diff --git a/paddle/fluid/pybind/tensor_py.h b/paddle/fluid/pybind/tensor_py.h index 05bacbbf54144dedc0dd558cd9b0a11a508231d9..65132bc68fa0dbbfdeea4eb911b36c7fae8611b5 100644 --- a/paddle/fluid/pybind/tensor_py.h +++ b/paddle/fluid/pybind/tensor_py.h @@ -35,6 +35,7 @@ limitations under the License. */ #include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/fluid/platform/bfloat16.h" #include "paddle/fluid/platform/device/device_wrapper.h" +#include "paddle/fluid/pybind/complex.h" #include "paddle/phi/kernels/funcs/strided_memcpy.h" #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #include "paddle/fluid/platform/cuda_device_guard.h" diff --git a/paddle/phi/kernels/cpu/reduce_mean_grad_kernel.cc b/paddle/phi/kernels/cpu/reduce_mean_grad_kernel.cc index b19f6ebdad806664a44175ed74292df71b36759e..52d13a402301f46466220ed803072d2d4f17b93f 100644 --- a/paddle/phi/kernels/cpu/reduce_mean_grad_kernel.cc +++ b/paddle/phi/kernels/cpu/reduce_mean_grad_kernel.cc @@ -47,4 +47,6 @@ PD_REGISTER_KERNEL(mean_grad, phi::ReduceMeanGradKernel, bool, float, - double) {} + double, + phi::dtype::complex, + phi::dtype::complex) {} diff --git a/paddle/phi/kernels/cpu/reduce_mean_kernel.cc b/paddle/phi/kernels/cpu/reduce_mean_kernel.cc index 2ab1b3e5a47392f26e3488025b2425fa14bc5fcd..a8d6723cce6d102353d586fe3d9fce8af7cecefd 100644 --- a/paddle/phi/kernels/cpu/reduce_mean_kernel.cc +++ b/paddle/phi/kernels/cpu/reduce_mean_kernel.cc @@ -36,5 +36,12 @@ void MeanRawKernel(const Context& dev_ctx, } // namespace phi -PD_REGISTER_KERNEL( - mean_raw, CPU, ALL_LAYOUT, phi::MeanRawKernel, float, double, bool) {} +PD_REGISTER_KERNEL(mean_raw, + CPU, + ALL_LAYOUT, + phi::MeanRawKernel, + float, + double, + bool, + phi::dtype::complex, + phi::dtype::complex) {} diff --git a/paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu b/paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu index 0eac15902af0449382d4722636d7b842012867a2..13683af9cb9c8113a76a23aa70ceff3e9fc71111 100644 --- a/paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu +++ b/paddle/phi/kernels/gpu/reduce_mean_grad_kernel.cu @@ -67,4 +67,6 @@ PD_REGISTER_KERNEL(mean_grad, float, double, phi::dtype::float16, - phi::dtype::bfloat16) {} + phi::dtype::bfloat16, + phi::dtype::complex, + phi::dtype::complex) {} diff --git a/paddle/phi/kernels/kps/reduce_mean_kernel.cu b/paddle/phi/kernels/kps/reduce_mean_kernel.cu index dded5972e3088308c0eb497edd4847eef2fb4e63..e62f9d1ff0a3611a5a0e60711f604c279b4c32a1 100644 --- a/paddle/phi/kernels/kps/reduce_mean_kernel.cu +++ b/paddle/phi/kernels/kps/reduce_mean_kernel.cu @@ -48,5 +48,7 @@ PD_REGISTER_KERNEL(mean_raw, phi::dtype::bfloat16, float16, int, - int64_t) {} + int64_t, + phi::dtype::complex, + phi::dtype::complex) {} #endif diff --git a/paddle/phi/kernels/reduce_mean_kernel.cc b/paddle/phi/kernels/reduce_mean_kernel.cc index 10a7c0a2d5c61d0c215a160e6107acd62db74b9b..9ff9bfc933a48a8a9167974b4e338e5320830b6a 100644 --- a/paddle/phi/kernels/reduce_mean_kernel.cc +++ b/paddle/phi/kernels/reduce_mean_kernel.cc @@ -31,8 +31,15 @@ void MeanKernel(const Context& dev_ctx, } // namespace phi -PD_REGISTER_KERNEL( - mean, CPU, ALL_LAYOUT, phi::MeanKernel, float, double, bool) {} +PD_REGISTER_KERNEL(mean, + CPU, + ALL_LAYOUT, + phi::MeanKernel, + float, + double, + bool, + phi::dtype::complex, + phi::dtype::complex) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_REGISTER_KERNEL(mean, @@ -45,7 +52,9 @@ PD_REGISTER_KERNEL(mean, int, int64_t, phi::dtype::float16, - phi::dtype::bfloat16) {} + phi::dtype::bfloat16, + phi::dtype::complex, + phi::dtype::complex) {} #endif #if defined(PADDLE_WITH_XPU_KP) && !defined(PADDLE_WITH_XPU) diff --git a/python/paddle/fluid/tests/unittests/eager_op_test.py b/python/paddle/fluid/tests/unittests/eager_op_test.py index 1be451d65e83b2c23feb977bde3b5fed347b7ffd..469caf4feae87a7b8122fd0c126f3930ca1b18c1 100644 --- a/python/paddle/fluid/tests/unittests/eager_op_test.py +++ b/python/paddle/fluid/tests/unittests/eager_op_test.py @@ -200,6 +200,10 @@ def get_numeric_gradient( return tensor._get_float_element(i) elif tensor_to_check_dtype == np.float64: return tensor._get_double_element(i) + elif tensor_to_check_dtype == np.complex64: + return tensor._get_complex64_element(i) + elif tensor_to_check_dtype == np.complex128: + return tensor._get_complex128_element(i) else: raise TypeError( "Unsupported test data type %s." % tensor_to_check_dtype @@ -224,6 +228,10 @@ def get_numeric_gradient( tensor._set_float_element(i, e) elif tensor_to_check_dtype == np.float64: tensor._set_double_element(i, e) + elif tensor_to_check_dtype == np.complex64: + return tensor._set_complex64_element(i, e) + elif tensor_to_check_dtype == np.complex128: + return tensor._set_complex128_element(i, e) else: raise TypeError( "Unsupported test data type %s." % tensor_to_check_dtype @@ -242,6 +250,13 @@ def get_numeric_gradient( __set_elem__(tensor_to_check, i, x_pos) y_pos = get_output() + if tensor_to_check_dtype in [np.complex64, np.complex128]: + if in_place: + set_input(scope, op, inputs, place) + x_pos_j = origin + 1j * delta + __set_elem__(tensor_to_check, i, x_pos_j) + y_pos_j = get_output() + if in_place: set_input(scope, op, inputs, place) @@ -249,8 +264,44 @@ def get_numeric_gradient( __set_elem__(tensor_to_check, i, x_neg) y_neg = get_output() + if tensor_to_check_dtype in [np.complex64, np.complex128]: + if in_place: + set_input(scope, op, inputs, place) + + x_neg_j = origin - 1j * delta + __set_elem__(tensor_to_check, i, x_neg_j) + y_neg_j = get_output() + + __set_elem__(tensor_to_check, i, origin) + + if tensor_to_check_dtype in [np.complex64, np.complex128]: + # always assume real output, because this function has + # no input for dl/di, though it should do. so there di will be zero + + # TODO: Here is a trick to be consistent with the existing OpTest, it + # need to support variable gradients input + f_ajoint = np.array(1 + 0j) + df_over_dr = (y_pos - y_neg) / delta / 2 + df_over_di = (y_pos_j - y_neg_j) / delta / 2 + + dl_over_du, dl_over_dv = f_ajoint.real, f_ajoint.imag + + du_over_dr, dv_over_dr = df_over_dr.real, df_over_dr.imag + + du_over_di, dv_over_di = df_over_di.real, df_over_di.imag + + dl_over_dr = np.sum( + dl_over_du * du_over_dr + dl_over_dv * dv_over_dr + ) + dl_over_di = np.sum( + dl_over_du * du_over_di + dl_over_dv * dv_over_di + ) + gradient_flat[i] = dl_over_dr + 1j * dl_over_di + else: + df_over_dr = y_pos - y_neg + gradient_flat[i] = df_over_dr / delta / 2 + __set_elem__(tensor_to_check, i, origin) - gradient_flat[i] = (y_pos - y_neg) / delta / 2 return gradient_flat.reshape(tensor_to_check.shape()) @@ -375,6 +426,13 @@ class OpTest(unittest.TestCase): def is_custom_device_op_test(): return