Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e3334f3e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e3334f3e
编写于
9月 23, 2020
作者:
M
mapingshuo
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add zero
上级
43240a1b
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
1323 addition
and
22 deletion
+1323
-22
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+10
-0
paddle/fluid/operators/collective/c_sync_comm_stream_op.cc
paddle/fluid/operators/collective/c_sync_comm_stream_op.cc
+4
-2
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+33
-0
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+3
-0
python/paddle/distributed/fleet/meta_optimizers/__init__.py
python/paddle/distributed/fleet/meta_optimizers/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_optimizers/zero_optimizer.py
...addle/distributed/fleet/meta_optimizers/zero_optimizer.py
+1245
-0
python/paddle/fluid/clip.py
python/paddle/fluid/clip.py
+1
-1
python/paddle/fluid/contrib/mixed_precision/decorator.py
python/paddle/fluid/contrib/mixed_precision/decorator.py
+18
-14
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+8
-5
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
e3334f3e
...
...
@@ -24,6 +24,14 @@ enum Mode {
message
RecomputeConfig
{
repeated
string
checkpoints
=
1
;
}
message
ZeROConfig
{
optional
bool
amp
=
1
[
default
=
true
];
optional
int32
nrings
=
2
[
default
=
3
];
optional
float
fuse_broadcast_MB_bytes
=
3
[
default
=
64.0
];
repeated
string
checkpoints
=
4
;
optional
bool
allreduce
=
5
[
default
=
false
];
}
message
AMPConfig
{
optional
float
init_loss_scaling
=
1
[
default
=
32768.0
];
optional
int32
incr_every_n_steps
=
2
[
default
=
1000
];
...
...
@@ -127,6 +135,7 @@ message DistributedStrategy {
optional
int32
conv_workspace_size_limit
=
22
[
default
=
4000
];
optional
bool
cudnn_batchnorm_spatial_persistent
=
23
[
default
=
true
];
optional
bool
adaptive_localsgd
=
24
[
default
=
false
];
optional
bool
zero
=
25
[
default
=
false
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
@@ -138,6 +147,7 @@ message DistributedStrategy {
optional
LarsConfig
lars_configs
=
108
;
optional
LambConfig
lamb_configs
=
109
;
optional
AdaptiveLocalSGDConfig
adaptive_localsgd_configs
=
110
;
optional
ZeROConfig
zero_configs
=
111
;
optional
BuildStrategy
build_strategy
=
201
;
optional
ExecutionStrategy
execution_strategy
=
202
;
}
...
...
paddle/fluid/operators/collective/c_sync_comm_stream_op.cc
浏览文件 @
e3334f3e
...
...
@@ -55,8 +55,10 @@ class CSyncCommStreamOp : public framework::OperatorBase {
class
CSyncCommStreamOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
"(Tensor) Dependency of the variable need to sync"
);
AddOutput
(
"Out"
,
"(Tensor) Dependency of the variable need to sync"
);
AddInput
(
"X"
,
"(Tensor) Dependency of the variable need to sync"
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"(Tensor) Dependency of the variable need to sync"
)
.
AsDuplicable
();
AddAttr
<
int
>
(
"ring_id"
,
"(int default 0) ring id."
).
SetDefault
(
0
);
AddComment
(
R"DOC(
CSyncCommStream Operator
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
e3334f3e
...
...
@@ -611,6 +611,39 @@ class DistributedStrategy(object):
"checkpoint_configs"
)
assign_configs_value
(
self
.
strategy
.
recompute_configs
,
configs
)
@
property
def
zero
(
self
):
"""
Indicating whether we are using Zero Redundancy Optimizer for memory
optimization
Default value: False
Examples:
.. code-block:: python
import paddle.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.zero = True
"""
return
self
.
strategy
.
zero
@
zero
.
setter
def
zero
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
zero
=
flag
else
:
print
(
"WARNING: zero should have value of bool type"
)
@
property
def
zero_configs
(
self
):
"""
Set zero configurations.
"""
return
get_msg_dict
(
self
.
strategy
.
zero_configs
)
@
zero_configs
.
setter
def
zero_configs
(
self
,
configs
):
check_configs_key
(
self
.
strategy
.
zero_configs
,
configs
,
"zero_configs"
)
assign_configs_value
(
self
.
strategy
.
zero_configs
,
configs
)
@
property
def
pipeline
(
self
):
"""
...
...
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
e3334f3e
...
...
@@ -1086,6 +1086,9 @@ class Fleet(object):
context
[
"program_optimize_ops"
]
=
optimize_ops
context
[
"program_params_grads"
]
=
params_grads
if
self
.
user_defined_strategy
.
zero
:
graph_optimizer
=
None
if
graph_optimizer
:
optimize_ops
,
params_grads
=
graph_optimizer
.
minimize
(
loss
,
...
...
python/paddle/distributed/fleet/meta_optimizers/__init__.py
浏览文件 @
e3334f3e
...
...
@@ -23,3 +23,4 @@ from .lars_optimizer import LarsOptimizer
from
.parameter_server_graph_optimizer
import
ParameterServerGraphOptimizer
from
.dgc_optimizer
import
DGCOptimizer
from
.lamb_optimizer
import
LambOptimizer
from
.zero_optimizer
import
ZeroOptimizer
python/paddle/distributed/fleet/meta_optimizers/zero_optimizer.py
0 → 100644
浏览文件 @
e3334f3e
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
,
CollectiveHelper
from
.common
import
is_update_op
,
is_loss_grad_op
,
is_backward_op
,
is_optimizer_op
from
.meta_optimizer_base
import
MetaOptimizerBase
from
paddle.fluid
import
unique_name
,
core
from
paddle.fluid.contrib.mixed_precision.decorator
import
OptimizerWithMixedPrecision
import
paddle.fluid
as
fluid
import
math
import
re
__all__
=
[
"ZeroOptimizer"
]
def
_pretty_op_desc_
(
op_desc
,
prefix
):
out_s
=
"%s
\t
name:[%s]
\n
%s
\t
inputs:[%s]
\n
%s
\t
outputs:[%s]"
%
\
(
prefix
+
"_op"
,
str
(
op_desc
.
type
()),
prefix
+
"_input"
,
" "
.
join
(
op_desc
.
input_arg_names
()),
prefix
+
"_output"
,
" "
.
join
(
op_desc
.
output_arg_names
()))
return
out_s
class
SubProgram
(
object
):
def
__init__
(
self
,
block
):
self
.
_block
=
block
self
.
_allreduce_vars
=
[]
# sub program start idx
self
.
_start_idx
=
-
1
# sub program end idx
self
.
_end_idx
=
-
1
# param name to broadcast name
self
.
_param2broadcast
=
{}
self
.
_broadcast_vars
=
[]
# cast op pairs, fp16 name (str) -> fp32 name (str)
self
.
_cast_ops
=
{}
# fill constant vars
self
.
_fill_constant_vars
=
[]
# parameter mems
self
.
_param_mem
=
0.0
class
ProgramDeps
(
object
):
def
__init__
(
self
,
block
,
start_vars
,
end_vars
):
self
.
_block
=
block
# vars where to start to build the deps
self
.
_start_vars
=
start_vars
# vars where to stop to build the deps
self
.
_end_vars
=
end_vars
# var name -> op idxs which depends on this var
self
.
