Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e429deb0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e429deb0
编写于
3月 19, 2021
作者:
C
Chen Weihang
提交者:
GitHub
3月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[CustomOp] Support attribute in infershape function (#31713)
* support attribute in infershape * polish details
上级
a4a2b77d
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
289 addition
and
91 deletion
+289
-91
paddle/fluid/extension/include/ext_op_meta_info.h
paddle/fluid/extension/include/ext_op_meta_info.h
+77
-35
paddle/fluid/framework/custom_operator.cc
paddle/fluid/framework/custom_operator.cc
+46
-4
python/paddle/fluid/tests/custom_op/custom_concat_op.cc
python/paddle/fluid/tests/custom_op/custom_concat_op.cc
+90
-0
python/paddle/fluid/tests/custom_op/test_custom_concat.py
python/paddle/fluid/tests/custom_op/test_custom_concat.py
+76
-52
未找到文件。
paddle/fluid/extension/include/ext_op_meta_info.h
浏览文件 @
e429deb0
...
...
@@ -204,37 +204,67 @@ struct KernelFuncImpl<Return (*)(Args...), impl_fn> {
// Record Op infershape core function
using
InferShapeFunc
=
std
::
vector
<
std
::
vector
<
int64_t
>>
(
*
)(
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
input_shapes
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
vec_input_shapes
);
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
vec_input_shapes
,
const
std
::
vector
<
boost
::
any
>&
attrs
);
#define PD_SPECIALIZE_InferShapeCallHelper_FOR_SHAPE(input_type) \
template <typename... Tail> \
struct InferShapeCallHelper<input_type, Tail...> { \
template <int in_idx, int vec_in_idx, typename... PreviousArgs> \
template <int in_idx, int vec_in_idx, int attr_idx, \
typename... PreviousArgs> \
static Return InferShape( \
const std::vector<std::vector<int64_t>>& input_shapes, \
const std::vector<std::vector<std::vector<int64_t>>>& \
vec_input_shapes, \
const
PreviousArgs&... pargs) {
\
const
std::vector<boost::any>& attrs, const PreviousArgs&... pargs) {
\
input_type arg = input_shapes[in_idx]; \
return InferShapeCallHelper<Tail...>::template InferShape<
in_idx + 1,
\
vec_in_idx>(
\
input_shapes, vec_input_shapes, pargs..., arg);
\
return InferShapeCallHelper<Tail...>::template InferShape<
\
in_idx + 1, vec_in_idx, attr_idx>(input_shapes, vec_input_shapes,
\
attrs, pargs..., arg);
\
} \
}
#define PD_SPECIALIZE_InferShapeCallHelper_FOR_SHAPES(input_type) \
template <typename... Tail> \
struct InferShapeCallHelper<input_type, Tail...> { \
template <int in_idx, int vec_in_idx, typename... PreviousArgs> \
template <int in_idx, int vec_in_idx, int attr_idx, \
typename... PreviousArgs> \
static Return InferShape( \
const std::vector<std::vector<int64_t>>& input_shapes, \
const std::vector<std::vector<std::vector<int64_t>>>& \
vec_input_shapes, \
const
PreviousArgs&... pargs) {
\
const
std::vector<boost::any>& attrs, const PreviousArgs&... pargs) {
\
input_type arg = vec_input_shapes[vec_in_idx]; \
return InferShapeCallHelper<Tail...>::template InferShape< \
in_idx, vec_in_idx + 1>(input_shapes, vec_input_shapes, pargs..., \
arg); \
in_idx, vec_in_idx + 1, attr_idx>(input_shapes, vec_input_shapes, \
attrs, pargs..., arg); \
} \
}
#define PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR(attr_type) \
template <typename... Tail> \
struct InferShapeCallHelper<attr_type, Tail...> { \
template <int in_idx, int vec_in_idx, int attr_idx, \
typename... PreviousArgs> \
static Return InferShape( \
const std::vector<std::vector<int64_t>>& input_shapes, \
const std::vector<std::vector<std::vector<int64_t>>>& \
vec_input_shapes, \
const std::vector<boost::any>& attrs, const PreviousArgs&... pargs) { \
try { \
attr_type arg = boost::any_cast<attr_type>(attrs[attr_idx]); \
return InferShapeCallHelper<Tail...>::template InferShape< \
in_idx, vec_in_idx, attr_idx + 1>(input_shapes, vec_input_shapes, \
attrs, pargs..., arg); \
} catch (boost::bad_any_cast&) { \
PD_THROW( \
"Attribute cast error in custom operator InferShapeFn. " \
"Expected " #attr_type \
" value. InferShapeFn's attribute list must be exactly same as " \
"Forward " \
"KernelFn's attribute list except std::vector<int64_t> " \
"attribute."); \
} \
} \
}
...
