Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e52d90a3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e52d90a3
编写于
11月 23, 2018
作者:
Z
Zhaolong Xing
提交者:
GitHub
11月 23, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14527 from hjchen2/develop
Refine split TensorRT plugin
上级
45312813
1adda8e0
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
211 addition
and
56 deletion
+211
-56
paddle/fluid/inference/tensorrt/convert/split_op.cc
paddle/fluid/inference/tensorrt/convert/split_op.cc
+2
-10
paddle/fluid/inference/tensorrt/convert/test_split_op.cc
paddle/fluid/inference/tensorrt/convert/test_split_op.cc
+75
-13
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
+127
-31
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
+7
-2
未找到文件。
paddle/fluid/inference/tensorrt/convert/split_op.cc
浏览文件 @
e52d90a3
...
...
@@ -19,9 +19,6 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
/*
* SplitOp.
*/
class
SplitOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
...
...
@@ -40,16 +37,11 @@ class SplitOpConverter : public OpConverter {
int
axis
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"axis"
));
std
::
vector
<
int
>
output_lengths
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"sections"
));
// split on batch is not supported in TensorRT
PADDLE_ENFORCE
(
axis
!=
0
);
if
(
axis
<
0
)
{
axis
+=
input_dims
.
nbDims
;
}
else
{
axis
-=
1
;
}
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
-
1
;
PADDLE_ENFORCE
(
output_lengths
.
size
()
==
output_num
);
//
plugin
::
SplitPlugin
*
plugin
=
new
plugin
::
SplitPlugin
(
axis
,
output_lengths
);
nvinfer1
::
IPluginLayer
*
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
...
...
paddle/fluid/inference/tensorrt/convert/test_split_op.cc
浏览文件 @
e52d90a3
...
...
@@ -20,30 +20,92 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
TEST
(
split_op
,
test
)
{
template
<
int
BatchSize
,
int
Axis
>
void
TensorRTSplitTest
(
const
std
::
vector
<
int
>
&
in_shape
,
const
std
::
vector
<
int
>
&
sections
)
{
std
::
unordered_set
<
std
::
string
>
parameters
({
""
});
framework
::
Scope
scope
;
TRTConvertValidation
validator
(
10
,
parameters
,
scope
,
1000
);
validator
.
DeclInputVar
(
"split_input"
,
nvinfer1
::
DimsCHW
(
3
,
2
,
2
));
validator
.
DeclOutputVar
(
"split_out1"
,
nvinfer1
::
DimsCHW
(
2
,
2
,
2
));
validator
.
DeclOutputVar
(
"split_out2"
,
nvinfer1
::
DimsCHW
(
1
,
2
,
2
));
TRTConvertValidation
validator
(
BatchSize
+
1
,
parameters
,
scope
,
10000
);
auto
make_dim
=
[](
const
std
::
vector
<
int
>
&
shape
)
{
nvinfer1
::
DimsCHW
dim
;
dim
.
c
()
=
shape
[
0
];
dim
.
h
()
=
shape
[
1
];
dim
.
w
()
=
shape
[
2
];
return
dim
;
};
validator
.
DeclInputVar
(
"split_input"
,
make_dim
(
in_shape
));
std
::
vector
<
std
::
string
>
output_vars
;
for
(
size_t
i
=
0
;
i
<
sections
.
size
();
++
i
)
{
auto
out_shape
=
in_shape
;
out_shape
[
Axis
-
1
]
=
sections
[
i
];
std
::
string
output_name
=
"split_out"
+
std
::
to_string
(
i
);
validator
.
DeclOutputVar
(
output_name
,
make_dim
(
out_shape
));
output_vars
.
push_back
(
output_name
);
}
// Prepare Op description
framework
::
OpDesc
desc
;
desc
.
SetType
(
"split"
);
desc
.
SetInput
(
"X"
,
{
"split_input"
});
desc
.
SetOutput
(
"Out"
,
{
"split_out1"
,
"split_out2"
}
);
desc
.
SetOutput
(
"Out"
,
output_vars
);
int
num
=
0
;
int
axis
=
1
;
std
::
vector
<
int
>
output_lengths
=
{
2
,
1
};
desc
.
SetAttr
(
"axis"
,
axis
);
desc
.
SetAttr
(
"num"
,
num
);
desc
.
SetAttr
(
"sections"
,
output_lengths
);
desc
.
SetAttr
(
"axis"
,
Axis
);
desc
.
SetAttr
(
"num"
,
0
);
desc
.
SetAttr
(
"sections"
,
sections
);
validator
.
SetOp
(
*
desc
.