_var_deps
=
{}
# sub block deps which is a subset of this topo
self
.
_sub_block_deps
=
{}
# var name -> op idxs which generate var
self
.
_var_to_generate_op
=
{}
self
.
_should_removed_var
=
set
()
self
.
_father_block_deps
=
None
self
.
_build_deps
()
def
get_sub_block_deps
(
self
,
idx
):
if
idx
in
self
.
_sub_block_deps
:
return
self
.
_sub_block_deps
[
idx
]
else
:
return
None
def
get_var_deps
(
self
,
var_name
):
if
var_name
in
self
.
_var_deps
:
return
self
.
_var_deps
[
var_name
]
else
:
return
None
def
_build_deps
(
self
,
):
for
var_name
in
self
.
_start_vars
:
self
.
_var_deps
[
var_name
]
=
[
-
1
]
self
.
_var_to_generate_op
[
var_name
]
=
[
-
1
]
for
idx
,
op
in
enumerate
(
self
.
_block
.
ops
):
if
op
.
type
in
[
"c_allreduce_sum"
,
"c_sync_comm_stream"
,
"c_calc_comm_stream"
]:
continue
input_vars
=
op
.
desc
.
input_arg_names
()
output_vars
=
op
.
desc
.
output_arg_names
()
deps_reduce
=
False
for
input_name
in
input_vars
:
if
input_name
in
self
.
_var_deps
:
deps_reduce
=
True
if
deps_reduce
:
for
input_name
in
input_vars
:
if
input_name
in
self
.
_var_deps
:
self
.
_var_deps
[
input_name
].
append
(
idx
)
for
output_name
in
output_vars
:
self
.
_var_deps
[
output_name
]
=
[]
if
output_name
not
in
self
.
_var_to_generate_op
:
self
.
_var_to_generate_op
[
output_name
]
=
[
idx
]
else
:
self
.
_var_to_generate_op
[
output_name
].
append
(
idx
)
if
op
.
type
==
"conditional_block"
:
# subblock
assert
(
op
.
desc
.
has_attr
(
"sub_block"
))
subblock_idx
=
op
.
desc
.
attr
(
"sub_block"
).
id
subblock_deps
=
ProgramDeps
(
self
.
_block
.
program
.
block
(
subblock_idx
),
op
.
desc
.
input_arg_names
(),
op
.
desc
.
output_arg_names
())
self
.
_sub_block_deps
[
subblock_idx
]
=
subblock_deps
subblock_deps
.
_father_block_deps
=
self
def
crop_input_var_from_op
(
self
,
op_idx
,
var_name
):
if
var_name
in
self
.
_var_deps
:
# update var -> dep_var_op
if
self
.
_var_deps
[
var_name
]
!=
[]:
assert
(
op_idx
in
self
.
_var_deps
[
var_name
])
self
.
_var_deps
[
var_name
].
remove
(
op_idx
)
# update _should_removed_var
if
var_name
in
self
.
_start_vars
:
self
.
_should_removed_var
.
discard
(
var_name
)
elif
self
.
_var_deps
[
var_name
]
==
[]:
# no more deps of this var
self
.
_should_removed_var
.
add
(
var_name
)
elif
self
.
_var_to_generate_op
[
var_name
][
-
1
]
>=
self
.
_var_deps
[
var_name
][
-
1
]:
# there are circle in the graph
self
.
_should_removed_var
.
add
(
var_name
)
else
:
# input_name should not be deleted
self
.
_should_removed_var
.
discard
(
var_name
)
def
crop_output_var_from_op
(
self
,
op_idx
,
var_name
):
if
var_name
in
self
.
_var_to_generate_op
:
assert
(
op_idx
in
self
.
_var_to_generate_op
[
var_name
])
self
.
_var_to_generate_op
[
var_name
].
remove
(
op_idx
)
if
self
.
_block
.
has_var
(
var_name
)
and
self
.
_var_to_generate_op
[
var_name
]
==
[]:
print
(
"main_block remove var {}"
.
format
(
var_name
))
self
.
_block
.
_remove_var
(
var_name
)
def
remove_op
(
self
,
op_idx
):
# update deps
op
=
self
.
_block
.
ops
[
op_idx
]
print
(
"main_block remove op {}"
.
format
(
op
.
type
))
for
input_name
in
op
.
desc
.
input_arg_names
():
self
.
crop_input_var_from_op
(
op_idx
,
input_name
)
for
output_name
in
op
.
desc
.
output_arg_names
():
self
.
crop_output_var_from_op
(
op_idx
,
output_name
)
self
.
_block
.
_remove_op
(
op_idx
)
def
should_remove_op
(
self
,
op_idx
):
op
=
self
.
_block
.
ops
[
op_idx
]
for
output_name
in
op
.
desc
.
output_arg_names
():
if
output_name
not
in
self
.
_should_removed_var
:
return
False
return
True
class
ZeroOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
ZeroOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
self
.
_main_program
=
None
self
.
_startup_program
=
None
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[]
# params and fp16 params is for broadcast
self
.
_params
=
set
([])
self
.
_fp16_params
=
set
([])
# fp16 to fp32
self
.
_fp16_to_params
=
{}
self
.
_broadcast_vars
=
set
([])
# _param(str) -> device_id(int)
self
.
_param2device
=
{}
# varname(str) -> param(Variable)
# reduced grads to param name
self
.
_reduced_grads_to_param
=
{}
# self._nrings(int) is for nccl communicate
self
.
_nrings
=
3
# self._sub_progs
self
.
_sub_progs
=
[]
self
.
_fuse_broadcast_MB_bytes
=
64
self
.
_dtype_to_size
=
{
core
.
VarDesc
.
VarType
.
FP16
:
2
,
core
.
VarDesc
.
VarType
.
FP32
:
4
,
core
.
VarDesc
.
VarType
.
FP64
:
8
,
core
.
VarDesc
.
VarType
.
INT16
:
2
,
core
.
VarDesc
.
VarType
.
INT32
:
4
,
core
.
VarDesc
.
VarType
.
INT64
:
8
,
core
.
VarDesc
.
VarType
.
BOOL
:
1
,
core
.
VarDesc
.
VarType
.
UINT8
:
1
,
}
def
_get_var_size
(
self
,
param
):
"""
input:
- param: var
return:
var size in Bytes
"""
assert
-
1
not
in
param
.
shape
return
reduce
(
lambda
x
,
y
:
x
*
y
,
param
.
shape
)
*
self
.
_dtype_to_size
[
param
.
dtype
]
/
1024.0
/
1024.0
def
_can_apply
(
self
):
return
self
.
user_defined_strategy
.
zero
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
zero
=
False
def
_is_fp16_cast_op
(
self
,
block
,
op
):
if
op
.
type
!=
"cast"
:
return
False
if
is_optimizer_op
(
op
):
return
False
assert
(
len
(
op
.
desc
.
input_arg_names
())
==
1
)
assert
(
len
(
op
.
desc
.
output_arg_names
())
==
1
)
input_name
,
output_name
=
op
.
desc
.
input_arg_names
()[
0
],
op
.
desc
.
output_arg_names
()[
0
]
if
input_name
not
in
self
.
_params
:
return
False
input_var
=
block
.
var
(
input_name
)
output_var
=
block
.
var
(
output_name
)
if
input_var
.
dtype
!=
core
.