...
@@ -245,10 +275,10 @@ template <typename Return, typename... Args, Return (*impl_fn)(Args...)>
struct
InferShapeFuncImpl
<
Return
(
*
)(
Args
...),
impl_fn
>
{
static
Return
InferShape
(
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
input_shapes
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
vec_input_shapes
)
{
return
InferShapeCallHelper
<
Args
...,
TypeTag
<
int
>>::
template
InferShape
<
0
,
0
>(
input_shapes
,
vec_input_shape
s
);
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
vec_input_shapes
,
const
std
::
vector
<
boost
::
any
>&
attrs
)
{
return
InferShapeCallHelper
<
Args
...,
TypeTag
<
int
>>::
template
InferShape
<
0
,
0
,
0
>(
input_shapes
,
vec_input_shapes
,
attr
s
);
}
private:
...
...
@@ -265,14 +295,26 @@ struct InferShapeFuncImpl<Return (*)(Args...), impl_fn> {
PD_SPECIALIZE_InferShapeCallHelper_FOR_SHAPES
(
std
::
vector
<
std
::
vector
<
int64_t
>>
);
PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR
(
const
bool
&
);
PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR
(
const
int
&
);
PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR
(
const
float
&
);
PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR
(
const
int64_t
&
);
PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR
(
const
std
::
string
&
);
PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR
(
const
std
::
vector
<
int
>&
);
PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR
(
const
std
::
vector
<
float
>&
);
PD_SPECIALIZE_InferShapeCallHelper_FOR_ATTR
(
const
std
::
vector
<
std
::
string
>&
);
// NOTE(chenweihang): InferShape can't support std::vector<int64_t> attr type,
// because the input type is std::vector<int64_t>, only can use one rule to
// parse std::vector<int64_t> parameter
// end: base template
template
<
typename
T
>
struct
InferShapeCallHelper
<
TypeTag
<
T
>>
{
template
<
int
in_idx
,
int
vec_in_idx
>
template
<
int
in_idx
,
int
vec_in_idx
,
int
attr_idx
>
static
Return
InferShape
(
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
input_shapes
,
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>&
vec_input_shapes
,
const
Args
&
...
args
)
{
const
std
::
vector
<
boost
::
any
>&
attrs
,
const
Args
&
...
args
)
{
return
impl_fn
(
args
...);
}
};
...
...
paddle/fluid/framework/custom_operator.cc
浏览文件 @
e429deb0
...
...
@@ -178,7 +178,7 @@ static void RunKernelFunc(const framework::ExecutionContext& ctx,
"Unsupported `%s` type value as custom attribute now. "
"Supported data types include `bool`, `int`, `float`, "
"`int64_t`, `std::string`, `std::vector<int>`, "
"`std::vector<float>`, `std::vector<int64_t>, "
"`std::vector<float>`, `std::vector<int64_t>
`
, "
"`std::vector<std::string>`, Please check whether "
"the attribute data type and data type string are matched."
,
attr_type_str
));
...
...
@@ -327,7 +327,7 @@ class CustomOpMaker : public OpProtoAndCheckerMaker {
"Unsupported `%s` type value as custom attribute now. "
"Supported data types include `bool`, `int`, `float`, "
"`int64_t`, `std::string`, `std::vector<int>`, "
"`std::vector<float>`, `std::vector<int64_t>, "
"`std::vector<float>`, `std::vector<int64_t>
`
, "
"`std::vector<std::string>`, Please check whether "
"the attribute data type and data type string are matched."
,
attr_type_str
));
...
...
@@ -581,7 +581,7 @@ void RegisterOperatorWithMetaInfo(
ctx
->
ShareDim
(
op_inputs
[
0
],
op_outputs
[
0
]);
};
}
else
{
info
.
infer_shape_
=
[
op_inputs
,
op_outputs
,
info
.
infer_shape_
=
[
op_inputs
,
op_outputs
,
op_attrs
,
infer_shape_func
](
InferShapeContext
*
ctx
)
{
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes
;
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
vec_input_shapes
;
...
