未验证 提交 e2e2d531 编写于 作者: C chentianyu03 提交者: GitHub

[phi]move reduce gpu impl funcs into pten/kernels/funcs (#39990)

* move reduce gpu impl funcs into pten/kernels/funcs

* change reduce header name and namespace

* fix spell word error

* change mutable_data to dev_ctx.Alloc

* modify place to devcontex

* format code style

* fix build error

* fix build error

* fix conflict
上级 3ac9bc95
......@@ -191,9 +191,9 @@ void SetConfigForColumnReduce(const int max_threads, const int reduce_num,
int num_block = (max_threads / left_num);
if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
*blocking_size = phi::kernels::details::GetLastPow2(reduce_num / num_block);
*blocking_size = phi::funcs::details::GetLastPow2(reduce_num / num_block);
if (*blocking_size <= 1) {
*blocking_size = phi::kernels::details::GetLastPow2(sqrt(reduce_num));
*blocking_size = phi::funcs::details::GetLastPow2(sqrt(reduce_num));
} else if (*blocking_size * 2 < reduce_num) {
*blocking_size *= 2;
}
......
......@@ -39,9 +39,9 @@ TEST(test_reduce_rank_check, all) {
}
if (is_valid) {
phi::kernels::details::CheckReduceRank(reduce_rank, rank);
phi::funcs::details::CheckReduceRank(reduce_rank, rank);
} else {
ASSERT_THROW(phi::kernels::details::CheckReduceRank(reduce_rank, rank),
ASSERT_THROW(phi::funcs::details::CheckReduceRank(reduce_rank, rank),
paddle::platform::EnforceNotMet);
}
}
......
......@@ -23,8 +23,7 @@
#include "paddle/fluid/framework/tensor.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace paddle {
namespace operators {
......@@ -37,7 +36,7 @@ void TensorReduceImpl(const platform::CUDADeviceContext& dev_ctx,
gpuStream_t stream) {
y->mutable_data<Ty>(x.place());
phi::kernels::TensorReduceImpl<Tx, Ty, ReduceOp, TransformOp>(
phi::funcs::TensorReduceImpl<Tx, Ty, ReduceOp, TransformOp>(
static_cast<const phi::GPUContext&>(dev_ctx), x, y, transform,
origin_reduce_dims, stream);
}
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
// CUDA and HIP use same api
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/fast_divmod.h"
#include "paddle/phi/api/ext/dispatch.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/utils/array.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
#include "paddle/utils/string/string_helper.h"
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4
namespace kps = phi::kps;
namespace phi {
namespace funcs {
namespace details {
static inline int GetLastPow2(int n) {
n |= (n >> 1);
n |= (n >> 2);
n |= (n >> 4);
n |= (n >> 8);
n |= (n >> 16);
return std::max(1, n - (n >> 1));
}
static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }
// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
const std::vector<int>& idx) {
int n = static_cast<int>(idx.size());
if (n == 0) return std::vector<int>();
std::vector<int> strides(n);
strides.back() = 1;
for (int i = n - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * dims[idx[i + 1]];
}
return strides;
}
// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
return block_dim >= kps::details::kReduceMaxThread
? kps::details::kReduceMaxThread
: GetLastPow2(block_dim);
}
// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
if (rank % 2 == 0) {
PADDLE_ENFORCE_EQ(reduce_rank,
rank / 2,
phi::errors::InvalidArgument(
"ReduceOp: invalid reduce rank. When rank = %d, "
"reduce_rank must be %d, but got %d.",
rank,
rank / 2,
reduce_rank));
} else {
auto lower_rank = (rank - 1) / 2;
auto upper_rank = (rank + 1) / 2;
PADDLE_ENFORCE_EQ(
reduce_rank == lower_rank || reduce_rank == upper_rank,
true,
phi::errors::InvalidArgument(
"ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
"must be %d or %d, but got %d.",
rank,
lower_rank,
upper_rank,
reduce_rank));
}
}
// convert dims from vector to array
template <typename T, size_t ElementCount, typename VectorLikeType>