hasattr(cls, "use_custom_device") and cls.use_custom_device + def is_complex_test(): + return ( + hasattr(cls, "test_complex") + and cls.test_complex + or (cls.dtype in [np.complex64, np.complex128]) + ) + if not hasattr(cls, "op_type"): raise AssertionError( "This test do not have op_type in class attrs, " @@ -382,8 +440,10 @@ class OpTest(unittest.TestCase): ) # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed - if not hasattr(cls, "no_need_check_grad") and not is_empty_grad_op( - cls.op_type + if ( + not hasattr(cls, "no_need_check_grad") + and not is_empty_grad_op(cls.op_type) + and not is_complex_test() ): if cls.dtype is None or ( cls.dtype == np.float16 @@ -2496,7 +2556,6 @@ class OpTest(unittest.TestCase): max_relative_error = ( 0.001 if max_relative_error < 0.001 else max_relative_error ) - self._assert_is_close( numeric_grads, analytic_grads, diff --git a/python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py b/python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py index 4d7ec8f2ed79e7adf57201bbd183679b56e9cff4..79b9bcba7660fcf80c287cea8294c034eb6c95f7 100644 --- a/python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py +++ b/python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py @@ -93,6 +93,55 @@ class ElementwiseMulOp(OpTest): pass +class TestComplexElementwiseMulOpWithCheckGrad(ElementwiseMulOp): + def setUp(self): + self.op_type = "elementwise_mul" + self.python_api = paddle.multiply + self.public_python_api = paddle.multiply + self.dtype = np.complex128 + self.axis = -1 + self.init_dtype() + self.init_input_output() + self.init_kernel_type() + self.init_axis() + self.if_enable_cinn() + + self.inputs = { + 'X': OpTest.np_dtype_to_fluid_dtype(self.x), + 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), + } + self.outputs = {'Out': self.out} + self.attrs = {'axis': self.axis} + + def init_input_output(self): + self.x = np.array([3 + 4j, 1 + 2j]).astype(self.dtype) + self.y = np.array([3 + 4j, 5 + 6j]).astype(self.dtype) + self.out = np.multiply(self.x, self.y) + + def if_enable_cinn(self): + self.enable_cinn = False + + def test_check_grad_normal(self): + self.check_grad( + ['X', 'Y'], + 'Out', + ) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], + 'Out', + no_grad_set=set("X"), + ) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], + 'Out', + no_grad_set=set('Y'), + ) + + class TestElementwiseMulOp_ZeroDim1(ElementwiseMulOp): def init_input_output(self): self.x = np.random.uniform(0.1, 1, []).astype(self.dtype) diff --git a/python/paddle/fluid/tests/unittests/test_reduce_op.py b/python/paddle/fluid/tests/unittests/test_reduce_op.py index 631b760a7b8dacc648cb3db563d079df96374456..9c22e9c043a889ef39e9615d337b356fe96c85bc 100644 --- a/python/paddle/fluid/tests/unittests/test_reduce_op.py +++ b/python/paddle/fluid/tests/unittests/test_reduce_op.py @@ -57,6 +57,20 @@ class TestSumOp(OpTest): self.check_grad(['X'], 'Out', check_prim=True) +class TestComplexSumOP(TestSumOp): + def init_dtype(self): + self.dtype = np.complex128 + + def init_input(self): + self.x = np.random.random((3, 4)).astype(self.dtype) + + def init_attrs(self): + self.attrs = {'dim': [0]} + + def test_check_grad(self): + self.check_grad(['X'], 'Out', check_prim=False) + + class TestSumOp_ZeroDim(TestSumOp): def init_attrs(self): self.attrs = {'dim': [], 'reduce_all': True}