...
@@ -606,8 +606,50 @@ void RegisterOperatorWithMetaInfo(
}
}
std
::
vector
<
boost
::
any
>
custom_attrs
;
for
(
auto
&
attr_str
:
op_attrs
)
{
auto
attr_name_and_type
=
detail
::
ParseAttrStr
(
attr_str
);
auto
attr_name
=
attr_name_and_type
[
0
];
auto
attr_type_str
=
attr_name_and_type
[
1
];
if
(
attr_type_str
==
"bool"
)
{
custom_attrs
.
emplace_back
(
ctx
->
Attrs
().
Get
<
bool
>
(
attr_name
));
}
else
if
(
attr_type_str
==
"int"
)
{
custom_attrs
.
emplace_back
(
ctx
->
Attrs
().
Get
<
int
>
(
attr_name
));
}
else
if
(
attr_type_str
==
"float"
)
{
custom_attrs
.
emplace_back
(
ctx
->
Attrs
().
Get
<
float
>
(
attr_name
));
}
else
if
(
attr_type_str
==
"int64_t"
)
{
custom_attrs
.
emplace_back
(
ctx
->
Attrs
().
Get
<
int64_t
>
(
attr_name
));
}
else
if
(
attr_type_str
==
"std::string"
)
{
custom_attrs
.
emplace_back
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
attr_name
));
}
else
if
(
attr_type_str
==
"std::vector<int>"
)
{
custom_attrs
.
emplace_back
(
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
attr_name
));
}
else
if
(
attr_type_str
==
"std::vector<float>"
)
{
custom_attrs
.
emplace_back
(
ctx
->
Attrs
().
Get
<
std
::
vector
<
float
>>
(
attr_name
));
}
else
if
(
attr_type_str
==
"std::vector<int64_t>"
)
{
// NOTE(chenweihang): InferShape can't support std::vector<int64_t>
// attr type, because the input type is std::vector<int64_t>, only
// can use one rule to parse std::vector<int64_t> parameter
continue
;
}
else
if
(
attr_type_str
==
"std::vector<std::string>"
)
{
custom_attrs
.
emplace_back
(
ctx
->
Attrs
().
Get
<
std
::
vector
<
std
::
string
>>
(
attr_name
));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Unimplemented
(
"Unsupported `%s` type value as custom attribute now. "
"Supported data types include `bool`, `int`, `float`, "
"`int64_t`, `std::string`, `std::vector<int>`, "
"`std::vector<float>`, `std::vector<std::string>`, "
"Please check whether the attribute data type and "
"data type string are matched."
,
attr_type_str
));
}
}
VLOG
(
1
)
<<
"Custom Operator: InferShape - calc output ddim."
;
auto
output_shapes
=
infer_shape_func
(
input_shapes
,
vec_input_shapes
);
auto
output_shapes
=
infer_shape_func
(
input_shapes
,
vec_input_shapes
,
custom_attrs
);
VLOG
(
1
)
<<
"Custom Operator: InferShape - set output ddim."
;
for
(
size_t
i
=
0
;
i
<
op_outputs
.
size
();
++
i
)
{
...
...
python/paddle/fluid/tests/custom_op/custom_concat_op.cc
浏览文件 @
e429deb0
...
...
@@ -144,3 +144,93 @@ PD_BUILD_GRAD_OP(custom_concat)
.
Inputs
({
paddle
::
Vec
(
"X"
),
paddle
::
Grad
(
"Out"
),
"Axis"
})
.
Outputs
({
paddle
::
Grad
(
paddle
::
Vec
(
"X"
))})
.
SetKernelFn
(
PD_KERNEL
(
ConcatBackwardDynamicAxis
));
std
::
vector
<
paddle
::
Tensor
>
ConcatForwardStaticAxis
(
const
std
::
vector
<
paddle
::
Tensor
>&
inputs
,
const
int64_t
&
axis
)
{
// check inputs
PD_CHECK
(
inputs
.
size
()
>=
1
,
"No Tensor need to be concat."