static inline phi::Array<T, ElementCount> VectorToArray(
const VectorLikeType& vec) {
PADDLE_ENFORCE_LE(
vec.size(),
ElementCount,
phi::errors::InvalidArgument("Cub reduce Array: size not match. Received "
"vec.size() %d > ElementCount %d.",
vec.size(),
ElementCount));
size_t n = static_cast<size_t>(vec.size());
phi::Array<T, ElementCount> ret;
for (size_t i = 0; i < n; ++i) {
ret[i] = vec[i];
}
return ret;
}
static inline std::vector<int> GetReduceDim(const std::vector<int64_t>& dims,
int dim_size,
bool reduce_all) {
std::vector<int> reduce_dims;
if (reduce_all) {
reduce_dims.resize(dim_size);
int reduce_size = reduce_dims.size();
for (int i = 0; i < reduce_size; ++i) {
reduce_dims[i] = i;
}
} else {
for (auto e : dims) {
PADDLE_ENFORCE_LT(e,
dim_size,
phi::errors::InvalidArgument(
"ReduceOp: invalid axis, when x_dims is %d, "
"axis[i] should less than x_dims, but got %d.",
dim_size,
e));
reduce_dims.push_back(e >= 0 ? e : e + dim_size);
}
}
return reduce_dims;
}
} // namespace details
constexpr int kMaxRank = phi::DDim::kMaxRank;
enum ReduceType {
kReduceLastDim = 0x01, // when reduce_dim[0] == x_dim.size() - 1;
kReduceHigherDim = 0x02, // ReduceFirstDim or reduceSecondDim
kReduceAny = 0x03, // when reduce_dim.size() > 1
};
struct IndexCalculator {
IndexCalculator(int dim,
const std::vector<int>& cal_dims,
const std::vector<int>& cal_strides,
const std::vector<int>& full_strides)
: dim(dim) {
dims = details::VectorToArray<int, kMaxRank>(cal_dims);
strides = details::VectorToArray<int, kMaxRank>(full_strides);
reduce_strides = details::VectorToArray<int, kMaxRank>(cal_strides);
#ifndef PADDLE_WITH_XPU_KP
std::vector<paddle::platform::FastDivMod> cal_divmoders;
// fast divmod
for (auto i : cal_strides) {
cal_divmoders.push_back(paddle::platform::FastDivMod(i));
}
divmoders = details::VectorToArray<paddle::platform::FastDivMod, kMaxRank>(
cal_divmoders);
#endif
}
__device__ inline int operator()(int offset) const {
#ifdef PADDLE_WITH_XPU_KP
int index = 0;
#pragma unroll
for (int i = 0; i < kMaxRank; ++i) {
if (i == dim) {
break;
}
index += (offset / reduce_strides[i]) * strides[dims[i]];
offset = offset % reduce_strides[i];
}
return index;
#else
int index = 0;
#pragma unroll
for (int i = 0; i < kMaxRank; ++i) {
if (i == dim) {
break;
}
auto divmod = divmoders[i].Divmod(offset);
index += (divmod.val[0] * strides[dims[i]]);
offset = divmod.val[1];
}
return index;
#endif
}
int dim;
phi::Array<int, kMaxRank> dims;
phi::Array<int, kMaxRank> strides;
phi::Array<int, kMaxRank> reduce_strides;
#ifndef PADDLE_WITH_XPU2
phi::Array<paddle::platform::FastDivMod, kMaxRank> divmoders;
#endif
};
template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
const kps::DimConfig dim;
HOSTDEVICE explicit ReduceIndexMapping(const kps::DimConfig& dims)
: dim(dims) {}
__device__ __forceinline__ int BlockIdX() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return (cluster_id() / dim.split_num_x % dim.split_num_y);
} else {
return cluster_id() % dim.split_num_x;
}
#else
return blockIdx.x;
#endif
}
__device__ __forceinline__ int BlockIdY() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return (cluster_id() % dim.split_num_x);
} else {
return (cluster_id() / dim.split_num_x % dim.split_num_y);
}
#else
return blockIdx.y;
#endif
}
__device__ __forceinline__ int BlockDimX() {
#ifdef PADDLE_WITH_XPU2
return dim.deal_size_x;
#else
return blockDim.x;
#endif
}
__device__ __forceinline__ int BlockDimY() {
#ifdef PADDLE_WITH_XPU2
return 1;
#else
return blockDim.y;
#endif
}
__device__ __forceinline__ int GridDimX() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return dim.split_num_y;
} else {
return dim.split_num_x;
}
#else
return gridDim.x;
#endif
}
__device__ __forceinline__ int GridDimY() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return dim.split_num_x;
} else {
