Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e44ff495
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e44ff495
编写于
2月 08, 2023
作者:
Y
Yuang Liu
提交者:
GitHub
2月 08, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fused attention pass mp support (#50320)
上级
a7539508
变更
8
展开全部
显示空白变更内容
内联
并排
Showing
8 changed file
with
607 addition
and
121 deletion
+607
-121
paddle/fluid/framework/ir/fused_attention_pass.cc
paddle/fluid/framework/ir/fused_attention_pass.cc
+272
-112
paddle/fluid/framework/ir/fused_attention_pass.h
paddle/fluid/framework/ir/fused_attention_pass.h
+45
-3
paddle/fluid/operators/fused/fused_attention_op.cc
paddle/fluid/operators/fused/fused_attention_op.cc
+10
-4
paddle/fluid/operators/fused/fused_attention_op.cu
paddle/fluid/operators/fused/fused_attention_op.cu
+6
-2
python/paddle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
...dle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
+12
-0
python/paddle/fluid/tests/unittests/collective/fleet/fused_attention_pass_with_mp.py
...nittests/collective/fleet/fused_attention_pass_with_mp.py
+241
-0
python/paddle/fluid/tests/unittests/collective/fleet/test_fused_attention_pass_with_mp.sh
...sts/collective/fleet/test_fused_attention_pass_with_mp.sh
+20
-0
python/paddle/fluid/tests/unittests/collective/fleet/testslist.csv
...ddle/fluid/tests/unittests/collective/fleet/testslist.csv
+1
-0
未找到文件。
paddle/fluid/framework/ir/fused_attention_pass.cc
浏览文件 @
e44ff495
此差异已折叠。
点击以展开。
paddle/fluid/framework/ir/fused_attention_pass.h
浏览文件 @
e44ff495
...
...
@@ -33,6 +33,7 @@ namespace patterns {
// 2. Add attn mask for qk product before the softmax or not.
// 3. Do attn dropout or not.
// 4. Add residual to the out linear result or not.
// 5. Use model tensor parallel or not.
struct
FusedAttentionPattern
:
public
PatternBase
{
FusedAttentionPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"fused_attention_pattern"
)
{}
...
...
@@ -41,7 +42,8 @@ struct FusedAttentionPattern : public PatternBase {
bool
pre_layer_norm
,
// do pre ln or not
bool
has_attn_mask
,
// add attn mask to qk or not
bool
do_dropout
,
// dropout the softmax(qk) or not
bool
add_residual
);
// add residual to out linear or not
bool
add_residual
,
// add residual to out linear or not
bool
use_mp
);
// use tensor parallel or not
// pre layer norm
PATTERN_DECL_NODE
(
pre_layer_norm_op
);
...
...
@@ -51,6 +53,10 @@ struct FusedAttentionPattern : public PatternBase {
PATTERN_DECL_NODE
(
pre_layer_norm_mean
);
PATTERN_DECL_NODE
(
pre_layer_norm_variance
);
// c_identity for mp
PATTERN_DECL_NODE
(
c_identity_op
);
PATTERN_DECL_NODE
(
c_identity_out
);
// fuse qkv projection
PATTERN_DECL_NODE
(
fuse_qkv_matmul_op
);
PATTERN_DECL_NODE
(
fuse_qkv_matmul_w
);
...
...
@@ -111,6 +117,10 @@ struct FusedAttentionPattern : public PatternBase {
PATTERN_DECL_NODE
(
out_linear_ele_add_bias
);
PATTERN_DECL_NODE
(
out_linear_ele_add_out
);
// allreudce for mp
PATTERN_DECL_NODE
(
mp_allreudce_sum_op
);
PATTERN_DECL_NODE
(
mp_allreudce_sum_out
);
PATTERN_DECL_NODE
(
out_linear_dropout_op
);
PATTERN_DECL_NODE
(
out_linear_dropout_out
);
PATTERN_DECL_NODE
(
out_linear_dropout_mask
);
...
...
@@ -131,13 +141,14 @@ struct FusedAttentionPattern : public PatternBase {
// Declare the grad pattern for multi head attention
struct
FusedAttentionGradPattern
:
public
PatternBase
{
FusedAttentionGradPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"fused_attention_pattern"
)
{}
:
PatternBase
(
pattern
,
name_scope
,
"fused_attention_
grad_
pattern"
)
{}
PDNode
*
operator
()(
PDNode
*
x
,
bool
pre_layer_norm
,
// pre ln
bool
has_attn_mask
,
// add attn mask to qk or not
bool
do_dropout
,
// dropout the softmax(qk) or not
bool
add_residual
);
// add residual to out linear or not
bool
add_residual
,
// add residual to out linear or not
bool
use_mp
);
// use tensor parallel or not
// post layer norm grad
PATTERN_DECL_NODE
(
post_layer_norm_grad_op
);
...
