
];
optional
bool
adaptive_localsgd
=
24
[
default
=
false
];
optional
bool
fp16_allreduce
=
25
[
default
=
false
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
e550fc02
...
...
@@ -845,6 +845,29 @@ class DistributedStrategy(object):
check_configs_key
(
self
.
strategy
.
dgc_configs
,
configs
,
"dgc_configs"
)
assign_configs_value
(
self
.
strategy
.
dgc_configs
,
configs
)
@
property
def
fp16_allreduce
(
self
):
"""
Indicating whether we are using fp16 gradient allreduce training
Default Value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.fp16_allreduce = True # by default this is false
"""
return
self
.
strategy
.
fp16_allreduce
@
fp16_allreduce
.
setter
@
is_strict_auto
def
fp16_allreduce
(
self
,
flag
):
if
not
isinstance
(
flag
,
bool
):
raise
TypeError
(
'fp16_allreduce must be value of bool type'
)
self
.
strategy
.
fp16_allreduce
=
flag
@
property
def
gradient_merge
(
self
):
"""
...
...
python/paddle/distributed/fleet/meta_optimizers/__init__.py
浏览文件 @
e550fc02
...
...
@@ -23,3 +23,4 @@ from .lars_optimizer import LarsOptimizer
from
.parameter_server_graph_optimizer
import
ParameterServerGraphOptimizer
from
.dgc_optimizer
import
DGCOptimizer
from
.lamb_optimizer
import
LambOptimizer
from
.fp16_allreduce_optimizer
import
FP16AllReduceOptimizer
python/paddle/distributed/fleet/meta_optimizers/fp16_allreduce_optimizer.py
0 → 100755
浏览文件 @
e550fc02
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
paddle.fluid
import
core
,
framework
,
unique_name
from
.meta_optimizer_base
import
MetaOptimizerBase
class
FP16AllReduceOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
FP16AllReduceOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[
"LarsOptimizer"
,
"LambOptimizer"
,
"RecomputeOptimizer"
,
"LocalSGDOptimizer"
,
"GradientMergeOptimizer"
,
"GraphExecutionOptimizer"
,
"AdaptiveLocalSGDOptimizer"
,
]
self
.
meta_optimizers_black_list
=
[
"DGCOptimizer"
]
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
super
(
FP16AllReduceOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
return
False
if
self
.
user_defined_strategy
.
fp16_allreduce
:
return
True
return
False
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
fp16_allreduce
=
False
def
_enable_strategy
(
self
,
dist_strategy
,
context
=
None
):
dist_strategy
.
fp16_allreduce
=
True
@
staticmethod
def
fp16_compression
(
param_and_grads
):
"""
Compress fp32 gradients to fp16 during allreduce.
"""
op_maker
=
core
.
op_proto_and_checker_maker
new_param_and_grads
=
[]
# param, grad, is_cast
# cast grad from fp32->fp16 before allreduce,
for
param
,
grad
in
param_and_grads
:
if
grad
is
None
or
grad
.
dtype
!=
core
.
VarDesc
.
VarType
.
FP32
:
new_param_and_grads
.
append
((
param
,
grad
,
False
))
continue
op
=
grad
.
op
block
=
grad
.
block
var_attr
=
op
.
all_attrs
()[
op_maker
.
kOpRoleVarAttrName
()]
if
param
.
name
not
in
var_attr
:
new_param_and_grads
.
append
((
param
,
grad
,
False
))
continue
# remove (param, grad) from op_role_var
var_attr
.
remove
(
param
.
name
)
var_attr
.
remove
(
grad
.
name
)
if
len
(
var_attr
)
>
1
:
op
.
_set_attr
(
op_maker
.
kOpRoleVarAttrName
(),
var_attr
)
else
:
op
.
_remove_attr
(
op_maker
.
kOpRoleVarAttrName
())
new_grad
=
block
.
create_var
(
name
=
unique_name
.
generate
(
grad
.
name
+
".cast_fp16"
),
dtype
=
core
.
VarDesc
.
VarType
.
FP16
,
persistable
=
False
,
stop_gradient
=
True
)
with
block
.
program
.
_backward_role_guard
():
cast_op
=
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
grad
},
outputs
=
{
"Out"
:
new_grad
},
attrs
=
{
"in_dtype"
:
core
.
VarDesc
.
VarType
.
FP32
,
"out_dtype"
:
core
.
VarDesc
.
VarType
.
FP16
},
stop_gradient
=
True
)
backward
=
op_maker
.
OpRole
.
Backward
cast_op
.
_set_attr
(
op_maker
.
kOpRoleAttrName
(),
backward
)
cast_op
.
_set_attr
(
op_maker
.
kOpRoleVarAttrName
(),
[
param
.
name
,
new_grad
.
name
])
new_grad
.
op
=
cast_op
new_param_and_grads
.
append
((
param
,
new_grad
,
True
))
ret_param_and_grads
=
[]
# cast grad from fp16->fp32 after allreduce.
# NOTE. Now we split fp16 compression into two for loops,
# if we do not separate them, fuse allreduce will wrong.
# This must be the problem of fuse allreduce pass, need
# fixed in future.
for
param
,
grad
,
cast
in
new_param_and_grads
:
if
not
cast
:
ret_param_and_grads
.
append
((
param
,
grad
))
continue
block
=
grad
.
block
new_grad
=
block
.
create_var
(
name
=
unique_name
.
generate
(
grad
.
name
+
".cast_fp32"
),
dtype
=
core
.
VarDesc
.
VarType
.
FP32
,
persistable
=
False
,
stop_gradient
=
True
)
with
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'fp16_allreduce'
):
cast_op
=
block
.
append_op
(
type
=
"cast"
,
inputs
=
{
"X"
:
grad
},
outputs
=
{
"Out"
:
new_grad
},
attrs
=
{
"in_dtype"
:
core
.