Proto
());
validator
.
Execute
(
1
);
validator
.
Execute
(
BatchSize
);
}
// batch = 0, axis = 1, same shape
TEST
(
split_op
,
test_same_shape_axis1_batch1
)
{
TensorRTSplitTest
<
1
,
1
>
({
4
,
2
,
2
},
{
2
,
2
});
}
// batch = 0, axis = 1, different shape
TEST
(
split_op
,
test_different_shape_axis1_batch1
)
{
TensorRTSplitTest
<
1
,
1
>
({
3
,
2
,
2
},
{
2
,
1
});
}
// batch = 10, axis = 1, same shape
TEST
(
split_op
,
test_same_shape_axis1_batch10
)
{
TensorRTSplitTest
<
10
,
1
>
({
4
,
2
,
2
},
{
2
,
2
});
}
// batch = 10, axis = 1, different shape
TEST
(
split_op
,
test_different_shape_axis1_batch10
)
{
TensorRTSplitTest
<
10
,
1
>
({
3
,
2
,
2
},
{
2
,
1
});
}
// batch = 0, axis = 2, same shape
TEST
(
split_op
,
test_same_shape_axis2_batch1
)
{
TensorRTSplitTest
<
1
,
2
>
({
3
,
4
,
2
},
{
2
,
2
});
}
// batch = 0, axis = 2, different shape
TEST
(
split_op
,
test_different_shape_axis2_batch1
)
{
TensorRTSplitTest
<
1
,
2
>
({
3
,
3
,
2
},
{
2
,
1
});
}
// batch = 10, axis = 2, same shape
TEST
(
split_op
,
test_same_shape_axis2_batch10
)
{
TensorRTSplitTest
<
10
,
2
>
({
3
,
4
,
2
},
{
2
,
2
});
}
// batch = 10, axis = 2, different shape
TEST
(
split_op
,
test_different_shape_axis2_batch10
)
{
TensorRTSplitTest
<
10
,
2
>
({
3
,
3
,
2
},
{
2
,
1
});
}
// batch = 0, axis = 3, same shape
TEST
(
split_op
,
test_same_shape_axis3_batch1
)
{
TensorRTSplitTest
<
1
,
3
>
({
3
,
2
,
4
},
{
2
,
2
});
}
// batch = 0, axis = 3, different shape
TEST
(
split_op
,
test_different_shape_axis3_batch1
)
{
TensorRTSplitTest
<
1
,
3
>
({
3
,
2
,
3
},
{
2
,
1
});
}
// batch = 10, axis = 3, same shape
TEST
(
split_op
,
test_same_shape_axis3_batch10
)
{
TensorRTSplitTest
<
10
,
3
>
({
3
,
2
,
4
},
{
2
,
2
});
}
// batch = 10, axis = 3, different shape
TEST
(
split_op
,
test_different_shape_axis3_batch10
)
{
TensorRTSplitTest
<
10
,
3
>
({
3
,
2
,
3
},
{
2
,
1
});
}
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
浏览文件 @
e52d90a3
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cuda_fp16.h>
#include <algorithm>
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
namespace
paddle
{
...
...
@@ -19,6 +21,52 @@ namespace inference {
namespace
tensorrt
{
namespace
plugin
{
// copied from operators::math::SplitFunctor
template
<
typename
T
>
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
const
int
in_col
,
const
int
*
out_cols
,
int
out_cols_size
,
T
**
outputs_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
curr_segment
=
0
;
int
curr_offset
=
out_cols
[
0
];
for
(;
tid_x
<
in_col
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
curr_col_offset
=
out_cols
[
curr_segment
+
1
];
while
(
curr_col_offset
<=
tid_x
)
{
curr_offset
=
curr_col_offset
;
++
curr_segment
;
curr_col_offset
=
out_cols
[
curr_segment
+
1
];
}
int
local_col
=
tid_x
-
curr_offset
;
int
segment_width
=
curr_col_offset
-
curr_offset
;
T
*
output_ptr
=
outputs_data
[
curr_segment
];
if
(
output_ptr
!=
nullptr
)
{
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
segment_width
+
local_col
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
}
}
}
template
<
typename
T
>
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
const
int
in_col
,
const
int
fixed_out_col
,
T
**
outputs_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
for
(;
tid_x
<
in_col
;
tid_x
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
split
=
tid_x
/
fixed_out_col
;
int
in_offset
=
tid_x
-
split
*
fixed_out_col
;
T
*
output_ptr
=
outputs_data
[
split
];
if
(
output_ptr
!=
nullptr
)
{
int
tid_y
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(;
tid_y
<
in_row
;
tid_y
+=
blockDim
.
y
*
gridDim
.
y
)
output_ptr
[
tid_y
*
fixed_out_col
+
in_offset
]
=
input_data
[
tid_y
*
in_col
+
tid_x
];
}
}
}
nvinfer1
::
Dims
SplitPlugin
::
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
input_dims
,
int
num_inputs
)
{
PADDLE_ENFORCE_EQ
(
num_inputs
,
1
);
...