...
@@ -162,6 +173,10 @@ struct FusedAttentionGradPattern : public PatternBase {
PATTERN_DECL_NODE
(
out_linear_dropout_grad_mask
);
PATTERN_DECL_NODE
(
out_linear_dropout_grad_out
);
// c_identity for mp
PATTERN_DECL_NODE
(
mp_allreudce_sum_grad_op
);
// c_identity
PATTERN_DECL_NODE
(
mp_allreudce_sum_grad_out
);
PATTERN_DECL_NODE
(
out_linear_ele_add_grad_op
);
PATTERN_DECL_NODE
(
out_linear_ele_add_grad_x
);
PATTERN_DECL_NODE
(
out_linear_ele_add_grad_bias
);
...
...
@@ -235,6 +250,10 @@ struct FusedAttentionGradPattern : public PatternBase {
PATTERN_DECL_NODE
(
fuse_qkv_matmul_grad_x_grad
);
PATTERN_DECL_NODE
(
fuse_qkv_matmul_grad_w_grad
);
// allreduce for mp
PATTERN_DECL_NODE
(
c_identity_grad_op
);
// mp_allreduce_sum
PATTERN_DECL_NODE
(
c_identity_grad_out
);
// pre layer norm grad
PATTERN_DECL_NODE
(
pre_layer_norm_grad_op
);
PATTERN_DECL_NODE
(
pre_layer_norm_grad_scale
);
...
...
@@ -296,6 +315,7 @@ class FusedAttentionsPass : public FusePassBase {
// 4. Add residual? [Res]
// 5. Do post layer norm? [Post]
// 6. Forward or Backward? [Fwd/Bwd]
// 7. Use tensor model parallel? [MP]
// If true, the function name will have an abbreviation part.
// If false, the function name won't contain an abbreviation for it.
...
...
@@ -305,6 +325,28 @@ class FusedAttentionsPass : public FusePassBase {
ir
::
Graph
*
PreMaskDropResBwd
(
Graph
*
graph
,
FusedAttentionPassCache
*
cache
)
const
;
ir
::
Graph
*
PreMaskDropResMPFwd
(
Graph
*
graph
,
FusedAttentionPassCache
*
cache
)
const
;
ir
::
Graph
*
PreMaskDropResMPBwd
(
Graph
*
graph
,
FusedAttentionPassCache
*
cache
)
const
;
ir
::
Graph
*
ForwardHandlerHelper
(
Graph
*
graph
,
FusedAttentionPassCache
*
cache
,
bool
pre_layer_norm
,
bool
has_attn_mask
,
bool
do_dropout
,
bool
add_residual
,
bool
use_mp
)
const
;
ir
::
Graph
*
BackwardHandlerHelper
(
Graph
*
graph
,
FusedAttentionPassCache
*
cache
,
bool
pre_layer_norm
,
bool
has_attn_mask
,
bool
do_dropout
,
bool
add_residual
,
bool
use_mp
)
const
;
const
std
::
string
GenerateCacheKey
(
const
std
::
string
anchor
,
const
std
::
string
var_name
,
int
block_id
)
const
{
...
...
paddle/fluid/operators/fused/fused_attention_op.cc
浏览文件 @
e44ff495
...
...
@@ -120,6 +120,7 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
auto
y_dim
=
ctx
->
GetInputDim
(
"QKVW"
);
int
dim_head
;
int
hidden_size
;
int
nranks
=
1
;
if
(
transpose_qkv_wb
)
{
PADDLE_ENFORCE_EQ
(
y_dim
.
size
(),
2
,
...
...
@@ -149,8 +150,11 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
platform
::
errors
::
InvalidArgument
(
"The dimensions of qkv_weight must be 2"
"(dim_embed, 3 * dim_embed)."
));
}
else
{
// compute the mp nranks
nranks
=
(
y_dim
[
0
]
*
3
)
/
y_dim
[
1
];
}
dim_head
=
y_dim
[
0
]
/
num_heads
;
dim_head
=
y_dim
[
0
]
/
(
num_heads
*
nranks
)
;
hidden_size
=
y_dim
[
0
];
}
else
{
PADDLE_ENFORCE_EQ
(
y_dim
.
size
(),
...