VarDesc
.
VarType
.
FP32
or
\
output_var
.
dtype
!=
core
.
VarDesc
.
VarType
.
FP16
:
return
False
return
True
def
_split_params
(
self
,
params
):
param2device
=
{}
total_param_mem
=
0.0
param2mem
=
[]
for
param
in
params
:
mem
=
self
.
_get_var_size
(
param
)
total_param_mem
+=
mem
param2mem
.
append
((
param
.
name
,
mem
))
# print(param.name, mem)
# print("total_param_mem: ", total_param_mem)
device_num
=
self
.
role_maker
.
worker_num
()
# print("device_num: ", device_num)
device2params
=
{
x
:
[]
for
x
in
range
(
device_num
)}
device_idx
=
0
mem_accu
=
0.0
for
param_name
,
mem
in
param2mem
:
if
mem_accu
>
total_param_mem
*
1.0
*
(
device_idx
+
1
)
/
device_num
:
device_idx
+=
1
device2params
[
device_idx
].
append
(
param_name
)
param2device
[
param_name
]
=
device_idx
mem_accu
+=
mem
# for debug
print
(
device2params
)
return
param2device
def
_is_opti_var
(
self
,
var_name
):
if
var_name
in
self
.
_params
:
return
True
for
suffix
in
[
"_moment1_0"
,
"_moment2_0"
,
"_beta1_pow_acc_0"
,
"_beta2_pow_acc_0"
]:
base_name
=
re
.
sub
(
suffix
,
''
,
var_name
)
if
base_name
in
self
.
_params
:
return
True
return
False
def
_var_device_id
(
self
,
var_name
):
if
not
self
.
_is_opti_var
(
var_name
):
return
-
1
if
var_name
in
self
.
_param2device
:
return
self
.
_param2device
[
var_name
]
for
suffix
in
[
"_moment1_0"
,
"_moment2_0"
,
"_beta1_pow_acc_0"
,
"_beta2_pow_acc_0"
]:
base_name
=
re
.
sub
(
suffix
,
''
,
var_name
)
if
base_name
in
self
.
_param2device
:
return
self
.
_param2device
[
base_name
]
return
-
1
def
_insert_scale_loss_grad_ops
(
self
,
block
,
scale
=
1.0
):
'''
In order to keep the learning rate consistent in different numbers of
training workers, we scale the loss grad by the number of workers
'''
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_loss_grad_op
(
op
):
loss_grad_var
=
block
.
vars
[
op
.
output_arg_names
[
0
]]
block
.
_insert_op
(
idx
+
1
,
type
=
'scale'
,
inputs
=
{
'X'
:
loss_grad_var
},
outputs
=
{
'Out'
:
loss_grad_var
},
attrs
=
{
'scale'
:
scale
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
def
_split_program
(
self
,
block
):
for
op_idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
int
(
op
.
attr
(
'op_role'
))
!=
int
(
OpRole
.
Optimize
):
last_backward_op_idx
=
op_idx
+
1
break
sub_prog
=
SubProgram
(
block
)
sub_prog
.
_end_idx
=
last_backward_op_idx
for
op_idx
in
reversed
(
range
(
last_backward_op_idx
)):
op
=
block
.
ops
[
op_idx
]
assert
(
int
(
op
.
attr
(
'op_role'
))
!=
int
(
OpRole
.
Optimize
))
if
sub_prog
.
_param_mem
>=
self
.
_fuse_broadcast_MB_bytes
:
sub_prog
.
_start_idx
=
op_idx
+
1
self
.
_sub_progs
.
insert
(
0
,
sub_prog
)
sub_prog
=
SubProgram
(
block
)
sub_prog
.
_end_idx
=
op_idx
+
1
# find broadcast vars
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
not
in
self
.
_broadcast_vars
:
continue
root_device
=
self
.
_param2device
[
input_name
]
if
input_name
in
sub_prog
.
_param2broadcast
:
# skip broadcast because it reuse the old broadcast var
broadcast_name
=
sub_prog
.
_param2broadcast
[
input_name
]
if
input_name
!=
broadcast_name
:
op
.
_rename_input
(
input_name
,
broadcast_name
)
continue
if
root_device
==
self
.
role_maker
.
worker_index
():
broadcast_var_name
=
input_name
else
:
broadcast_var_name
=
unique_name
.
generate
(
input_name
+
"@BroadCast"
)
sub_prog
.
_fill_constant_vars
.
append
(
broadcast_var_name
)
sub_prog
.
_param2broadcast
[
input_name
]
=
broadcast_var_name
sub_prog
.
_broadcast_vars
.
append
(
(
broadcast_var_name
,
self
.
_param2device
[
input_name
]))
sub_prog
.
_param_mem
+=
self
.
_get_var_size
(
self
.
_main_program
.
global_block
().
var
(
input_name
))
# find reduce vars
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
OP_ROLE_VAR_KEY
]
if
len
(
op_role_var
)
!=
0
:
assert
len
(
op_role_var
)
%
2
==
0
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
param
,
reduced_grad
=
op_role_var
[
i
],
op_role_var
[
i
+
1
]
sub_prog
.
_allreduce_vars
.
append
(
reduced_grad
)
assert
(
reduced_grad
not
in
self
.
_reduced_grads_to_param
)
self
.
_reduced_grads_to_param
[
reduced_grad
]
=
param
# find cast op
if
self
.
_is_fp16_cast_op
(
block
,
op
):
fp32_param
=
op
.
desc
.
input_arg_names
()[
0
]
fp16_param
=
op
.
desc
.
output_arg_names
()[
0
]
if
self
.
_param2device
[
fp32_param
]
==
self
.
role_maker
.
worker_index
():
sub_prog
.
_cast_ops
[
fp16_param
]
=
fp32_param
if
sub_prog
.
_param_mem
>
0
:
sub_prog
.
_start_idx
=
0
self
.
_sub_progs
.
insert
(
0
,
sub_prog
)
return
def
_is_gradient_clip_sum_op
(
self
,
op
):
return
op
.
type
==
"sum"
and
op
.
desc
.
has_attr
(
"op_namescope"
)
\
and
op
.
desc
.
attr
(
"op_namescope"
).
startswith
(
"/gradient_clip_@CLIP"
)
def
_is_amp_sum_op
(
self
,
op
):
return
op
.
type
==
"sum"
and
op
.
desc
.
has_attr
(
"op_namescope"
)
\
and
op
.
desc
.
attr
(
"op_namescope"
).
startswith
(
"/mixed_precision"
)
def
_is_amp_subblock
(
self
,
op
):
return
op
.
type
==
"conditional_block"
and
op
.
desc
.
has_attr
(
"op_namescope"
)
\
and
op
.
desc
.
attr
(
"op_namescope"
).
startswith
(
"/mixed_precision"
)
def
_prune_main_program
(
self
,
block
):
"""
calculate deps from allredce op to optimize op,
remove ops and vars not needed in this worker
"""
# build prog deps
reduced_grads
=
[]
var_to_reduce_var
=
{}
for
idx
,
op
in
enumerate
(
block
.
ops
):
input_names
=
op
.
desc
.
input_arg_names
()
output_names
=
op
.
desc
.
output_arg_names
()
if
op
.
type
==
"c_allreduce_sum"
:
assert
(
len
(
output_names
)
==
1
)
output_name
=
output_names
[
0
]
reduced_grads
.
append
(
output_name
)
var_to_reduce_var
[
output_name
]
=
output_name
else
:
non_persistable_input
=
[
x
for
x
in
input_names
if
not
block
.
var
(
x
).
persistable
]
if
len
(
non_persistable_input
)
==
1
and
len
(
output_names
)
==
1
and
non_persistable_input
[
0
]
in
var_to_reduce_var
:
var_to_reduce_var
[
output_names
[
0
]]
=
var_to_reduce_var
[
non_persistable_input
[
0
]]
params
=
[]
for
var_name
,
_
in
block
.
vars
.
items
():
if
self
.