);
for
(
auto
&
t
:
inputs
)
{
CHECK_INPUT
(
t
);
}
// compute output shape
int64_t
rank
=
static_cast
<
int64_t
>
(
inputs
[
0
].
shape
().
size
());
auto
final_axis
=
ComputeAxis
(
axis
,
rank
);
std
::
vector
<
std
::
vector
<
int64_t
>>
in_shapes
;
for
(
auto
&
t
:
inputs
)
{
in_shapes
.
emplace_back
(
t
.
shape
());
}
auto
out_shape
=
ComputeOutShape
(
in_shapes
,
final_axis
);
// create output
auto
out
=
paddle
::
Tensor
(
paddle
::
PlaceType
::
kCPU
);
out
.
reshape
(
out_shape
);
// calc
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES
(
inputs
[
0
].
type
(),
"ConcatCpuKernel"
,
([
&
]
{
ConcatCpuKernel
<
data_t
>
(
inputs
,
&
out
,
final_axis
);
}));
return
{
out
};
}
std
::
vector
<
paddle
::
Tensor
>
ConcatBackwardStaticAxis
(
const
std
::
vector
<
paddle
::
Tensor
>&
inputs
,
const
paddle
::
Tensor
&
grad_out
,
const
int64_t
&
axis
)
{
// check input
PD_CHECK
(
inputs
.
size
()
>=
1
,
"No Tensor need to be concat."
);
for
(
auto
&
t
:
inputs
)
{
CHECK_INPUT
(
t
);
}
CHECK_INPUT
(
grad_out
);
// compate axis
int64_t
rank
=
static_cast
<
int64_t
>
(
inputs
[
0
].
shape
().
size
());
auto
final_axis
=
ComputeAxis
(
axis
,
rank
);
// create outputs
std
::
vector
<
paddle
::
Tensor
>
grad_inputs
;
for
(
auto
&
t
:
inputs
)
{
auto
grad
=
paddle
::
Tensor
(
paddle
::
PlaceType
::
kCPU
);
grad
.
reshape
(
t
.
shape
());
grad_inputs
.
emplace_back
(
grad
);
}
// calc
PD_DISPATCH_FLOATING_AND_INTEGRAL_TYPES
(
grad_out
.
type
(),
"SplitCpuKernel"
,
([
&
]
{
SplitCpuKernel
<
data_t
>
(
grad_out
,
inputs
,
&
grad_inputs
,
final_axis
);
}));
return
grad_inputs
;
}
std
::
vector
<
std
::
vector
<
int64_t
>>
ConcatInferShapeStaticAxis
(
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
input_shapes
,
const
int64_t
&
axis
)
{
int64_t
rank
=
static_cast
<
int64_t
>
(
input_shapes
[
0
].
size
());
auto
final_axis
=
ComputeAxis
(
axis
,
rank
);
auto
out_shape
=
ComputeOutShape
(
input_shapes
,
final_axis
);
return
{
out_shape
};
}
std
::
vector
<
paddle
::
DataType
>
ConcatInferDtypeStaticAxis
(
const
std
::
vector
<
paddle
::
DataType
>&
input_dtypes
)
{
return
{
input_dtypes
[
0
]};
}
PD_BUILD_OP
(
custom_concat_with_attr
)
.
Inputs
({
paddle
::
Vec
(
"X"
)})
.
Outputs
({
"Out"
})
.
Attrs
({
"axis: int64_t"
})
.
SetKernelFn
(
PD_KERNEL
(
ConcatForwardStaticAxis
))
.
SetInferShapeFn
(
PD_INFER_SHAPE
(
ConcatInferShapeStaticAxis
))
.
SetInferDtypeFn
(
PD_INFER_DTYPE
(
ConcatInferDtypeStaticAxis
));
PD_BUILD_GRAD_OP
(
custom_concat_with_attr
)
.
Inputs
({
paddle
::
Vec
(
"X"
),
paddle
::
Grad
(
"Out"
)})
.
Outputs
({
paddle
::
Grad
(
paddle
::
Vec
(
"X"
))})
.
Attrs
({
"axis: int64_t"
})
.
SetKernelFn
(
PD_KERNEL
(
ConcatBackwardStaticAxis
));
python/paddle/fluid/tests/custom_op/test_custom_concat.py
浏览文件 @
e429deb0
...
...