return dim.split_num_y;
}
#else
return gridDim.y;
#endif
}
__device__ __forceinline__ int GetLoopSize() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return dim.deal_size_y;
} else {
return dim.deal_size_x;
}
#else
return 1;
#endif
}
};
// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct OneDimIndexCal {
explicit OneDimIndexCal(int num) : stride(num) {}
__device__ inline int operator()(int index) const { return index * stride; }
int stride;
};
// reduce config
template <typename Ty>
struct ReduceConfig {
ReduceConfig(const std::vector<int>& origin_reduce_dims,
const std::vector<int>& origin_x_dim)
: reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}
// get the parameters of reduceKernel
void Run() {
// step1: update the reduce_dim left_dim and x_dim
SetReduceDim();
// step2: get the strides of dim for reduceAny and reduceLastDim
SetStrides();
// step3: get the type of reduce
SetReduceType();
// step4: set the block and grid for launch kernel
SetBlockDim();
}
// when should_reduce_again is true, we need malloc temp space for temp data
void SetOutputData(Ty* y_data,
const phi::GPUContext& dev_ctx,
phi::DenseTensor* tmp) {
if (should_reduce_again) {
tmp->ResizeAndAllocate(phi::make_ddim(
{static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}));
output_data = dev_ctx.Alloc<Ty>(tmp);
} else {
output_data = y_data;
}
}
private:
// set reduce_dim, left_dim and update x_dim
// eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
// --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
void SetReduceDim() {
std::set<int> reduce_set;
for (auto e : reduce_dims_origin) {
auto pos = e >= 0 ? e : e + x_dim.size();
reduce_set.insert(pos);
}
std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());
// update reduce_dim and x_dim
std::vector<int> x_new_dim;
reduce_dim.push_back(reduce_dim_temp[0]);
x_new_dim.push_back(x_dim[0]);
int idx_reduce = 1;
int num = 0;
if (reduce_dim_temp.size() > 1) {
for (int i = 1; i < x_dim.size(); i++) {
if ((idx_reduce < reduce_dim_temp.size()) &&
(i == reduce_dim_temp[idx_reduce])) {
int result =
reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
bool is_equal = ((result - num) == 1);
if (is_equal) {
x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
num++;
} else {
reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
x_new_dim.push_back(x_dim[i]);
}
idx_reduce++;
} else {
x_new_dim.push_back(x_dim[i]);
}
}
} else {
x_new_dim = x_dim;
}
// update x_dim
x_dim = x_new_dim;
std::vector<int>().swap(x_new_dim);
std::vector<int> reduce_dim_new;
int is_reduced = 0;
for (auto e : reduce_dim) {
is_reduced |= 1 << e;
}
std::vector<int>().swap(reduce_dim);
for (int i = 0; i < x_dim.size(); i++) {
if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
x_new_dim.push_back(x_dim[i]);
if ((is_reduced >> i) & 1)
reduce_dim_new.push_back(x_new_dim.size() - 1);
} else {
x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
}
}
x_dim = x_new_dim;
reduce_dim = reduce_dim_new;
int x_rank = static_cast<int>(x_dim.size());
std::set<int> left_set;
for (int i = 0; i < x_rank; ++i) {
left_set.insert(i);
}
for (auto e : reduce_dim) {
left_set.erase(e);
}
left_dim.assign(left_set.begin(), left_set.end());
// if the last dim gets involved in reduction
reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
}
// set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
// eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
// --SetStrides--> x_strides= [6,1], reduce_strides = [1],
// left_strides = [1]
void SetStrides() {
std::vector<int> idx_dim;
for (int i = 0; i < x_dim.size(); i++) {
idx_dim.push_back(i);
}
x_strides = details::GetDimStrides(x_dim, idx_dim);
reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
