提交 e5281b3c 编写于 作者: Y yuyang18

Clean code & add execution strategy

上级 9923be5d
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace paddle {
namespace framework {
namespace details {
struct ExecutionStrategy {
size_t num_threads_{0};
bool use_event_{true};
bool allow_op_delay_{false};
};
} // namespace details
} // namespace framework
} // namespace paddle
...@@ -18,18 +18,17 @@ namespace paddle { ...@@ -18,18 +18,17 @@ namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor( ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
size_t num_threads, bool use_event, const ExecutionStrategy &strategy, const std::vector<Scope *> &local_scopes,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
std::unique_ptr<SSAGraph> &&graph, bool allow_op_delay) std::unique_ptr<SSAGraph> &&graph)
: SSAGraphExecutor(std::move(graph)), : SSAGraphExecutor(std::move(graph)),
pool_(num_threads >= 2 ? new ::ThreadPool(num_threads) : nullptr), pool_(strategy.num_threads_ >= 2 ? new ::ThreadPool(strategy.num_threads_)
: nullptr),
local_scopes_(local_scopes), local_scopes_(local_scopes),
places_(places), places_(places),
fetch_ctxs_(places), fetch_ctxs_(places),
use_event_(use_event),
running_ops_(0), running_ops_(0),
allow_op_delay_(allow_op_delay) {} strategy_(strategy) {}
FeedFetchList ThreadedSSAGraphExecutor::Run( FeedFetchList ThreadedSSAGraphExecutor::Run(
const std::vector<std::string> &fetch_tensors) { const std::vector<std::string> &fetch_tensors) {
...@@ -86,7 +85,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -86,7 +85,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
// //
// NOTE: DelayedOps have a lower priority. It will be scheduled after all // NOTE: DelayedOps have a lower priority. It will be scheduled after all
// ready_ops have been performed. // ready_ops have been performed.
if (ready_ops.empty() && allow_op_delay_ && running_ops_ == 0) { if (ready_ops.empty() && strategy_.allow_op_delay_ && running_ops_ == 0) {
run_all_ops(delayed_ops); run_all_ops(delayed_ops);
} else { } else {
run_all_ops(ready_ops); run_all_ops(ready_ops);
...@@ -113,7 +112,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -113,7 +112,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto &deps = pending_ops[op]; auto &deps = pending_ops[op];
--deps; --deps;
if (deps == 0) { if (deps == 0) {
if (op->IsMultiDeviceTransfer() && allow_op_delay_) { if (op->IsMultiDeviceTransfer() && strategy_.allow_op_delay_) {
delayed_ops.insert(op); delayed_ops.insert(op);
} else { } else {
ready_ops.insert(op); ready_ops.insert(op);
...@@ -191,7 +190,7 @@ void ThreadedSSAGraphExecutor::RunOp( ...@@ -191,7 +190,7 @@ void ThreadedSSAGraphExecutor::RunOp(
auto op_run = [ready_var_q, op, this] { auto op_run = [ready_var_q, op, this] {
try { try {
VLOG(10) << op << " " << op->Name() << " : " << op->DebugString(); VLOG(10) << op << " " << op->Name() << " : " << op->DebugString();
op->Run(use_event_); op->Run(strategy_.use_event_);
VLOG(10) << op << " " << op->Name() << " Done "; VLOG(10) << op << " " << op->Name() << " Done ";
running_ops_--; running_ops_--;
ready_var_q->Extend(op->Outputs()); ready_var_q->Extend(op->Outputs());
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include <functional> #include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party #include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h" #include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h" #include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h" #include "paddle/fluid/framework/details/ssa_graph_executor.h"
...@@ -34,11 +35,10 @@ namespace details { ...@@ -34,11 +35,10 @@ namespace details {
class ThreadedSSAGraphExecutor : public SSAGraphExecutor { class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
public: public:
ThreadedSSAGraphExecutor(size_t num_threads, bool use_event, ThreadedSSAGraphExecutor(const ExecutionStrategy &strategy,
const std::vector<Scope *> &local_scopes, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
std::unique_ptr<SSAGraph> &&graph, std::unique_ptr<SSAGraph> &&graph);
bool allow_op_delay);
// Run a SSAGraph by a thread pool // Run a SSAGraph by a thread pool
// Use topological sort algorithm // Use topological sort algorithm
...@@ -55,10 +55,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -55,10 +55,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std::vector<Scope *> local_scopes_; std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_; std::vector<platform::Place> places_;
platform::DeviceContextPool fetch_ctxs_; platform::DeviceContextPool fetch_ctxs_;
const bool use_event_;
std::unique_ptr<platform::EnforceNotMet> exception_; std::unique_ptr<platform::EnforceNotMet> exception_;
std::atomic<int> running_ops_; std::atomic<int> running_ops_;
bool allow_op_delay_;
void InsertPendingOp(std::unordered_map<OpHandleBase *, size_t> *pending_ops, void InsertPendingOp(std::unordered_map<OpHandleBase *, size_t> *pending_ops,
OpHandleBase *op_instance) const; OpHandleBase *op_instance) const;
...@@ -74,6 +72,9 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -74,6 +72,9 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std::unordered_map<OpHandleBase *, size_t> *pending_ops, std::unordered_map<OpHandleBase *, size_t> *pending_ops,
std::unordered_set<VarHandleBase *> *pending_vars, std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data); BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data);
private:
ExecutionStrategy strategy_;
}; };
} // namespace details } // namespace details
......