@@ -45,13 +45,15 @@ custom_ops = load(
verbose
=
True
)
def
concat_dynamic
(
func
,
d
evice
,
dtype
,
np_inputs
,
axis_v
):
paddle
.
set_device
(
device
)
def
concat_dynamic
(
func
,
d
type
,
np_inputs
,
axis_v
,
with_attr
=
False
):
paddle
.
set_device
(
"cpu"
)
inputs
=
[
paddle
.
to_tensor
(
x
,
dtype
=
dtype
,
place
=
device
,
stop_gradient
=
False
)
for
x
in
np_inputs
x
,
dtype
=
dtype
,
stop_gradient
=
False
)
for
x
in
np_inputs
]
if
with_attr
:
axis
=
axis_v
else
:
axis
=
paddle
.
full
(
shape
=
[
1
],
dtype
=
'int64'
,
fill_value
=
axis_v
)
out
=
func
(
inputs
,
axis
)
out
.
stop_gradient
=
False
...
...
@@ -60,13 +62,16 @@ def concat_dynamic(func, device, dtype, np_inputs, axis_v):
return
out
.
numpy
(),
grad_inputs
def
concat_static
(
func
,
d
evice
,
dtype
,
np_inputs
,
axis_v
):
def
concat_static
(
func
,
d
type
,
np_inputs
,
axis_v
,
with_attr
=
False
):
paddle
.
enable_static
()
paddle
.
set_device
(
device
)
paddle
.
set_device
(
"cpu"
)
with
static
.
scope_guard
(
static
.
Scope
()):
with
static
.
program_guard
(
static
.
Program
()):
x1
=
static
.
data
(
name
=
"x1"
,
shape
=
[
2
,
3
],
dtype
=
dtype
)
x2
=
static
.
data
(
name
=
"x2"
,
shape
=
[
2
,
3
],
dtype
=
dtype
)
if
with_attr
:
axis
=
axis_v
else
:
axis
=
paddle
.
full
(
shape
=
[
1
],
dtype
=
'int64'
,
fill_value
=
axis_v
)
x1
.
stop_gradient
=
False
x2
.
stop_gradient
=
False
...
...
@@ -78,13 +83,20 @@ def concat_static(func, device, dtype, np_inputs, axis_v):
exe
=
static
.
Executor
()
exe
.
run
(
static
.
default_startup_program
())
out_v
,
x1_grad_v
,
x2_grad_v
=
exe
.
run
(
static
.
default_main_program
(),
feed
=
{
if
with_attr
:
feed_dict
=
{
"x1"
:
np_inputs
[
0
].
astype
(
dtype
),
"x2"
:
np_inputs
[
1
].
astype
(
dtype
)
}
else
:
feed_dict
=
{
"x1"
:
np_inputs
[
0
].
astype
(
dtype
),
"x2"
:
np_inputs
[
1
].
astype
(
dtype
),
"axis"
:
axis
},
}
out_v
,
x1_grad_v
,
x2_grad_v
=
exe
.
run
(
static
.
default_main_program
(),
feed
=
feed_dict
,
fetch_list
=
[
out
.
name
,
x1
.
name
+
"@GRAD"
,
x2
.
name
+
"@GRAD"
])
paddle
.
disable_static
()
return
out_v
,
x1_grad_v
,
x2_grad_v
...
...
@@ -93,55 +105,67 @@ def concat_static(func, device, dtype, np_inputs, axis_v):
class
TestCustomConcatDynamicAxisJit
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtypes
=
[
'float32'
,
'float64'
,
'int32'
,
'int64'
]
self
.
devices
=
[
'cpu'
]
self
.
np_inputs
=
[
np
.
array
([[
1
,
2
,
3
],
[
4
,
5
,
6
]]),
np
.
array
([[
11
,
12
,
13
],
[
14
,
15
,
16
]])
]
self
.
axises
=
[
0
,
1
]
def
check_output
(
self
,
out
,
pd_out
,
name
):
self
.
assertTrue
(
np
.
array_equal
(
out
,
pd_out
),
"custom op {}: {},
\n
paddle api {}: {}"
.
format
(
name
,
out
,
name
,
pd_out
))
def
test_dynamic
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
for
axis
in
self
.
axises
:
out
,
grad_inputs
=
concat_dynamic
(
custom_ops
.