left_strides = details::GetDimStrides(x_dim, left_dim);
reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];
left_num = 1;
if (left_dim.size()) {
left_num = left_strides[0] * x_dim[left_dim[0]];
}
}
// get the reduceType
// eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
// x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
// x_dim = [8] reduce_dim = [0] --> reduceAll
// x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
void SetReduceType() {
int rank = x_dim.size();
int reduce_rank = reduce_dim.size();
bool is_last_dim =
(rank == 2) && (reduce_rank == 1) && (reduce_dim[0] == 1);
if (rank == reduce_rank || is_last_dim) {
#ifdef PADDLE_WITH_XPU_KP
reduce_type = static_cast<int>(ReduceType::kReduceAny);
#else
reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
#endif
} else if (reduce_rank == 1) {
// ReduceFirstDim and reduceSecondDim
#ifdef PADDLE_WITH_XPU_KP
if (reduce_dim[0] == 0) {
reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
} else {
reduce_type = static_cast<int>(ReduceType::kReduceAny);
}
#else
reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
#endif
} else {
reduce_type = static_cast<int>(ReduceType::kReduceAny);
}
}
#ifndef PADDLE_WITH_XPU_KP
void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
constexpr int min_reduce_num_per_thread = 16;
constexpr int max_reduce_num_per_thread = 256;
constexpr int max_num_threads = kps::details::kReduceMaxThread;
// set block size.
// 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
// will process the reduction for one output.
// The number of output for one block is blockDim.y;
// 2. If reduce_last_dim == false, different threadIdx.x will process
// different reduction and gets the output separately. If it is
// necessary, it should reduce in block y.
// The number of output for one block is blockDim.x;
int block_x, block_y;
int grid_num, reduce_num_per_thread;
if (reduce_last_dim) {
block_x = details::GetBlockDim(reduce_num);
block_y = details::GetBlockDim(left_num);
block_dim->x = block_x;
block_dim->y =
std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
grid_num = details::AlignUp(left_num, block_dim->y);
reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
} else {
block_x = details::GetBlockDim(left_num);
block_y = details::GetBlockDim(reduce_num);
block_dim->x = std::min(block_x, 32);
block_dim->y =
std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
block_dim->x =
std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
grid_num = details::AlignUp(left_num, block_dim->x);
reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
}
int device_id = paddle::platform::GetCurrentDeviceId();
int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
int max_threads_per_mp =
paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
int max_threads = max_threads_per_mp * max_mp;
int num_threads = block_dim->x * block_dim->y;
int max_num_blocks = max_threads / num_threads;
// set grid size.
// Whether to set grid.y larger than 1, there are 3 following rules:
// 1. The number that each thread process should no less than
// min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
// 2. It should maximize the utilization of SM.
// So we choose the minimum between input_split_num_1 and input_split_num_3
// to make each thread process as mush data as possible. Meanwhile,
// the number cannot be larger than max_reduce_num_per_thread, so we
// choose the maximum between the result above and input_split_num_2.
int input_split_num_1 =
details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
int input_split_num_2 =
details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);
grid_dim->x = grid_num;
grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
input_split_num_2);
// if grid.y > 1, we need launch reduce kernel again.