...
@@ -210,11 +214,13 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
}
if
(
transpose_qkv_wb
)
{
// [batch_size, seq_len, 3 * hidden_size]
ctx
->
SetOutputDim
(
"QKVOut"
,
{
x_dim
[
0
],
x_dim
[
1
],
3
*
hidden_size
});
// [batch_size, seq_len, 3 * num_heads * dim_head]
ctx
->
SetOutputDim
(
"QKVOut"
,
{
x_dim
[
0
],
x_dim
[
1
],
3
*
num_heads
*
dim_head
});
if
(
ctx
->
HasInput
(
"QKVBias"
))
{
ctx
->
SetOutputDim
(
"QKVBiasOut"
,
{
x_dim
[
0
],
x_dim
[
1
],
3
*
hidden_size
});
ctx
->
SetOutputDim
(
"QKVBiasOut"
,
{
x_dim
[
0
],
x_dim
[
1
],
3
*
num_heads
*
dim_head
});
}
}
else
{
// [batch_size, seq_len, 3, num_head, head_size]
...
...
paddle/fluid/operators/fused/fused_attention_op.cu
浏览文件 @
e44ff495
...
...
@@ -217,13 +217,15 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
int
num_head
;
int
dim_head
;
int
nranks
=
1
;
// get num_head and dim_head in two different ways
if
(
!
transpose_qkv_wb
)
{
num_head
=
qkv_w_dims
[
1
];
dim_head
=
qkv_w_dims
[
2
];
}
else
{
nranks
=
(
qkv_w_dims
[
0
]
*
3
)
/
qkv_w_dims
[
1
];
num_head
=
num_heads
;
dim_head
=
dim_embed
/
num_head
;
dim_head
=
dim_embed
/
(
num_head
*
nranks
)
;
}
int
bsz_seq
=
batch_size
*
max_seq_len
;
...
...
@@ -579,12 +581,14 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
int
dim_embed
=
input_x_dims
[
2
];
int
num_head
;
int
dim_head
;
int
nranks
=
1
;
if
(
!
transpose_qkv_wb
)
{
num_head
=
qkv_w_dims
[
1
];
dim_head
=
qkv_w_dims
[
2
];
}
else
{
nranks
=
(
qkv_w_dims
[
0
]
*
3
)
/
qkv_w_dims
[
1
];
num_head
=
num_heads
;
dim_head
=
dim_embed
/
num_head
;
dim_head
=
dim_embed
/
(
num_head
*
nranks
)
;
}
int
bsz_seq
=
batch_size
*
max_seq_len
;
...
...
python/paddle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
浏览文件 @
e44ff495
...
...
@@ -908,3 +908,15 @@ if((WITH_GPU) AND (LINUX))
set_tests_properties
(
test_dygraph_save_for_auto_infer
PROPERTIES TIMEOUT
"300"
LABELS
"RUN_TYPE=DIST"
)
endif
()
if
(
WITH_GPU
)
bash_test_modules
(
test_fused_attention_pass_with_mp
START_BASH
test_fused_attention_pass_with_mp.sh
LABELS
"RUN_TYPE=DIST"
ENVS
"PADDLE_DIST_UT_PORT=21400;http_proxy=;https_proxy="
)
set_tests_properties
(
test_fused_attention_pass_with_mp PROPERTIES TIMEOUT
"120"
)
endif
()
python/paddle/fluid/tests/unittests/collective/fleet/fused_attention_pass_with_mp.py
0 → 100644
浏览文件 @
e44ff495
# Copyright (c) 2013 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
import
numpy
as
np
import
paddle
import
paddle.distributed.fleet
as
fleet
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
from
paddle.distributed.passes
import
PassManager
,
new_pass
paddle
.
enable_static
()
class
MultiHeadAttentionWithMP
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
embed_dim
,
num_heads
,
add_residual
=
True
,
pre_ln
=
True
,
attn_dropout
=
True
,
):
super
(
MultiHeadAttentionWithMP
,
self
).