custom_concat
,
device
,
dtype
,
dtype
,
self
.
np_inputs
,
axis
)
pd_out
,
pd_grad_inputs
=
concat_dynamic
(
paddle
.
concat
,
dtype
,
self
.
np_inputs
,
axis
)
pd_out
,
pd_grad_inputs
=
concat_dynamic
(
paddle
.
concat
,
device
,
dtype
,
self
.
np_inputs
,
axis
)
self
.
assertTrue
(
np
.
array_equal
(
out
,
pd_out
),
"custom op out: {},
\n
paddle api out: {}"
.
format
(
out
,
pd_out
))
self
.
check_output
(
out
,
pd_out
,
"out"
)
for
x_grad
,
pd_x_grad
in
zip
(
grad_inputs
,
pd_grad_inputs
):
self
.
assertTrue
(
np
.
array_equal
(
x_grad
,
pd_x_grad
),
"custom op x grad: {},
\n
paddle api x grad: {}"
.
format
(
x_grad
,
pd_x_grad
))
self
.
check_output
(
x_grad
,
pd_x_grad
,
"x_grad"
)
def
test_static
(
self
):
for
device
in
self
.
devices
:
for
dtype
in
self
.
dtypes
:
for
axis
in
self
.
axises
:
out
,
x1_grad
,
x2_grad
=
concat_static
(
custom_ops
.
custom_concat
,
device
,
dtype
,
self
.
np_inputs
,
axis
)
custom_ops
.
custom_concat
,
dtype
,
self
.
np_inputs
,
axis
)
pd_out
,
pd_x1_grad
,
pd_x2_grad
=
concat_static
(
paddle
.
concat
,
device
,
dtype
,
self
.
np_inputs
,
axis
)
paddle
.
concat
,
dtype
,
self
.
np_inputs
,
axis
)
self
.
assertTrue
(
np
.
array_equal
(
out
,
pd_out
),
"custom op out: {},
\n
paddle api out: {}"
.
format
(
out
,
pd_out
))
self
.
assertTrue
(
np
.
array_equal
(
x1_grad
,
pd_x1_grad
),
"custom op x1_grad: {},
\n
paddle api x1_grad: {}"
.
format
(
x1_grad
,
pd_x1_grad
))
self
.
assertTrue
(
np
.
array_equal
(
x2_grad
,
pd_x2_grad
),
"custom op x2_grad: {},
\n
paddle api x2_grad: {}"
.
format
(
x2_grad
,
pd_x2_grad
))
self
.
check_output
(
out
,
pd_out
,
"out"
)
self
.
check_output
(
x1_grad
,
pd_x1_grad
,
"x1_grad"
)
self
.
check_output
(
x2_grad
,
pd_x2_grad
,
"x2_grad"
)
def
test_dynamic_with_attr
(
self
):
for
dtype
in
self
.
dtypes
:
for
axis
in
self
.
axises
:
out
,
grad_inputs
=
concat_dynamic
(
custom_ops
.
custom_concat_with_attr
,
dtype
,
self
.
np_inputs
,
axis
,
True
)
pd_out
,
pd_grad_inputs
=
concat_dynamic
(
paddle
.
concat
,
dtype
,
self
.
np_inputs
,
axis
,
True
)
self
.
check_output
(
out
,
pd_out
,
"out"
)
for
x_grad
,
pd_x_grad
in
zip
(
grad_inputs
,
pd_grad_inputs
):
self
.
check_output
(
x_grad
,
pd_x_grad
,
"x_grad"
)
def
test_static_with_attr
(
self
):
for
dtype
in
self
.
dtypes
:
for
axis
in
self
.
axises
:
out
,
x1_grad
,
x2_grad
=
concat_static
(
custom_ops
.
custom_concat_with_attr
,
dtype
,
self
.
np_inputs
,
axis
,
True
)
pd_out
,
pd_x1_grad
,
pd_x2_grad
=
concat_static
(
paddle
.
concat
,
dtype
,
self
.
np_inputs
,
axis
,
True
)
self
.
check_output
(
out
,
pd_out
,
"out"
)
self
.
check_output
(
x1_grad
,
pd_x1_grad
,
"x1_grad"
)
self
.
check_output
(
x2_grad
,
pd_x2_grad
,
"x2_grad"
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录