_is_opti_var
(
var_name
)
and
\
self
.
_var_device_id
(
var_name
)
!=
self
.
role_maker
.
worker_index
():
params
.
append
(
var_name
)
program_deps
=
ProgramDeps
(
block
,
reduced_grads
,
params
)
# Init
for
var_name
in
program_deps
.
_end_vars
:
program_deps
.
_should_removed_var
.
add
(
var_name
)
# Prune
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
op
.
type
in
[
"c_allreduce_sum"
,
"c_sync_comm_stream"
,
"c_calc_comm_stream"
,
"c_gen_nccl_id"
,
"c_comm_init"
]:
pass
elif
self
.
_is_gradient_clip_sum_op
(
op
)
or
self
.
_is_amp_sum_op
(
op
):
reversed_input_vars
=
[]
for
input_name
in
op
.
desc
.
input_arg_names
():
assert
(
input_name
in
var_to_reduce_var
)
reduce_var
=
var_to_reduce_var
[
input_name
]
param_name
=
self
.
_reduced_grads_to_param
[
reduce_var
]
if
self
.
_param2device
[
param_name
]
!=
self
.
role_maker
.
worker_index
():
program_deps
.
crop_input_var_from_op
(
idx
,
input_name
)
else
:
reversed_input_vars
.
append
(
input_name
)
op
.
desc
.
set_input
(
"X"
,
reversed_input_vars
)
assert
(
len
(
op
.
desc
.
output_arg_names
())
==
1
)
sum_res
=
op
.
desc
.
output_arg_names
()[
0
]
block
.
_insert_op
(
idx
+
1
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
sum_res
},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
'ring_id'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
block
.
_insert_op
(
idx
+
1
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
sum_res
},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
'ring_id'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
block
.
_insert_op
(
idx
+
1
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
sum_res
},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Optimize
})
elif
op
.
type
==
"conditional_block"
:
assert
(
op
.
desc
.
has_attr
(
"sub_block"
))
subblock_idx
=
op
.
desc
.
attr
(
"sub_block"
).
id
subblock_deps
=
program_deps
.
get_sub_block_deps
(
subblock_idx
)
# only prune amp subblock
if
subblock_deps
is
None
or
not
self
.
_is_amp_subblock
(
op
):
continue
# init
reversed_output_vars
=
[]
for
output_name
in
op
.
desc
.
output
(
"Out"
):
if
output_name
in
program_deps
.
_should_removed_var
:
subblock_deps
.
_should_removed_var
.
add
(
output_name
)
program_deps
.
crop_output_var_from_op
(
idx
,
output_name
)
else
:
reversed_output_vars
.
append
(
output_name
)
# prune
for
sub_op_idx
,
_
in
reversed
(
list
(
enumerate
(
subblock_deps
.
_block
.
ops
))):
if
subblock_deps
.
should_remove_op
(
sub_op_idx
):
subblock_deps
.
remove_op
(
sub_op_idx
)
reversed_input_vars
=
[]
for
input_name
in
op
.
desc
.
input
(
'Input'
):
if
input_name
not
in
subblock_deps
.
_should_removed_var
:
reversed_input_vars
.
append
(
input_name
)
else
:
program_deps
.
crop_input_var_from_op
(
idx
,
input_name
)
op
.
desc
.
set_input
(
'Input'
,
reversed_input_vars
)
op
.
desc
.
set_output
(
'Out'
,
reversed_output_vars
)
else
:
if
program_deps
.
should_remove_op
(
idx
):
program_deps
.
remove_op
(
idx
)
block
.
_sync_with_cpp
()
return
def
_remove_cast_op
(
self
,
block
,
sub_prog
,
offset
):
inserted_op_num
=
0
for
op_idx
in
reversed
(
range
(
offset
+
sub_prog
.
_start_idx
,
offset
+
sub_prog
.
_end_idx
)):
op
=
block
.
ops
[
op_idx
]
if
self
.
_is_fp16_cast_op
(
block
,
op
):
block
.
_remove_op
(
op_idx
)
inserted_op_num
-=
1
block
.
_sync_with_cpp
()
return
inserted_op_num
def
_insert_broadcast_ops
(
self
,
block
,
insert_idx
,
broadcast2root
):
"""
_add_broadcast_ops
"""
ring_id
=
-
1
# TODO(mapingshuo): correct OP_ROLE_KEY
for
broadcast_name
,
root_device
in
broadcast2root
:
ring_id
=
(
ring_id
+
1
)
%
self
.
_nrings
block
.
_insert_op
(
insert_idx
,
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
broadcast_name
},
outputs
=
{
'Out'
:
broadcast_name
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
root_device
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
return
def
_insert_allreduce_ops
(
self
,
block
,
insert_idx
,
allreduce_vars
):
"""
_add_allreduce_ops
"""
ring_id
=
-
1
for
var
in
allreduce_vars
:
ring_id
=
(
ring_id
+
1
)
%
self
.
_nrings
block
.
_insert_op
(
insert_idx
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
return
def
_insert_cast_ops
(
self
,
block
,
insert_idx
,
cast_ops
):
"""
_add_cast_ops
"""
for
fp16_name
,
fp32_name
in
cast_ops
.
items
():
block
.
_insert_op
(
insert_idx
,
type
=
"cast"
,
inputs
=
{
"X"
:
fp32_name
},
outputs
=
{
"Out"
:
fp16_name
},
attrs
=
{
"in_dtype"
:
core
.
VarDesc
.
VarType
.
FP32
,
"out_dtype"
:
core
.
VarDesc
.
VarType
.
FP16
})
return
def
_insert_fill_constant_ops
(
self
,
block
,
insert_idx
,
fill_constant_vars
):
"""
_add_fill_constant_ops
"""
for
broadcast_name
in
fill_constant_vars
:
broadcast_var
=
block
.
var
(
broadcast_name
)
block
.
_insert_op
(
insert_idx
,
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
broadcast_var
.
name
},
attrs
=
{
"shape"
:
broadcast_var
.
shape
,
"dtype"
:
broadcast_var
.
dtype
,
"value"
:
0.0
,
})
return
def
_insert_sync_comm_ops
(
self
,
block
,
insert_idx
,
comm_dep_vars
):
"""
_insert_sync_comm_ops
"""
# TODO(mapingshuo) fix OP_ROLE_KEY
for
i
in
range
(
self
.
_nrings
):
block
.