...
@@ -31,48 +79,96 @@ nvinfer1::Dims SplitPlugin::getOutputDimensions(
int
SplitPlugin
::
initialize
()
{
PADDLE_ENFORCE_LE
(
axis_
,
nvinfer1
::
Dims
::
MAX_DIMS
);
// notice input dims is [C, H, W]
nvinfer1
::
Dims
dims
=
this
->
getInputDims
(
0
);
outer_rows_
=
1
;
inner_cols_
=
1
;
for
(
int
i
=
0
;
i
<
axis_
;
++
i
)
{
outer_rows_
*=
dims
.
d
[
i
];
}
for
(
int
i
=
axis_
+
1
;
i
<
dims
.
nbDims
;
++
i
)
{
inner_cols_
*=
dims
.
d
[
i
];
}
same_shape_
=
true
;
std
::
vector
<
int
>
segment_offsets
(
1
,
0
);
for
(
int
i
=
0
;
i
<
this
->
getNbOutputs
();
++
i
)
{
segment_offsets
.
push_back
(
segment_offsets
.
back
()
+
output_length_
[
i
]);
}
segment_offsets_
=
segment_offsets
;
nvinfer1
::
Dims
dims
=
this
->
getInputDims
(
0
);
nx_
=
1
;
for
(
int
i
=
dims
.
nbDims
-
1
;
i
>
axis_
;
--
i
)
{
nx_
*=
dims
.
d
[
i
];
if
(
output_length_
[
i
]
!=
output_length_
[
0
])
{
same_shape_
=
false
;
}
ny_
=
dims
.
d
[
axis_
];
nz_
=
1
;
for
(
int
i
=
axis_
-
1
;
i
>=
0
;
--
i
)
{
nz_
*=
dims
.
d
[
i
];
segment_offsets
.
push_back
(
segment_offsets
.
back
()
+
output_length_
[
i
]
*
inner_cols_
);
}
inner_cols_
*=
dims
.
d
[
axis_
];
d_segment_offsets_
=
segment_offsets
;
segment_offsets_
=
std
::
move
(
segment_offsets
);
d_output_ptrs_
.
resize
(
this
->
getNbOutputs
(),
nullptr
);
return
0
;
}
template
<
typename
T
>
inline
void
Split
(
cudaStream_t
stream
,
const
bool
same_shape
,
const
int
outer_rows
,
const
int
inner_cols
,
const
std
::
vector
<
int
>&
segment_offsets
,
const
int
*
d_segment_offsets
,
const
T
*
input
,
T
**
outputs
)
{
const
int
kThreadsPerBlock
=
1024
;
const
int
kMaxBlocks
=
65535
;
int
block_cols
=
kThreadsPerBlock
;
if
(
inner_cols
<
kThreadsPerBlock
)
{
// block_cols is aligned by 32.
block_cols
=
((
inner_cols
+
31
)
>>
5
)
<<
5
;
}
int
block_rows
=
kThreadsPerBlock
/
block_cols
;
dim3
block_size
=
dim3
(
block_cols
,
block_rows
,
1
);
int
grid_cols
=
std
::
min
((
inner_cols
+
block_cols
-
1
)
/
block_cols
,
kMaxBlocks
);
int
grid_rows
=
std
::
min
(
kMaxBlocks
/
grid_cols
,
std
::
max
(
outer_rows
/
block_rows
,
1
));
dim3
grid_size
=
dim3
(
grid_cols
,
grid_rows
,
1
);
if
(
same_shape
)
{
SplitKernel
<<<
grid_size
,
block_size
,
0
,
stream
>>>
(
input
,
outer_rows
,
inner_cols
,
segment_offsets
[
1
],
outputs
);
}
else
{
SplitKernel
<<<
grid_size
,
block_size
,
0
,
stream
>>>
(
input
,
outer_rows
,
inner_cols
,
d_segment_offsets
,
static_cast
<
int
>
(
segment_offsets
.