__init__
()
self
.
embed_dim
=
embed_dim
self
.
kdim
=
embed_dim
self
.
vdim
=
embed_dim
self
.
num_heads
=
num_heads
self
.
add_residual
=
add_residual
self
.
pre_ln
=
pre_ln
self
.
attn_dropout
=
attn_dropout
self
.
head_dim
=
embed_dim
//
num_heads
assert
(
self
.
head_dim
*
num_heads
==
self
.
embed_dim
),
"embed_dim must be divisible by num_heads"
assert
num_heads
%
2
==
0
self
.
num_heads
=
num_heads
//
2
self
.
norm1
=
paddle
.
nn
.
LayerNorm
(
embed_dim
,
epsilon
=
1e-5
)
self
.
norm2
=
paddle
.
nn
.
LayerNorm
(
embed_dim
,
epsilon
=
1e-5
)
self
.
qkv_proj
=
paddle
.
nn
.
Linear
(
embed_dim
,
3
*
self
.
num_heads
*
self
.
head_dim
)
self
.
out_proj
=
paddle
.
nn
.
Linear
(
self
.
num_heads
*
self
.
head_dim
,
embed_dim
)
self
.
dropout
=
paddle
.
nn
.
Dropout
(
1e-10
,
mode
=
"upscale_in_train"
)
def
forward
(
self
,
x
,
attn_mask
=
None
):
residual
=
x
if
self
.
pre_ln
:
# pre layer norm
x
=
self
.
norm1
(
x
)
x
=
paddle
.
distributed
.
collective
.
_c_identity
(
x
)
# compute qkv
qkv
=
self
.
qkv_proj
(
x
)
qkv
=
paddle
.
reshape
(
qkv
,
[
0
,
0
,
3
*
self
.
num_heads
,
self
.
head_dim
])
qkv
=
paddle
.
transpose
(
qkv
,
[
0
,
2
,
1
,
3
])
q
,
k
,
v
=
paddle
.
split
(
qkv
,
num_or_sections
=
3
,
axis
=
1
)
# compute core attention
q
=
paddle
.
scale
(
q
,
scale
=
self
.
head_dim
**-
0.5
)
product
=
paddle
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
)
if
attn_mask
is
not
None
:
product
=
product
+
attn_mask
weights
=
F
.
softmax
(
product
)
if
self
.
attn_dropout
:
weights
=
F
.
dropout
(
weights
,
0.1
,
training
=
self
.
training
,
mode
=
"upscale_in_train"
)
out
=
paddle
.
matmul
(
weights
,
v
)
out
=
paddle
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
out
=
paddle
.
reshape
(
x
=
out
,
shape
=
[
0
,
0
,
out
.
shape
[
2
]
*
out
.
shape
[
3
]])
# project to output
out
=
self
.
out_proj
(
out
)
out
=
paddle
.
distributed
.
collective
.
_mp_allreduce
(
out
,
use_calc_stream
=
True
,
use_model_parallel
=
True
)
out
=
self
.
dropout
(
out
)
if
self
.
add_residual
:
out
=
residual
+
out
if
not
self
.
pre_ln
:
# post layer norm
out
=
self
.
norm2
(
out
)
return
out
class
TestFusedAttentionPassWithMP
(
unittest
.
TestCase
):
def
setUp
(
self
):
fleet
.
init
()
self
.
endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
).
split
(
','
)
self
.
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
self
.
nranks
=
len
(
self
.
endpoints
)
self
.
rank
=
self
.
endpoints
.
index
(
self
.
current_endpoint
)
self
.
gpu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_gpus"
))
self
.
place
=
fluid
.
CUDAPlace
(
self
.
gpu_id
)
self
.
exe
=
fluid
.
Executor
(
self
.
place
)
self
.
endpoints
.
remove
(
self
.
current_endpoint
)
self
.
other_endpoints
=
self
.
endpoints
self
.
add_residual
=
True
self
.
pre_ln
=
True
self
.
attn_dropout
=
True
self
.
add_mask
=
True
self
.
x_data
=
None
self
.
mask_data
=
None
def
get_rst
(
self
,
use_pass
=
False
):
batch_size
=
2
seq_len
=
1024
hidden_size
=
768
num_heads
=
12
np
.
random
.
seed
(
1234
)
if
self
.
x_data
is
None
:
self
.
x_data
=
np
.
random
.
rand
(
batch_size
,
seq_len
,
seq_len
).
astype
(
'float32'
)
self
.
mask_data
=
np
.
random
.
rand
(
batch_size
,
num_heads
//
2
,
seq_len
,
seq_len
).
astype
(
'float32'
)
main_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
1234
startup_prog
=
paddle
.
static
.