_insert_op
(
insert_idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
comm_dep_vars
},
outputs
=
{
'Out'
:
comm_dep_vars
},
attrs
=
{
'ring_id'
:
i
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
return
def
_insert_sync_calc_op
(
self
,
block
,
insert_idx
,
calc_dep_vars
):
"""
_insert_sync_calc_op
"""
# TODO(mapingshuo) fix OP_ROLE_KEY
block
.
_insert_op
(
insert_idx
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
calc_dep_vars
},
outputs
=
{
'Out'
:
calc_dep_vars
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Forward
})
return
def
_add_broadcast_allreduce_v2
(
self
,
block
):
"""
_add_broadcast_allreduce_v2
"""
ring_id
=
-
1
if
len
(
self
.
_sub_progs
)
<
1
:
return
if
self
.
_sub_progs
[
-
1
].
_allreduce_vars
:
self
.
_insert_sync_comm_ops
(
block
,
self
.
_sub_progs
[
-
1
].
_end_idx
,
self
.
_sub_progs
[
-
1
].
_allreduce_vars
)
self
.
_insert_allreduce_ops
(
block
,
self
.
_sub_progs
[
-
1
].
_end_idx
,
self
.
_sub_progs
[
-
1
].
_allreduce_vars
)
for
idx
,
subprog
in
reversed
(
list
(
enumerate
(
self
.
_sub_progs
))):
print
(
"subprog_{}: ({}-{})"
.
format
(
idx
,
subprog
.
_start_idx
,
subprog
.
_end_idx
))
allreduce_vars
=
self
.
_sub_progs
[
idx
-
1
].
_allreduce_vars
if
idx
>
0
else
[]
broadcast_vars
=
self
.
_sub_progs
[
idx
+
1
].
_broadcast_vars
if
idx
<
len
(
self
.
_sub_progs
)
-
1
else
[]
fill_constant_vars
=
self
.
_sub_progs
[
idx
+
2
].
_fill_constant_vars
if
idx
<
len
(
self
.
_sub_progs
)
-
2
else
[]
cast_ops
=
self
.
_sub_progs
[
idx
+
2
].
_cast_ops
if
idx
<
len
(
self
.
_sub_progs
)
-
2
else
{}
# for x in fill_constant_vars:
# print("fill_constant_vars: ", x)
# step1: modify calculate ops
# for op_idx in reversed(range(subprog._start_idx, subprog._end_idx)):
# op = block.ops[op_idx]
# print(_pretty_op_desc_(op.desc, "subprog_op"))
for
op_idx
in
reversed
(
range
(
subprog
.
_start_idx
,
subprog
.
_end_idx
)):
op
=
block
.
ops
[
op_idx
]
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
subprog
.
_param2broadcast
and
\
input_name
!=
subprog
.
_param2broadcast
[
input_name
]:
op
.
_rename_input
(
input_name
,
subprog
.
_param2broadcast
[
input_name
])
for
param_name
,
broadcast_name
in
subprog
.
_param2broadcast
.
items
():
if
param_name
!=
broadcast_name
:
block
.
create_var
(
name
=
broadcast_name
,
shape
=
self
.
_main_program
.
global_block
().
var
(
param_name
).
shape
,
dtype
=
self
.
_main_program
.
global_block
().
var
(
param_name
)
.
dtype
,
persistable
=
False
)
# step2: remove cast ops
block
.
_sync_with_cpp
()
subprog
.
_end_idx
+=
self
.
_remove_cast_op
(
block
,
subprog
,
0
)
# step3: add Sync ops
comm_dep_vars
=
allreduce_vars
+
[
x
[
0
]
for
x
in
broadcast_vars
]
if
len
(
comm_dep_vars
)
>
0
:
self
.
_insert_sync_comm_ops
(
block
,
subprog
.
_end_idx
,
comm_dep_vars
,
)
calc_dep_vars
=
fill_constant_vars
+
[
k
for
k
,
v
in
cast_ops
.
items
()
]
if
len
(
calc_dep_vars
)
>
0
:
self
.
_insert_sync_calc_op
(
block
,
subprog
.
_end_idx
,
[
calc_dep_vars
[
-
1
]])
# step4: insert `fill_constant` ops
self
.
_insert_fill_constant_ops
(
block
,
subprog
.
_end_idx
,
fill_constant_vars
)
# step5: add `cast` ops
self
.
_insert_cast_ops
(
block
,
subprog
.
_end_idx
,
cast_ops
)
# step6: add broadcast ops
self
.
_insert_broadcast_ops
(
block
,
subprog
.
_start_idx
,
broadcast_vars
)
# step7: add all_reduce ops
self
.
_insert_allreduce_ops
(
block
,
subprog
.
_start_idx
,
allreduce_vars
)
block
.
_sync_with_cpp
()
if
self
.
_sub_progs
[
0
].
_broadcast_vars
:
self
.
_insert_sync_comm_ops
(
block
,
self
.
_sub_progs
[
0
].
_start_idx
,
[
x
[
0
]
for
x
in
self
.
_sub_progs
[
0
].
_broadcast_vars
])
self
.
_insert_broadcast_ops
(
block
,
self
.
_sub_progs
[
0
].
_start_idx
,
self
.
_sub_progs
[
0
].
_broadcast_vars
)
fill_constant_vars
=
reduce
(
lambda
x
,
y
:
x
.
_fill_constant_vars
+
y
.
_fill_constant_vars
,
self
.
_sub_progs
[:
2
])
# Join
cast_ops
=
{}
for
x
in
self
.
_sub_progs
[:
2
]:
for
k
,
v
in
x
.
_cast_ops
.
items
():
cast_ops
[
k
]
=
v
calc_deps_vars
=
fill_constant_vars
+
[
k
for
k
,
v
in
cast_ops
.
items
()]
if
fill_constant_vars
or
cast_ops
:
self
.
_insert_sync_calc_op
(
block
,
self
.
_sub_progs
[
0
].
_start_idx
,
[
calc_deps_vars
[
-
1
]])
if
fill_constant_vars
:
self
.
_insert_fill_constant_ops
(
block
,
self
.
_sub_progs
[
0
].
_start_idx
,
fill_constant_vars
)
if
cast_ops
:
self
.
_insert_cast_ops
(
block
,
self
.
_sub_progs
[
0
].
_start_idx
,
cast_ops
)
return
def
_prune_startup_program
(
self
,
block
):
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
for
output_name
in
op
.
desc
.
output_arg_names
():
var_device_id
=
self
.
_var_device_id
(
output_name
)
if
var_device_id
==
-
1
or
var_device_id
==
self
.
role_maker
.
worker_index
(
):
continue
print
(
"%d: startup_block remove op %s"
%
(
self
.
role_maker
.
worker_index
(),
op
.
type
))
block
.
_remove_op
(
idx
)
break
for
var_name
,
_
in
block
.
vars
.
items
():
var_device_id
=
self
.
_var_device_id
(
var_name
)
if
var_device_id
==
-
1
or
var_device_id
==
self
.
role_maker
.
worker_index
(
):
continue
print
(
"%d: startup_block remove var %s"
%
(
self
.
role_maker
.
worker_index
(),
var_name
))
block
.
_remove_var
(
var_name
)
block
.
_sync_with_cpp
()
def
_find_broadcast_params
(
self
,
params
,
param2device
):
broadcast_vars
=
set
([])
fp16_params
=
set
([])
fp16_to_fp32
=
{}
main_block
=
self
.