if (grid_dim->y > 1) {
should_reduce_again = true;
}
}
// set block and grid for launch kernel
// for ReduceHigherDim: if block is enough -> splite reduce_num
// else init block(32, 1) grid(block_num, 1)
// for others: block(block_num, 1) , grid(left_num, 1)
void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
int last_dim_num = x_dim.back();
// update left_num
int grid_z = left_num / last_dim_num;
left_num = last_dim_num;
grid_dim->z = grid_z;
int device_id = paddle::platform::GetCurrentDeviceId();
int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
int max_threads_per_mp =
paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
int max_threads = max_threads_per_mp * max_mp;
// init
int num_block = (max_threads / left_num);
block_dim->x = details::GetBlockDim(left_num);
grid_dim->x = details::AlignUp(left_num, block_dim->x);
blocking_size = reduce_num;
if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
blocking_size = details::GetLastPow2(reduce_num / num_block);
if (blocking_size <= 1) {
blocking_size = details::GetLastPow2(sqrt(reduce_num));
} else if (blocking_size * 2 < reduce_num) {
blocking_size *= 2;
}
should_reduce_again = true;
grid_dim->y = details::AlignUp(reduce_num, blocking_size);
}
}
#endif
void SetBlockDim() {
// init
int block_num = details::GetBlockDim(reduce_num);
should_reduce_again = false;
dim3 block_dim(block_num, 1, 1);
dim3 grid_dim(left_num, 1, 1);
blocking_size = reduce_num;
#ifdef PADDLE_WITH_XPU_KP
if (reduce_last_dim) {
block_dim.x = 64;
block_dim.y = reduce_num;
grid_dim.x = 1;
grid_dim.y = 8;
} else {
block_dim.x = 64;
block_dim.y = left_num;
grid_dim.x = 8;
grid_dim.y = 1;
}
#else
if (reduce_type == ReduceType::kReduceHigherDim) {
SetBlockDimForHigher(&block_dim, &grid_dim);
} else {
SetBlockDimForReduceAny(&block_dim, &grid_dim);
}
#endif
block = block_dim;
grid = grid_dim;
}
public:
std::vector<int> reduce_dims_origin;
std::vector<int> reduce_dim;
std::vector<int> x_dim;
std::vector<int> left_dim;
std::vector<int> x_strides;
std::vector<int> left_strides;
std::vector<int> reduce_strides;
int reduce_type;
int reduce_num;
int left_num;
int blocking_size;
bool should_reduce_again;
bool reduce_last_dim;
Ty* output_data;
dim3 block;
dim3 grid;
};
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
template <typename Tx,
typename Ty,
typename MPType,
typename ReduceOp,
typename TransformOp,
typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x,
Ty* y,
ReduceOp reducer,
TransformOp transformer,
MPType init,
int reduce_num,
int left_num,
bool reduce_last_dim,
const Calculator reduce_index_calculator,
const Calculator left_index_calculator,
const kps::DimConfig dim) {
int input_idx, left_idx, stride;
int block_size = 0;
bool need_store = true;
int loop_left = 0;
int tid = 0;
// the last dim gets involved in reduction
int store_offset = 0;
int stride_left = 0;
if (reduce_last_dim) {
auto block = ReduceIndexMapping<true>(dim);
input_idx = block.BlockIdY() * block.BlockDimX();
left_idx = block.BlockIdX() * block.BlockDimY() + THREAD_ID_Y;
stride = block.GridDimY() * block.BlockDimX();
block_size = block.BlockDimX();
need_store = (THREAD_ID_X == 0) && (left_idx < left_num);
store_offset = block.BlockIdY() * left_num + left_idx;
loop_left = min(block.GetLoopSize(), left_num - left_idx);
stride_left = 1;
tid = THREAD_ID_X;
} else {
auto block = ReduceIndexMapping<false>(dim);
input_idx = block.BlockIdY() * block.BlockDimY();
left_idx = block.BlockIdX() * block.BlockDimX() + THREAD_ID_X;
stride = block.GridDimY() * block.BlockDimY();
block_size = block.BlockDimY();
need_store = (THREAD_ID_Y == 0) && (left_idx < left_num);
loop_left = min(block.GetLoopSize(), left_num - left_idx);
stride_left = block.BlockDimX() * block.GridDimX();
store_offset = block.BlockIdY() * left_num + left_idx;
tid = THREAD_ID_Y;
}
// calculate the offset, means the addr where each thread really start.
