未验证 提交 e3a64fca 编写于 作者: Q Qiyang Min 提交者: GitHub

Merge pull request #13835 from velconia/fix_reshape_op

Fix Reshape op when input is the same with output
...@@ -36,6 +36,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place, ...@@ -36,6 +36,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
auto size = src.numel() * SizeOfType(src.type()); auto size = src.numel() * SizeOfType(src.type());
if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) { if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
if (src_ptr == dst_ptr) {
VLOG(3) << "Skip copy the same data async from " << src_place << " to "
<< dst_place;
return;
}
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr, memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
boost::get<platform::CPUPlace>(src_place), src_ptr, size); boost::get<platform::CPUPlace>(src_place), src_ptr, size);
} }
...@@ -71,6 +76,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place, ...@@ -71,6 +76,11 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
auto stream = auto stream =
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream(); reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
if (platform::is_same_place(src_place, dst_place)) { if (platform::is_same_place(src_place, dst_place)) {
if (src_ptr == dst_ptr) {
VLOG(3) << "Skip copy the same data async from " << src_place << " to "
<< dst_place;
return;
}
memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
stream); stream);
} else { } else {
...@@ -114,6 +124,11 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place, ...@@ -114,6 +124,11 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
auto dst_ptr = dst->mutable_data(dst_place, src.type()); auto dst_ptr = dst->mutable_data(dst_place, src.type());
auto size = src.numel() * SizeOfType(src.type()); auto size = src.numel() * SizeOfType(src.type());
if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) { if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
if (src_ptr == dst_ptr) {
VLOG(3) << "Skip copy the same data from " << src_place << " to "
<< dst_place;
return;
}
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr, memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
boost::get<platform::CPUPlace>(src_place), src_ptr, size); boost::get<platform::CPUPlace>(src_place), src_ptr, size);
} }
...@@ -130,6 +145,11 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place, ...@@ -130,6 +145,11 @@ void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr); memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
} else if (platform::is_gpu_place(src_place) && } else if (platform::is_gpu_place(src_place) &&
platform::is_gpu_place(dst_place)) { platform::is_gpu_place(dst_place)) {
if (src_ptr == dst_ptr && platform::is_same_place(src_place, dst_place)) {
VLOG(3) << "Skip copy the same data from " << src_place << " to "
<< dst_place;
return;
}
auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place); auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place); auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr); memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
......
...@@ -41,6 +41,11 @@ TEST(TensorCopy, Tensor) { ...@@ -41,6 +41,11 @@ TEST(TensorCopy, Tensor) {
EXPECT_EQ(src_ptr[i], dst_ptr[i]); EXPECT_EQ(src_ptr[i], dst_ptr[i]);
} }
TensorCopy(dst_tensor, *cpu_place, &dst_tensor);
for (size_t i = 0; i < 9; ++i) {
EXPECT_EQ(src_ptr[i], dst_ptr[i]);
}
EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout()); EXPECT_TRUE(dst_tensor.layout() == src_tensor.layout());
Tensor slice_tensor = src_tensor.Slice(1, 2); Tensor slice_tensor = src_tensor.Slice(1, 2);
...@@ -82,6 +87,15 @@ TEST(TensorCopy, Tensor) { ...@@ -82,6 +87,15 @@ TEST(TensorCopy, Tensor) {
EXPECT_EQ(src_ptr[i], dst_ptr[i]); EXPECT_EQ(src_ptr[i], dst_ptr[i]);
} }
// Copy the same tensor
TensorCopy(gpu_tensor, *gpu_place, gpu_ctx, &gpu_tensor);
gpu_ctx.Wait();
const int* dst_ptr_tmp = dst_tensor.data<int>();
EXPECT_NE(src_ptr, dst_ptr_tmp);
for (size_t i = 0; i < 9; ++i) {
EXPECT_EQ(src_ptr[i], dst_ptr_tmp[i]);
}
Tensor slice_tensor = src_tensor.Slice(1, 2); Tensor slice_tensor = src_tensor.Slice(1, 2);
// CPU Slice Tensor to GPU Tensor // CPU Slice Tensor to GPU Tensor
......
...@@ -259,7 +259,6 @@ class Reshape2Op : public ReshapeOp { ...@@ -259,7 +259,6 @@ class Reshape2Op : public ReshapeOp {
: ReshapeOp(type, inputs, outputs, attrs) {} : ReshapeOp(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
ReshapeOp::InferShape(ctx);
PADDLE_ENFORCE(ctx->HasOutput("XShape"), PADDLE_ENFORCE(ctx->HasOutput("XShape"),
"Output(XShape) of ReshapeOp should not be null."); "Output(XShape) of ReshapeOp should not be null.");
const auto &x_dims = ctx->GetInputDim("X"); const auto &x_dims = ctx->GetInputDim("X");
...@@ -270,6 +269,8 @@ class Reshape2Op : public ReshapeOp { ...@@ -270,6 +269,8 @@ class Reshape2Op : public ReshapeOp {
} }
ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims)); ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
ctx->ShareLoD("X", /*->*/ "XShape"); ctx->ShareLoD("X", /*->*/ "XShape");
ReshapeOp::InferShape(ctx);
} }
}; };
......
...@@ -90,11 +90,13 @@ REGISTER_OPERATOR(sequence_concat, paddle::framework::OperatorWithKernel, ...@@ -90,11 +90,13 @@ REGISTER_OPERATOR(sequence_concat, paddle::framework::OperatorWithKernel,
paddle::framework::DefaultGradOpDescMaker<false>); paddle::framework::DefaultGradOpDescMaker<false>);
template <typename T> template <typename T>
using Kernel = op::SeqConcatKernel<paddle::platform::CPUDeviceContext, T>; using Kernel = op::SeqConcatKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat, Kernel<float>, Kernel<double>); REGISTER_OP_CPU_KERNEL(sequence_concat, Kernel<float>, Kernel<double>,
Kernel<int64_t>);
REGISTER_OPERATOR(sequence_concat_grad, paddle::framework::OperatorWithKernel, REGISTER_OPERATOR(sequence_concat_grad, paddle::framework::OperatorWithKernel,
op::SeqConcatGradShapeInferer); op::SeqConcatGradShapeInferer);
template <typename T> template <typename T>
using GradKernel = using GradKernel =
op::SeqConcatGradKernel<paddle::platform::CPUDeviceContext, T>; op::SeqConcatGradKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat_grad, GradKernel<float>, REGISTER_OP_CPU_KERNEL(sequence_concat_grad, GradKernel<float>,
GradKernel<double>); GradKernel<double>, GradKernel<int64_t>);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册