_main_program
.
global_block
()
param_usage
=
{
x
:
0
for
x
in
params
}
for
op
in
main_block
.
ops
:
if
is_optimizer_op
(
op
):
continue
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
params
:
param_usage
[
input_name
]
+=
1
for
op
in
main_block
.
ops
:
if
not
self
.
_is_fp16_cast_op
(
main_block
,
op
):
continue
input_name
=
op
.
input_arg_names
[
0
]
output_name
=
op
.
output_arg_names
[
0
]
broadcast_vars
.
add
(
output_name
)
fp16_params
.
add
(
output_name
)
fp16_to_fp32
[
output_name
]
=
input_name
param_usage
[
input_name
]
-=
1
param2device
[
output_name
]
=
param2device
[
input_name
]
for
param
,
usage
in
param_usage
.
items
():
if
usage
>
0
:
broadcast_vars
.
add
(
param
)
return
fp16_params
,
broadcast_vars
,
fp16_to_fp32
def
_set_up
(
self
,
params_grads
):
# step 1: initialize nccl
# TODO(mapingshuo) fix get_trainer_endpoints
print
(
"work idx: "
,
self
.
role_maker
.
worker_index
())
endpoints
=
self
.
role_maker
.
get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
worker_index
()]
collective_helper
=
CollectiveHelper
(
self
.
role_maker
,
self
.
_nrings
)
for
ring_id
in
range
(
self
.
_nrings
):
collective_helper
.
_init_communicator
(
self
.
_startup_program
,
current_endpoint
,
endpoints
,
self
.
role_maker
.
worker_index
(),
ring_id
,
'6174'
)
startup_block
=
self
.
_startup_program
.
global_block
()
startup_block
.
_sync_with_cpp
()
# step 2: split params
self
.
_params
=
set
([
x
[
0
].
name
for
x
in
params_grads
])
self
.
_param2device
=
self
.
_split_params
([
x
[
0
]
for
x
in
params_grads
])
# step 3: get broadcast vars
self
.
_fp16_params
,
self
.
_broadcast_vars
,
self
.
_fp16_to_params
=
self
.
_find_broadcast_params
(
self
.
_params
,
self
.
_param2device
)
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
if
self
.
user_defined_strategy
.
zero_configs
[
"allreduce"
]:
return
self
.
minimize_impl_allreduce
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
ckpts
=
list
(
self
.
user_defined_strategy
.
zero_configs
[
"checkpoints"
])
optimizer
=
self
.
inner_opt
if
len
(
ckpts
)
>
0
:
print
(
"add recompute"
)
print
(
ckpts
)
optimizer
=
fluid
.
optimizer
.
RecomputeOptimizer
(
optimizer
)
optimizer
.
_set_checkpoints
(
ckpts
)
if
self
.
user_defined_strategy
.
zero_configs
[
"amp"
]:
optimizer
=
fluid
.
contrib
.
mixed_precision
.
decorate
(
optimizer
,
use_dynamic_loss_scaling
=
True
)
self
.
_nrings
=
self
.
user_defined_strategy
.
zero_configs
[
"nrings"
]
self
.
_fuse_broadcast_MB_bytes
=
self
.
user_defined_strategy
.
zero_configs
[
"fuse_broadcast_MB_bytes"
]
print
(
"doing zero optimize..."
)
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
if
startup_program
is
None
:
startup_program
=
default_startup_program
()
main_block
=
loss
.
block
startup_block
=
startup_program
.
global_block
()
self
.
_main_program
=
main_block
.
program
self
.
_startup_program
=
startup_program
# step1: set_up
self
.
_set_up
(
params_grads
)
# step2: split_program
self
.
_split_program
(
main_block
)
# step3: add broadcast and reduce ops
print
(
"insert broadcast and allreduce"
)
self
.
_add_broadcast_allreduce_v2
(
main_block
)
main_block
.
_sync_with_cpp
()
startup_block
.
_sync_with_cpp
()
# step4: insert reduce_sum for grad
self
.
_insert_scale_loss_grad_ops
(
main_block
,
scale
=
1.0
/
self
.
role_maker
.
worker_num
())
main_block
.
_sync_with_cpp
()
# step5: remove unneeded ops and vars from block
print
(
"main_block remove ops and vars"
)
self
.
_prune_main_program
(
main_block
)
print
(
"startup_block remove ops and vars"
)
self
.
_prune_startup_program
(
startup_block
)
# check op dependecy for broadcast
self
.
_check_broadcast
(
main_block
)
return
optimize_ops
,
params_grads
def
_check_broadcast
(
self
,
block
):
"""
if a var is broadcasted, it should have a sync_comm before
this var is used, if not, raise error.
if the broadcasted var has a fill_constant op, the fill_constant
op should stay forward before the broadcast op, and before a
sync_calc op. Otherwise, raise error.
"""
broadcast_vars
=
{}
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
op
.
type
==
"c_broadcast"
:
var_name
=
op
.
desc
.
input_arg_names
()[
0
]
if
"@BroadCast"
in
var_name
:
if
var_name
in
broadcast_vars
:
print
(
"error: var_name areadly exist: "
,
var_name
)
print
(
"the old pos is "
,
broadcast_vars
[
var_name
][
"broadcast_pos"
])
print
(
"the new pos is "
,
idx
)
assert
(
var_name
not
in
broadcast_vars
)
broadcast_vars
[
var_name
]
=
{
"fill_constant_pos"
:
-
1
,
"broadcast_pos"
:
idx
,
}
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
op
.
type
==
"fill_constant"
:
var_name
=
op
.
desc
.
output_arg_names
()[
0
]
if
var_name
in
broadcast_vars
:
broadcast_vars
[
var_name
][
"fill_constant_pos"
]
=
idx
continue
last_sync_comm_op_idx
=
-
1
last_sync_calc_op_idx
=
-
1
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
op
.
type
==
"c_sync_comm_stream"
:
last_sync_comm_op_idx
=
idx
continue
if
op
.
type
==
"c_sync_calc_stream"
:
last_sync_calc_op_idx
=
idx
continue
if
op
.
type
==
"c_broadcast"
:
var_name
=
op
.
desc
.
input_arg_names
()[
0
]
if
"@BroadCast"
in
var_name
:
if
broadcast_vars
[
var_name
][
"fill_constant_pos"
]
!=
-
1
:
assert
(
last_sync_calc_op_idx
!=
-
1
)
assert
(
broadcast_vars
[
var_name
][
"fill_constant_pos"
]
<
last_sync_calc_op_idx
)
assert
(
last_sync_calc_op_idx
<
idx
)
continue
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
broadcast_vars
:
assert
(
broadcast_vars
[
input_name
][
"broadcast_pos"
]
!=
-
1
)
assert
(
broadcast_vars
[
input_name
][
"broadcast_pos"
]
<
last_sync_comm_op_idx
)
assert
(
last_sync_comm_op_idx
<
idx
)
print
(
"check done"
)
return
def
_add_broadcast_allreduce
(
self
,
block
,
sub_prog
,
offset
):
"""
add broadcast and allreduce
"""
# insert reduce ops
inserted_op_num
=
0
ring_id
=
-
1
if
len
(
sub_prog
.
_allreduce_vars
)
>
0
:
for
i
in
range
(
self
.