...@@ -52,13 +52,13 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() { ...@@ -52,13 +52,13 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
} }
ParallelExecutor::ParallelExecutor( ParallelExecutor::ParallelExecutor(
size_t num_threads, bool use_event,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const std::unordered_set<std::string> &bcast_vars, const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name, const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay, Scope *scope, const std::vector<Scope *> &local_scopes,
bool use_default_grad_scale, bool balance_parameter_opt_between_cards) bool use_default_grad_scale, bool balance_parameter_opt_between_cards,
const ExecutionStrategy &exec_strategy)
: member_(new ParallelExecutorPrivate(places)) { : member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope; member_->global_scope_ = scope;
...@@ -103,8 +103,7 @@ ParallelExecutor::ParallelExecutor( ...@@ -103,8 +103,7 @@ ParallelExecutor::ParallelExecutor(
auto graph = builder.Build(main_program); auto graph = builder.Build(main_program);
member_->executor_.reset(new details::ThreadedSSAGraphExecutor( member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
num_threads, use_event, member_->local_scopes_, places, std::move(graph), exec_strategy, member_->local_scopes_, places, std::move(graph)));
allow_op_delay));
// Step 3. Create vars in each scope; // Step 3. Create vars in each scope;
for (auto *var : main_program.Block(0).AllVars()) { for (auto *var : main_program.Block(0).AllVars()) {
......
...@@ -17,53 +17,55 @@ limitations under the License. */ ...@@ -17,53 +17,55 @@ limitations under the License. */
#include <string> #include <string>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class ParallelExecutorPrivate; class ParallelExecutorPrivate;
using details::ExecutionStrategy;
class ParallelExecutor { class ParallelExecutor {
DISABLE_COPY_AND_ASSIGN(ParallelExecutor); DISABLE_COPY_AND_ASSIGN(ParallelExecutor);
public: public:
explicit ParallelExecutor(size_t num_threads, bool use_event, explicit ParallelExecutor(const std::vector<platform::Place> &places,
const std::vector<platform::Place>& places, const std::unordered_set<std::string> &params,
const std::unordered_set<std::string>& params, const std::unordered_set<std::string> &bcast_vars,
const std::unordered_set<std::string>& bcast_vars, const ProgramDesc &main_program,
const ProgramDesc& main_program, const std::string &loss_var_name, Scope *scope,
const std::string& loss_var_name, Scope* scope, const std::vector<Scope *> &local_scopes,
const std::vector<Scope*>& local_scopes, bool use_default_grad_scale,
bool allow_op_delay, bool use_default_grad_scale, bool balance_parameter_opt_between_cards,
bool balance_parameter_opt_between_cards); const ExecutionStrategy &exec_strategy);
~ParallelExecutor(); ~ParallelExecutor();
std::vector<Scope*>& GetLocalScopes(); std::vector<Scope *> &GetLocalScopes();
/** /**
* Feed tensors to local scopes. The size of tensors should be equal to the * Feed tensors to local scopes. The size of tensors should be equal to the
* size of local scopes. * size of local scopes.
*/ */
void FeedTensorsIntoLocalScopes( void FeedTensorsIntoLocalScopes(
const std::vector<std::unordered_map<std::string, LoDTensor>>& tensors); const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors);
void FeedAndSplitTensorIntoLocalScopes( void FeedAndSplitTensorIntoLocalScopes(
const std::unordered_map<std::string, LoDTensor>& tensors); const std::unordered_map<std::string, LoDTensor> &tensors);
void Run(const std::vector<std::string>& fetch_tensors, void Run(const std::vector<std::string> &fetch_tensors,
const std::string& fetched_var_name); const std::string &fetched_var_name);
void BCastParamsToGPUs(const std::unordered_set<std::string>& vars) const; void BCastParamsToGPUs(const std::unordered_set<std::string> &vars) const;
private: private:
ParallelExecutorPrivate* member_; ParallelExecutorPrivate *member_;
}; };
} // namespace framework } // namespace framework
......