size
()),
outputs
);
}
}
int
SplitPlugin
::
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
const
&
input_dims
=
this
->
getInputDims
(
0
);
i
nt
input_size
=
0
;
float
const
*
idata
=
reinterpret_cast
<
float
const
*>
(
inputs
[
0
]);
float
**
odata
s
=
reinterpret_cast
<
float
**>
(
outputs
);
// kernel impl here.
int
inputBatchOffset
=
nx_
*
ny_
*
nz_
;
for
(
size_t
i
=
0
;
i
<
this
->
getNbOutputs
();
i
++
)
{
for
(
size_t
j
=
0
;
j
<
batchSize
;
j
++
)
{
float
const
*
input_ptr
=
reinterpret_cast
<
float
const
*>
(
inputs
[
0
]
);
i
f
(((
batchSize
==
1
&&
axis_
==
0
)
||
axis_
==
-
1
)
&&
this
->
getNbOutputs
()
<
10
)
{
float
**
output_ptr
s
=
reinterpret_cast
<
float
**>
(
outputs
);
int
data_type_size
=
(
this
->
getDataType
()
==
nvinfer1
::
DataType
::
kFLOAT
)
?
sizeof
(
float
)
:
sizeof
(
__half
)
;
for
(
int
i
=
0
;
i
<
this
->
getNbOutputs
();
++
i
)
{
PADDLE_ENFORCE
(
cudaMemcpyAsync
(
odatas
[
i
]
+
j
*
(
segment_offsets_
[
i
+
1
]
-
segment_offsets_
[
i
])
*
nx_
*
sizeof
(
float
),
inputs
[
0
]
+
(
inputBatchOffset
*
j
+
segment_offsets_
[
i
]
*
nx_
)
*
sizeof
(
float
),
(
segment_offsets_
[
i
+
1
]
-
segment_offsets_
[
i
])
*
nx_
*
sizeof
(
float
),
cudaMemcpyDeviceToDevice
,
stream
);
output_ptrs
[
i
],
input_ptr
+
segment_offsets_
[
i
],
(
segment_offsets_
[
i
+
1
]
-
segment_offsets_
[
i
])
*
data_type_size
,
cudaMemcpyDeviceToDevice
,
stream
)
==
cudaSuccess
);
}
}
else
{
outer_rows_
*=
batchSize
;
const
int
*
d_segment_offsets_ptr
=
thrust
::
raw_pointer_cast
(
&
d_segment_offsets_
[
0
]);
float
**
output_ptrs
=
thrust
::
raw_pointer_cast
(
&
d_output_ptrs_
[
0
]);
PADDLE_ENFORCE
(
cudaMemcpyAsync
(
output_ptrs
,
outputs
,
this
->
getNbOutputs
()
*
sizeof
(
float
*
),
cudaMemcpyHostToDevice
,
stream
)
==
cudaSuccess
);
if
(
this
->
getDataType
()
==
nvinfer1
::
DataType
::
kFLOAT
)
{
Split
(
stream
,
same_shape_
,
outer_rows_
,
inner_cols_
,
segment_offsets_
,
d_segment_offsets_ptr
,
input_ptr
,
output_ptrs
);
}
else
{
Split
(
stream
,
same_shape_
,
outer_rows_
,
inner_cols_
,
segment_offsets_
,
d_segment_offsets_ptr
,
(
__half
*
)
input_ptr
,
// NOLINT
(
__half
**
)
output_ptrs
);
// NOLINT
}
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
...
...
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
浏览文件 @
e52d90a3
...
...
@@ -14,6 +14,7 @@
#pragma once
#include <thrust/device_vector.h>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
...
...
@@ -25,7 +26,7 @@ namespace plugin {
class
SplitPlugin
:
public
PluginTensorRT
{
public:
SplitPlugin
(
int
axis
,
std
::
vector
<
int
>
const
&
output_lengths
)
:
axis_
(
axis
),
output_length_
(
output_lengths
)
{}
:
axis_
(
axis
),
same_shape_
(
true
),
output_length_
(
output_lengths
)
{}
SplitPlugin
(
void
const
*
serial_data
,
size_t
serial_length
)
{
deserializeBase
(
serial_data
,
serial_length
);
...
...
@@ -60,9 +61,13 @@ class SplitPlugin : public PluginTensorRT {
}
int
axis_
;
int
outer_rows_
;
int
inner_cols_
;
bool
same_shape_
;
std
::
vector
<
int
>
output_length_
;
int
nx_
,
ny_
,
nz_
;
std
::
vector
<
int
>
segment_offsets_
;
thrust
::
device_vector
<
int
>
d_segment_offsets_
;
thrust
::
device_vector
<
float
*>
d_output_ptrs_
;
};
}
// namespace plugin
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录