_nrings
):
block
.
_insert_op
(
offset
+
sub_prog
.
_end_idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
sub_prog
.
_allreduce_vars
},
outputs
=
{
'Out'
:
sub_prog
.
_allreduce_vars
},
attrs
=
{
'ring_id'
:
i
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
inserted_op_num
+=
self
.
_nrings
for
var
in
sub_prog
.
_allreduce_vars
:
ring_id
=
(
ring_id
+
1
)
%
self
.
_nrings
block
.
_insert_op
(
offset
+
sub_prog
.
_end_idx
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
inserted_op_num
+=
1
block
.
_insert_op
(
offset
+
sub_prog
.
_end_idx
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
sub_prog
.
_allreduce_vars
[
-
1
]},
outputs
=
{
'Out'
:
sub_prog
.
_allreduce_vars
[
-
1
]},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Forward
})
inserted_op_num
+=
1
block
.
_sync_with_cpp
()
# insert broadcast ops
for
op_idx
in
reversed
(
range
(
offset
+
sub_prog
.
_start_idx
,
offset
+
sub_prog
.
_end_idx
)):
op
=
block
.
ops
[
op_idx
]
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
sub_prog
.
_param2broadcast
and
\
input_name
!=
sub_prog
.
_param2broadcast
[
input_name
]:
op
.
_rename_input
(
input_name
,
sub_prog
.
_param2broadcast
[
input_name
])
for
param_name
,
broadcast_name
in
sub_prog
.
_param2broadcast
.
items
():
if
param_name
!=
broadcast_name
:
block
.
create_var
(
name
=
broadcast_name
,
shape
=
self
.
_main_program
.
global_block
().
var
(
param_name
).
shape
,
dtype
=
self
.
_main_program
.
global_block
().
var
(
param_name
)
.
dtype
,
persistable
=
False
)
comm_dep_vars
=
[
v
for
k
,
v
in
sub_prog
.
_param2broadcast
.
items
()]
for
i
in
range
(
self
.
_nrings
):
block
.
_insert_op
(
offset
+
sub_prog
.
_start_idx
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
comm_dep_vars
},
outputs
=
{
'Out'
:
comm_dep_vars
},
attrs
=
{
'ring_id'
:
i
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
inserted_op_num
+=
self
.
_nrings
for
param_name
,
broadcast_name
in
sub_prog
.
_param2broadcast
.
items
():
broadcast_var
=
block
.
var
(
broadcast_name
)
root_device
=
self
.
_param2device
[
param_name
]
ring_id
=
(
ring_id
+
1
)
%
self
.
_nrings
block
.
_insert_op
(
offset
+
sub_prog
.
_start_idx
,
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
broadcast_var
.
name
},
outputs
=
{
'Out'
:
broadcast_var
.
name
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
root_device
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
inserted_op_num
+=
1
comm_dep_vars
=
[
v
for
k
,
v
in
sub_prog
.
_param2broadcast
.
items
()
if
k
!=
v
]
if
comm_dep_vars
!=
[]:
block
.
_insert_op
(
offset
+
sub_prog
.
_start_idx
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
comm_dep_vars
[
-
1
]},
outputs
=
{
'Out'
:
comm_dep_vars
[
-
1
]},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Forward
})
inserted_op_num
+=
1
for
param_name
,
broadcast_name
in
sub_prog
.
_param2broadcast
.
items
():
if
param_name
!=
broadcast_name
:
broadcast_var
=
block
.
var
(
broadcast_name
)
block
.
_insert_op
(
offset
+
sub_prog
.
_start_idx
,
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
broadcast_var
.
name
},
attrs
=
{
"shape"
:
broadcast_var
.
shape
,
"dtype"
:
broadcast_var
.
dtype
,
"value"
:
0.0
,
})
inserted_op_num
+=
1
for
fp16_name
,
fp32_name
in
sub_prog
.
_cast_ops
.
items
():
block
.
_insert_op
(
offset
+
sub_prog
.
_start_idx
,
type
=
"cast"
,
inputs
=
{
"X"
:
fp32_name
},
outputs
=
{
"Out"
:
fp16_name
},
attrs
=
{
"in_dtype"
:
core
.
VarDesc
.
VarType
.
FP32
,
"out_dtype"
:
core
.
VarDesc
.
VarType
.
FP16
})
inserted_op_num
+=
1
block
.
_sync_with_cpp
()
return
inserted_op_num
def
_broadcast_params
(
self
,
block
):
ring_id
=
-
1
for
param
in
block
.
iter_parameters
():
if
param
.
is_distributed
:
continue
ring_id
=
(
ring_id
+
1
)
%
self
.
_nrings
block
.
append_op
(
type
=
'c_broadcast'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
0
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
for
ring_id
in
range
(
self
.
_nrings
):
block
.
append_op
(
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
param
},
outputs
=
{
'Out'
:
param
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Forward
})
# def _insert_broadcast_ops(self, block, fuse_broadcast=False):
# def _insert_cache(cache,
# prepend_comm_sync=False,
# append_comm_sync=False):
# insert_idx = cache["insert_idx"]
# dummy_var_name = cache["dummy_var_name"]
# assert (len(cache["broadcast_ops"]) > 0)
# if prepend_comm_sync:
# insert_idx += self._insert_comm_sync(block, insert_idx,
# [dummy_var_name])
# if len(cache["fill_constant_ops"]) > 0:
# insert_idx += self._insert_fill_constant(
# block, insert_idx, cache["fill_constant_ops"],
# [dummy_var_name])
# insert_idx += self._insert_broadcast_inner(block, insert_idx,
# cache["broadcast_ops"])
# if append_comm_sync:
# insert_idx += self._insert_comm_sync(block, insert_idx,
# [dummy_var_name])
# return insert_idx - cache["insert_idx"]
# print("insert_idx: ", [x["insert_idx"] for x in self._sub_progs])
# move_ahead = 1
# for idx, cache in reversed(list(enumerate(self._sub_progs))):
# if idx < move_ahead:
# cache["insert_idx"] = 0
# else:
# cache["insert_idx"] = self._sub_progs[idx - move_ahead][
# "insert_idx"]
# print("insert_idx: ", [x["insert_idx"] for x in self._sub_progs])
# inserted_op_num = 0
# for idx, cache in enumerate(self._sub_progs):
# prepend_comm_sync = True
# append_comm_sync = True
# cache["insert_idx"] += inserted_op_num
# inserted_op_num += _insert_cache(
# cache,
# prepend_comm_sync=prepend_comm_sync,
# append_comm_sync=append_comm_sync)
# return
def
_insert_allreduce_ops_tmp
(
self
,
block
):
ring_id
=
-
1
grad
=
None
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
\
OP_ROLE_VAR_KEY
in
op
.
attr_names
:
op_role_var
=
op
.
all_attrs
()[
OP_ROLE_VAR_KEY
]
if
len
(
op_role_var
)
==
0
:
continue
assert
len
(
op_role_var
)
%
2
==
0
offset
=
idx
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
# param = block.vars[op_role_var[i]]
grad
=
block
.
vars
[
op_role_var
[
i
+
1
]]
# TODO(mapingshuo): what is is_distributed
# if param.is_distributed:
# continue
if
offset
==
idx
:
offset
+=
1
block
.