...@@ -494,22 +494,33 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -494,22 +494,33 @@ All parameter, weight, gradient are variables in Paddle.
m.def("disable_profiler", platform::DisableProfiler); m.def("disable_profiler", platform::DisableProfiler);
m.def("reset_profiler", platform::ResetProfiler); m.def("reset_profiler", platform::ResetProfiler);
py::class_<ParallelExecutor>(m, "ParallelExecutor") py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
.def("__init__", py::class_<ExecutionStrategy>(pe, "ExecutionStrategy")
[](ParallelExecutor &self, size_t num_threads, bool use_event, .def(py::init())
const std::vector<platform::Place> &places, .def_property(
const std::unordered_set<std::string> &params, "num_threads",
const std::unordered_set<std::string> &bcast_vars, [](const ExecutionStrategy &self) { return self.num_threads_; },
const ProgramDesc &main_program, const std::string &loss_var_name, [](ExecutionStrategy &self, size_t num_threads) {
Scope *scope, std::vector<Scope *> &local_scopes, self.num_threads_ = num_threads;
bool allow_op_delay, bool use_default_grad_scale, })
bool balance_parameter_opt_between_cards) { .def_property(
new (&self) ParallelExecutor( "use_event",
num_threads, use_event, places, params, bcast_vars, [](const ExecutionStrategy &self) { return self.use_event_; },
main_program, loss_var_name, scope, local_scopes, [](ExecutionStrategy &self, bool use_event) {
allow_op_delay, use_default_grad_scale, self.use_event_ = use_event;
balance_parameter_opt_between_cards);
}) })
.def_property(
"allow_op_delay",
[](const ExecutionStrategy &self) { return self.allow_op_delay_; },
[](ExecutionStrategy &self, bool allow_op_delay) {
self.allow_op_delay_ = allow_op_delay;
});
pe.def(py::init<const std::vector<platform::Place> &,
const std::unordered_set<std::string> &,
const std::unordered_set<std::string> &, const ProgramDesc &,
const std::string &, Scope *, std::vector<Scope *> &, bool,
bool, const ExecutionStrategy &>())
.def("bcast_params", &ParallelExecutor::BCastParamsToGPUs) .def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
// NOTE: even we return a vec<Scope*>* to Python use reference policy. // NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element // We still cannot get local_scope from this vector, since the element
......
...@@ -44,18 +44,19 @@ import transpiler ...@@ -44,18 +44,19 @@ import transpiler
from param_attr import ParamAttr, WeightNormParamAttr from param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder from data_feeder import DataFeeder
from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace
from transpiler import DistributeTranspiler, SimpleDistributeTranspiler, InferenceTranspiler, memory_optimize, release_memory from transpiler import DistributeTranspiler, SimpleDistributeTranspiler, \
InferenceTranspiler, memory_optimize, release_memory
from concurrency import (Go, make_channel, channel_send, channel_recv, from concurrency import (Go, make_channel, channel_send, channel_recv,
channel_close, Select) channel_close, Select)
import clip import clip
import profiler import profiler
import unique_name import unique_name
import recordio_writer import recordio_writer
from parallel_executor import ParallelExecutor from parallel_executor import ParallelExecutor, ExecutionStrategy
Tensor = LoDTensor Tensor = LoDTensor
__all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + \
trainer.__all__ + inferencer.__all__ + transpiler.__all__ + [ trainer.__all__ + inferencer.__all__ + transpiler.__all__ + [
'io', 'io',
'initializer', 'initializer',
...@@ -79,7 +80,8 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\ ...@@ -79,7 +80,8 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\
'unique_name', 'unique_name',
'recordio_writer', 'recordio_writer',
'ParallelExecutor', 'ParallelExecutor',
] 'ExecutionStrategy',
]
def __bootstrap__(): def __bootstrap__():
......
...@@ -19,7 +19,9 @@ import executor ...@@ -19,7 +19,9 @@ import executor
import warnings import warnings
import sys import sys
__all__ = ['ParallelExecutor'] __all__ = ['ParallelExecutor', 'ExecutionStrategy']
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
class ParallelExecutor(object): class ParallelExecutor(object):
...@@ -27,11 +29,11 @@ class ParallelExecutor(object): ...@@ -27,11 +29,11 @@ class ParallelExecutor(object):
use_cuda, use_cuda,
loss_name=None, loss_name=None,
main_program=None, main_program=None,
num_threads=None,
allow_op_delay=False,
share_vars_from=None, share_vars_from=None,
use_default_grad_scale=True, use_default_grad_scale=True,
balance_parameter_opt_between_cards=False): balance_parameter_opt_between_cards=False,
exec_strategy=None,
**kwargs):
""" """
ParallelExecutor can run program in parallel. ParallelExecutor can run program in parallel.
