提交 e4fbe642 编写于 作者: _青葱's avatar _青葱

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fluid_doc

Merge branch develop
......@@ -2,6 +2,9 @@ Distributed Training
====================
The effectiveness of the deep learning model is often directly related to the scale of the data: it can generally achieve better results after increasing the size of the dataset on the same model. However, it can not fit in one single computer when the amount of data increases to a certain extent. At this point, using multiple computers for distributed training is a natural solution. In distributed training, the training data is divided into multiple copies (sharding), and multiple machines participating in the training read their own data for training and collaboratively update the parameters of the overall model.
Distributed training generally has framwork as shown below:
.. image:: src/ps_en.png
:width: 500
......
......@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/proto_desc.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/operators/detail/simple_block_queue.h"
......@@ -89,6 +90,10 @@ class ListenAndServOp : public framework::OperatorBase {
auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program();
int num_blocks = program->Size();
PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks");
framework::Executor executor(dev_place);
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
......@@ -132,12 +137,36 @@ class ListenAndServOp : public framework::OperatorBase {
rpc_service_->ShutDown();
break;
}
// put optimize blocks in the thread pool to start run, the last block
// should be global ops.
// NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads
// and this will still work.
std::vector<std::future<void>> fs;
// block0 contains only listen_and_serv op, start run from block1.
for (int blkid = 1; blkid < num_blocks - 1; ++blkid) {
fs.push_back(framework::Async([&executor, &program, &recv_scope,
blkid]() {
int run_block = blkid; // thread local
try {
executor.Run(*program, &recv_scope, run_block,
false /*create_local_scope*/, false /*create_vars*/);
} catch (std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
}));
}
for (int i = 0; i < num_blocks - 2; ++i) fs[i].wait();
// Run global block at final step, or block1 if there are only 2 blocks
if (num_blocks >= 2) {
try {
executor.Run(*program, &recv_scope, block->ID(), /*global_block*/
executor.Run(*program, &recv_scope, num_blocks - 1,
false /*create_local_scope*/, false /*create_vars*/);
} catch (std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
}
// Reset the received sparse variables, the sum operator would not
// sum the input sparse variables which rows is empty at the next
// mini-batch.
......
......@@ -307,15 +307,57 @@ class DistributeTranspiler:
# Iterate through the ops, and if an op and the optimize ops
# which located on current pserver are in one set, then
# append it into the sub program.
for _, op in enumerate(self.optimize_ops):
for _, opt_op in enumerate(opt_op_on_pserver):
if ufind.is_connected(op, opt_op):
# We try to put optimization program run parallelly, assume
# optimization program always looks like:
#
# prevop -> prevop -> opt op -> following op -> following op; ->
# prevop -> prevop -> opt op -> following op -> following op; ->
# global op -> global op
#
# we put operators that can run parallelly to many program blocks.
# in above example, we seperate ops by the ";". Global ops must run
# after all the optimize ops finished.
global_ops = []
# HACK: optimization global ops only used to scale beta1 and beta2
# replace it with dependency engine.
for op in self.optimize_ops:
if op.type == "scale":
for in_name in op.input_arg_names:
if in_name.startswith("beta1_pow_acc") or\
in_name.startswith("beta2_pow_acc"):
global_ops.append(op)
def __append_optimize_op__(op, block):
if self._is_opt_op(op):
self._append_pserver_ops(optimize_block, op, endpoint,
self._append_pserver_ops(block, op, endpoint,
default_main_program())
else:
self._append_pserver_non_opt_ops(optimize_block, op)
break
self._append_pserver_non_opt_ops(block, op)
# append op to the current block
per_opt_block = optimize_block
for _, opt_op in enumerate(opt_op_on_pserver):
for _, op in enumerate(self.optimize_ops):
# optimizer is connected to itself
if ufind.is_connected(op, opt_op) and \
op not in global_ops:
__append_optimize_op__(op, per_opt_block)
per_opt_block = pserver_program.create_block(0)
# append global ops
for glb_op in global_ops:
__append_optimize_op__(glb_op, per_opt_block)
# NOT USED: single block version:
#
# for _, op in enumerate(self.optimize_ops):
# for _, opt_op in enumerate(opt_op_on_pserver):
# if ufind.is_connected(op, opt_op):
# __append_optimize_op__(glb_op, optimize_block)
# break
# step5 append the listen_and_serv op
pserver_program.global_block().append_op(
type="listen_and_serv",
......@@ -660,10 +702,22 @@ class DistributeTranspiler:
# If one op's input is another op's output or
# one op's output is another op's input, we say
# the two operator is connected.
op1_input_names = op1.desc.input_arg_names()
def _append_inname_remove_beta(varname_list):
op_input_names = []
for in_name in varname_list:
# HACK: remove beta1 and beta2 to avoid let all
# ops connected.
if in_name.startswith("beta2_pow_acc") or \
in_name.startswith("beta1_pow_acc"):
continue
else:
op_input_names.append(in_name)
return op_input_names
op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
op1_output_names = op1.desc.output_arg_names()
op2_input_names = op2.desc.input_arg_names()
op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
op2_output_names = op2.desc.output_arg_names()
if set(op1_output_names) & set(op2_input_names) or \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册