_insert_op
(
offset
,
type
=
'c_sync_calc_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
OP_ROLE_KEY
:
OpRole
.
Backward
})
offset
+=
1
# As we search ops reversedly, we should insert c_allreduce_sum
# op in the same way to keep the ring_id alternate
print
(
"add allreduce op for {}"
.
format
(
grad
.
name
))
ring_id
=
(
ring_id
+
1
)
%
self
.
_nrings
block
.
_insert_op
(
offset
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
if
grad
is
None
:
return
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
for
ring_id
in
range
(
self
.
_nrings
):
block
.
_insert_op
(
idx
+
ring_id
,
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
grad
},
outputs
=
{
'Out'
:
grad
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
def
minimize_impl_allreduce
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
self
.
_nrings
=
self
.
user_defined_strategy
.
zero_configs
[
"nrings"
]
optimizer
=
self
.
inner_opt
if
self
.
user_defined_strategy
.
zero_configs
[
"amp"
]:
optimizer
=
fluid
.
contrib
.
mixed_precision
.
decorate
(
optimizer
,
use_dynamic_loss_scaling
=
True
)
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
if
startup_program
is
None
:
startup_program
=
default_startup_program
()
print
(
"work idx: "
,
self
.
role_maker
.
worker_index
())
endpoints
=
self
.
role_maker
.
get_trainer_endpoints
()
current_endpoint
=
endpoints
[
self
.
role_maker
.
worker_index
()]
collective_helper
=
CollectiveHelper
(
self
.
role_maker
,
self
.
_nrings
)
for
ring_id
in
range
(
self
.
_nrings
):
collective_helper
.
_init_communicator
(
startup_program
,
current_endpoint
,
endpoints
,
self
.
role_maker
.
worker_index
(),
ring_id
,
'6174'
)
main_block
=
loss
.
block
startup_block
=
startup_program
.
global_block
()
self
.
_broadcast_params
(
startup_block
)
self
.
_insert_scale_loss_grad_ops
(
main_block
,
scale
=
1.0
/
self
.
role_maker
.
worker_num
())
self
.
_insert_allreduce_ops_tmp
(
main_block
)
print
(
"insert allreduce done"
)
return
optimize_ops
,
params_grads
# def _insert_comm_sync(self, block, insert_idx, var_names):
# for r in range(self._nrings):
# block._insert_op(
# insert_idx,
# type='c_sync_comm_stream',
# inputs={'X': var_names},
# outputs={'Out': var_names},
# attrs={'ring_id': r,
# OP_ROLE_KEY: OpRole.Backward})
# insert_idx += 1
# return self._nrings
# def _insert_broadcast_inner(self, block, insert_idx, broadcast_attrs):
# for attr in broadcast_attrs:
# block._insert_op(insert_idx, **attr)
# insert_idx += 1
# return len(broadcast_attrs)
# def _insert_fill_constant(self, block, insert_idx, fill_constant_attrs,
# var_names):
# for attr in fill_constant_attrs:
# block._insert_op(insert_idx, **attr)
# insert_idx += 1
# block._insert_op(
# insert_idx,
# type='c_sync_calc_stream',
# inputs={'X': var_names},
# outputs={'Out': var_names},
# attrs={OP_ROLE_KEY: OpRole.Backward})
# return len(fill_constant_attrs) + 1
python/paddle/fluid/clip.py
浏览文件 @
e3334f3e
...
...
@@ -847,7 +847,7 @@ def append_gradient_clip_ops(param_grads):
if
g
is
None
:
continue
with
p
.
block
.
program
.
_optimized_guard
(
[
p
,
g
]),
framework
.
name_scope
(
'gra
id
ent_clip_@CLIP'
):
[
p
,
g
]),
framework
.
name_scope
(
'gra
di
ent_clip_@CLIP'
):
param
,
new_grad
=
clip_attr
.
_create_operators
(
param
=
p
,
grad
=
g
)
param_new_grad_name_dict
[
param
.
name
]
=
new_grad
.
name
res
.
append
([
param
,
new_grad
])
...
...
python/paddle/fluid/contrib/mixed_precision/decorator.py
浏览文件 @
e3334f3e
...
...
@@ -16,6 +16,7 @@ from ... import default_main_program
from
...
import
default_startup_program
from
...
import
layers
from
...
import
unique_name
from
...
import
framework
from
.
import
fp16_utils
from
.fp16_utils
import
rewrite_program
from
.fp16_utils
import
update_role_var_grad
...
...
@@ -132,6 +133,7 @@ class OptimizerWithMixedPrecision(object):
gradient respectively, and the scaled loss.
"""
rewrite_program
(
self
.
_train_program
,
self
.
_amp_lists
)
with
framework
.
name_scope
(
'mixed_precision'
):
self
.
_scaled_loss
=
loss
*
self
.
_loss_scaling
self
.
_params_grads
=
self
.
_optimizer
.
backward
(
self
.
_scaled_loss
,
startup_program
,
parameter_list
,
no_grad_set
,
...
...
@@ -156,11 +158,13 @@ class OptimizerWithMixedPrecision(object):
grads
=
[
g
for
_
,
g
in
params_grads
]
with
self
.
_train_program
.
_optimized_guard
(
grads
):
with
framework
.
name_scope
(
'mixed_precision'
):
grads
,
found_inf
=
check_finite_and_unscale
(
grads
,
self
.
_loss_scaling
,
name
=
"find_infinite_scale"
)
if
self
.
_use_dynamic_loss_scaling
:
with
self
.
_train_program
.
_optimized_guard
(
grads
):
with
framework
.
name_scope
(
'mixed_precision'
):
grads
=
update_loss_scaling
(
grads
,
found_inf
,
...
...
python/paddle/fluid/framework.py
浏览文件 @
e3334f3e
...
...
@@ -2063,9 +2063,15 @@ class Operator(object):
%
(
out_proto
.
name
,
len
(
out_args
)))
out_arg_names
=
[]
for
arg
in
out_args
:
if
isinstance
(
arg
,
six
.
string_types
):
out_arg_names
.
append
(
arg
)
else
:
out_arg_names
.
append
(
cpt
.
to_text
(
arg
.
name
))
# TODO(minqiyang): could we remove variable's op in static mode?
if
not
in_dygraph_mode
():
if
isinstance
(
arg
,
six
.
string_types
):
block
.
var
(
arg
).
op
=
self
else
:
arg
.
op
=
self
self
.
desc
.
set_output
(
out_proto
.
name
,
out_arg_names
)
...
...
@@ -2801,7 +2807,6 @@ class Block(object):
return
var
def
_remove_var
(
self
,
name
):
self
.
_sync_with_cpp
()
self
.
desc
.
_remove_var
(
cpt
.
to_bytes
(
name
))
del
self
.
vars
[
name
]
...
...
@@ -2893,7 +2898,6 @@ class Block(object):
Returns:
Operator: the insert Operator.
"""
self
.
_sync_with_cpp
()
op_desc
=
self
.
desc
.
_insert_op
(
index
)
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
self
.
ops
.
insert
(
index
,
op
)
...
...
@@ -2909,7 +2913,6 @@ class Block(object):
Returns:
None
"""
self
.
_sync_with_cpp
()
self
.
desc
.
_remove_op
(
index
,
index
+
1
)
del
self
.
ops
[
index
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录