...@@ -40,11 +42,6 @@ class ParallelExecutor(object): ...@@ -40,11 +42,6 @@ class ParallelExecutor(object):
loss_name(str, default None): The loss name must set in training. loss_name(str, default None): The loss name must set in training.
main_program(Program, default None): The program that need to run, main_program(Program, default None): The program that need to run,
if not provided, then default_main_program will be used. if not provided, then default_main_program will be used.
num_threads(int, default None): How many threads are used for
training.
allow_op_delay(bool, default False): Whether to delay and buffer
some operators together for scheduling or not, which may
improve performance in some cases, default False.
share_vars_from(ParallelExecutor, default None): If provied, share_vars_from(ParallelExecutor, default None): If provied,
it will share variables from the specified ParallelExecutor. it will share variables from the specified ParallelExecutor.
use_default_grad_scale(bool, default True): If set True, a default use_default_grad_scale(bool, default True): If set True, a default
...@@ -76,6 +73,16 @@ class ParallelExecutor(object): ...@@ -76,6 +73,16 @@ class ParallelExecutor(object):
train_loss, = train_exe.run([loss.name], feed=feed_dict) train_loss, = train_exe.run([loss.name], feed=feed_dict)
test_loss, = test_exe.run([loss.name], feed=feed_dict) test_loss, = test_exe.run([loss.name], feed=feed_dict)
""" """
if len(kwargs) != 0:
err_msg = ""
for key in kwargs:
if key in dir(ExecutionStrategy):
err_msg += \
"Setting {0} by constructor is deprecated. Use " \
"strategy=ExecutionStrategy(); strategy.{0}=xxx; " \
"pe=ParallelExecutor(exec_strategy=strategy) " \
"instead.\n "
raise ValueError(err_msg)
self._places = [] self._places = []
self._act_places = [] self._act_places = []
...@@ -93,13 +100,20 @@ class ParallelExecutor(object): ...@@ -93,13 +100,20 @@ class ParallelExecutor(object):
self._places.append(p) self._places.append(p)
assert self._places, "no place for execution" assert self._places, "no place for execution"
if num_threads is None: if exec_strategy is None:
exec_strategy = ExecutionStrategy()
if use_cuda:
exec_strategy.use_event = True
else:
exec_strategy.use_event = False
if exec_strategy.num_threads == 0:
if use_cuda: if use_cuda:
# Experiments on se-resnext shows that too many threads hurt # Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future. # performance. Worth tunning for other models in the future.
num_threads = len(self._places) * 2 exec_strategy.num_threads = len(self._places) * 2
else: else:
num_threads = min( exec_strategy.num_threads = min(
len(self._places) * 2, multiprocessing.cpu_count()) len(self._places) * 2, multiprocessing.cpu_count())
main = main_program main = main_program
...@@ -120,21 +134,14 @@ class ParallelExecutor(object): ...@@ -120,21 +134,14 @@ class ParallelExecutor(object):
] ]
self.executor = core.ParallelExecutor( self.executor = core.ParallelExecutor(
num_threads,
True if use_cuda else False, # use_event
self._places, self._places,
set([ set([
p.name for p in main.global_block().iter_parameters() p.name for p in main.global_block().iter_parameters()
if not p.stop_gradient if not p.stop_gradient
]), ]),
set(self.persistable_vars), set(self.persistable_vars), main.desc, loss_name
main.desc, if loss_name else '', scope, local_scopes, use_default_grad_scale,
loss_name if loss_name else '', balance_parameter_opt_between_cards, exec_strategy)
scope,
local_scopes,
allow_op_delay,
use_default_grad_scale,
balance_parameter_opt_between_cards)
self.scope = scope self.scope = scope
......
...@@ -232,14 +232,14 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -232,14 +232,14 @@ class TestParallelExecutorBase(unittest.TestCase):
place = fluid.CUDAPlace(0) place = fluid.CUDAPlace(0)
startup_exe = fluid.Executor(place) startup_exe = fluid.Executor(place)
startup_exe.run(startup) startup_exe.run(startup)
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.allow_op_delay = allow_op_delay
if use_parallel_executor: if use_parallel_executor:
exe = fluid.ParallelExecutor( exe = fluid.ParallelExecutor(
True, True,
loss_name=loss.name, loss_name=loss.name,
allow_op_delay=allow_op_delay, balance_parameter_opt_between_cards=balance_parameter_opt_between_cards,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards exec_strategy=exec_strategy)
)
else: else:
exe = fluid.Executor(place=place) exe = fluid.Executor(place=place)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册