VarDesc
.
VarType
.
FP16
,
"out_dtype"
:
core
.
VarDesc
.
VarType
.
FP32
},
stop_gradient
=
True
)
ret_param_and_grads
.
append
((
param
,
new_grad
))
return
ret_param_and_grads
def
apply_optimize
(
self
,
loss
,
startup_program
,
params_grads
):
new_params_grads
=
self
.
fp16_compression
(
params_grads
)
return
self
.
inner_opt
.
apply_optimize
(
loss
,
startup_program
=
startup_program
,
params_grads
=
new_params_grads
)
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
e550fc02
...
...
@@ -45,6 +45,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_localsgd_meta_optimizer)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_lars_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_lamb_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_dgc_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_fp16_allreduce_meta_optimizer
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_private_function
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_graph_executor
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_meta_optimizer_base
)
...
...
@@ -458,6 +459,7 @@ if(WITH_DISTRIBUTE)
py_test_modules
(
test_fleet_graph_executor MODULES test_fleet_graph_executor ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_gradient_merge_meta_optimizer MODULES test_fleet_gradient_merge_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_amp_meta_optimizer MODULES test_fleet_amp_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_fp16_allreduce_meta_optimizer MODULES test_fleet_fp16_allreduce_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_pipeline_meta_optimizer MODULES test_fleet_pipeline_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_private_function MODULES test_fleet_private_function ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_meta_optimizer_base MODULES test_fleet_meta_optimizer_base ENVS
${
dist_ENVS
}
)
...
...
python/paddle/fluid/tests/unittests/dist_mnist_fp16_allreduce.py
0 → 100644
浏览文件 @
e550fc02
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
paddle.distributed.fleet.meta_optimizers
import
FP16AllReduceOptimizer
as
FP16AllReduce
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
from
dist_mnist
import
cnn_model
DTYPE
=
"float32"
paddle
.
dataset
.
mnist
.
fetch
()
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
class
TestDistMnist2x2
(
TestDistRunnerBase
):
def
get_model
(
self
,
batch_size
=
2
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
MomentumOptimizer
(
learning_rate
=
0.001
,
momentum
=
0.9
)
opt
=
FP16AllReduce
(
opt
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
if
__name__
==
"__main__"
:
runtime_main
(
TestDistMnist2x2
)
python/paddle/fluid/tests/unittests/test_dist_mnist_fp16_allreduce.py
0 → 100644
浏览文件 @
e550fc02
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
test_dist_base
import
TestDistBase
class
TestDistMnist2x2FP16AllReduce
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_use_reduce
=
False
self
.
_nccl2_mode
=
True
def
test_dist_train
(
self
):
import
paddle.fluid
as
fluid
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
check_with_place
(
"dist_mnist_fp16_allreduce.py"
,
delta
=
1e-5
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fleet_distributed_strategy.py
浏览文件 @
e550fc02
...
...
@@ -102,6 +102,16 @@ class TestStrategyConfig(unittest.TestCase):
strategy
.
dgc
=
"True"
self
.
assertEqual
(
strategy
.
dgc
,
False
)
def
test_fp16_allreduce
(
self
):
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
fp16_allreduce
=
True
self
.
assertEqual
(
strategy
.
fp16_allreduce
,
True
)
strategy
.
fp16_allreduce
=
False
self
.
assertEqual
(
strategy
.
fp16_allreduce
,
False
)
with
self
.
assertRaises
(
TypeError
):
strategy
.
fp16_allreduce
=
"True"
self
.
assertEqual
(
strategy
.
fp16_allreduce
,
False
)
def
test_sync_nccl_allreduce
(
self
):
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
sync_nccl_allreduce
=
True
...
...
python/paddle/fluid/tests/unittests/test_fleet_fp16_allreduce_meta_optimizer.py
0 → 100644
浏览文件 @
e550fc02
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
os
paddle
.
enable_static
()
class
TestFleetFP16CompressOptimizer
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001"
def
net
(
self
,
main_prog
,
startup_prog
,
dtype
=
'float32'
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
input_x
=
paddle
.
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
32
],
dtype
=
dtype
)
input_y
=
paddle
.
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
1
],
dtype
=
'int64'
)
fc_1
=
paddle
.
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
fc_2
=
paddle
.
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
64
,
act
=
'tanh'
)
prediction
=
paddle
.
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
2
,
act
=
'softmax'
)
cost
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
fluid
.
layers
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
fp16_allreduce
=
True
return
avg_cost
,
strategy
def
test_fp16_allreduce_optimizer
(
self
):
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
)
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
cast_out
=
[
op
.
output
(
'Out'
)[
0
]
for
op
in
avg_cost
.
block
.
ops
if
op
.
type
==
'cast'
]
cast_op_count
=
0
for
name
in
ops
:
if
name
==
'cast'
:
cast_op_count
+=
1
self
.
assertIn
(
'cast'
,
ops
)
self
.
assertEqual
(
cast_op_count
,
12
)
# 6 + 6, cast_fp16 + cast_fp32
for
name
in
cast_out
:
self
.
assertIn
(
'cast_fp16'
,
name
)
def
test_fp16_allreduce_not_apply_fp16_net
(
self
):
role
=
role_maker
.
PaddleCloudRoleMaker
(
is_collective
=
True
)
fleet
.
init
(
role
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
,
strategy
=
self
.
net
(
train_prog
,
startup_prog
,
dtype
=
'float16'
)
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
ops
=
[
op
.
type
for
op
in
avg_cost
.
block
.
ops
]
self
.
assertNotIn
(
'cast'
,
ops
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录