Program
()
startup_prog
.
random_seed
=
1234
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
data
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
seq_len
,
seq_len
],
dtype
=
'float32'
,
)
if
self
.
add_mask
:
attn_mask
=
paddle
.
static
.
data
(
name
=
"attn_mask"
,
shape
=
[
-
1
,
num_heads
//
2
,
seq_len
,
seq_len
],
dtype
=
'float32'
,
)
else
:
attn_mask
=
None
data_linear
=
paddle
.
nn
.
Linear
(
seq_len
,
hidden_size
)
multi_head_attn
=
MultiHeadAttentionWithMP
(
hidden_size
,
num_heads
,
add_residual
=
self
.
add_residual
,
pre_ln
=
self
.
pre_ln
,
attn_dropout
=
self
.
attn_dropout
,
)
attn_input
=
data_linear
(
data
)
out
=
multi_head_attn
(
attn_input
,
attn_mask
)
loss
=
paddle
.
mean
(
out
)
sgd_optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
.
minimize
(
loss
)
startup_block
=
startup_prog
.
global_block
()
nccl_id_var
=
startup_block
.
create_var
(
name
=
fluid
.
unique_name
.
generate
(
'nccl_id'
),
persistable
=
True
,
type
=
fluid
.
core
.
VarDesc
.
VarType
.
RAW
,
)
startup_block
.
append_op
(
type
=
'c_gen_nccl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
nccl_id_var
},
attrs
=
{
'rank'
:
self
.
rank
,
'endpoint'
:
self
.
current_endpoint
,
'other_endpoints'
:
self
.
other_endpoints
,
},
)
startup_block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
nccl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
self
.
nranks
,
'rank'
:
self
.
rank
,
'ring_id'
:
0
,
'device_id'
:
self
.
gpu_id
,
},
)
if
use_pass
:
pass_manager
=
PassManager
([
new_pass
(
"fused_attention"
)])
pass_manager
.
apply
([
main_prog
],
[
startup_prog
])
ops
=
main_prog
.
global_block
().
ops
assert
ops
[
2
].
type
==
'fused_attention'
assert
ops
[
3
].
type
==
'reduce_mean'
assert
ops
[
5
].
type
==
'reduce_mean_grad'
assert
ops
[
6
].
type
==
'fused_attention_grad'
# two ops for linear, one op for reduce mean
# one fill constant
# one op for reduce mean grad, two ops for linear bwd
# the eighth op should be the optimizer
assert
ops
[
9
].
type
==
'sgd'
self
.
exe
.
run
(
startup_prog
)
for
i
in
range
(
2
):
rst
=
self
.
exe
.
run
(
main_prog
,
feed
=
{
'x'
:
self
.
x_data
,
'attn_mask'
:
self
.
mask_data
},
fetch_list
=
[
loss
],
)
return
rst
def
test_pass
(
self
):
fused_rst
=
self
.
get_rst
(
use_pass
=
True
)
non_fused_rst
=
self
.
get_rst
()
assert
np
.
allclose
(
fused_rst
,
non_fused_rst
,
atol
=
1e-5
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/collective/fleet/test_fused_attention_pass_with_mp.sh
0 → 100644
浏览文件 @
e44ff495
#!/bin/bash
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# use default values
# FIXME: random fails on Unknown command lines -c (or -m).
CUDA_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.launch fused_attention_pass_with_mp.py
python/paddle/fluid/tests/unittests/collective/fleet/testslist.csv
浏览文件 @
e44ff495
...
...
@@ -58,6 +58,7 @@ test_fleet_recompute_meta_optimizer,LINUX;WIN32,GPU;XPU;ASCEND;ASCEND_CL,,,test_
test_fleet_private_function,LINUX;WIN32,,,,test_runner.py,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_new_group,,GPU;XPU;ASCEND;ASCEND_CL,,DIST,test_new_group.sh,2,,http_proxy=;https_proxy=,
test_c_comm_init_op,LINUX,GPU;XPU;ASCEND;ASCEND_CL,120,DIST,test_c_comm_init_op.sh,2,,http_proxy=;https_proxy=,
test_fused_attention_pass_with_mp,LINUX,GPU;;;,120,DIST,test_fused_attention_pass_with_mp.sh,2,,http_proxy=;https_proxy=,
test_ir_pass_pipeline,,,120,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_parallel_dygraph_mnist,,GPU;ROCM,200,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_parallel_dygraph_se_resnext,,GPU;ROCM,200,DIST,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录