// 1. reduce for each thread
MPType input_compute[REDUCE_VEC_SIZE];
Tx input_reg[REDUCE_VEC_SIZE];
int input_idx_tmp = input_idx;
for (int i = 0; i < loop_left; i += stride_left) {
int input_offset = left_index_calculator(left_idx + i);
const _ptr_ Tx* input = x + input_offset;
MPType reduce_var = init;
// load REDUCE_VEC_SIZE data once, and then compute
int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
input_idx = input_idx_tmp;
for (; input_idx + block_size < bound;
input_idx += REDUCE_VEC_SIZE * stride) {
kps::ReadDataReduce<Tx,
Tx,
1,
REDUCE_VEC_SIZE,
1,
1,
Calculator,
kps::IdentityFunctor<Tx>,
false>(&input_reg[0],
input,
input_idx,
reduce_index_calculator,
1,
reduce_num,
1,
stride,
kps::IdentityFunctor<Tx>(),
reduce_last_dim);
kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
&input_compute[0], &input_reg[0], transformer);
kps::Reduce<MPType,
REDUCE_VEC_SIZE,
1,
1,
ReduceOp,
kps::details::ReduceMode::kLocalMode>(
&reduce_var, &input_compute[0], reducer, reduce_last_dim);
}
kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
kps::ReadDataReduce<Tx,
MPType,
1,
REDUCE_VEC_SIZE,
1,
1,
Calculator,
TransformOp,
true>(&input_compute[0],
input,
input_idx,
reduce_index_calculator,
1,
reduce_num - input_idx,
1,
stride,
transformer,
reduce_last_dim);
kps::Reduce<MPType,
REDUCE_VEC_SIZE,
1,
1,
ReduceOp,
kps::details::ReduceMode::kLocalMode>(
&reduce_var, &input_compute[0], reducer, reduce_last_dim);
kps::Reduce<MPType, 1, 1, 1, ReduceOp, kps::details::kGlobalMode>(
&reduce_var, &reduce_var, reducer, reduce_last_dim);
if (need_store) {
y[store_offset + i] = static_cast<Ty>(reduce_var);
}
}
}
template <typename Tx,
typename Ty,
typename MPType,
typename ReduceOp,
typename TransformOp>
__global__ void ReduceHigherDimKernel(const Tx* x,
Ty* y,
ReduceOp reducer,
TransformOp transformer,
MPType init,
int reduce_num,
int left_num,
int blocking_size,
const kps::DimConfig dim) {
// when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
// function will be used
auto block = ReduceIndexMapping<false>(dim);
int idy = block.BlockIdY() * blocking_size;
int idx = block.BlockIdX() * block.BlockDimX();
int idz = BLOCK_ID_Z * left_num;
int stride = dim.split_num_x * dim.deal_size_x;
int size = left_num - dim.rem_x;
int loop_size = min(reduce_num - idy, blocking_size);
int store_offset = block.BlockIdY() * left_num + idz * block.GridDimY();
int block_offset = idy * left_num + idz * reduce_num;
const _ptr_ Tx* input = x + block_offset;
Tx reduce_input;
for (; idx < size; idx += stride) {
MPType reduce_var = init;
MPType reduce_compute = init;
for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
kps::ReadData<Tx, Tx, 1, 1, 1, false>(&reduce_input,
input + loop_idx * left_num + idx,
block.BlockDimX(),
1,
1,
left_num);
kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
&reduce_compute, &reduce_input, transformer);
kps::Reduce<MPType,
1,
1,
1,
ReduceOp,
kps::details::ReduceMode::kLocalMode>(
&reduce_var, &reduce_compute, reducer, false);
}
Ty result = static_cast<Ty>(reduce_var);
kps::WriteData<Ty, 1, 1, 1, false>(
y + store_offset + idx, &result, block.BlockDimX());
}
if (idx < left_num) {
MPType reduce_var = init;
MPType reduce_compute = init;
for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
kps::ReadData<Tx, Tx, 1, 1, 1, true>(&reduce_input,
input + loop_idx * left_num + idx,
dim.rem_x,
1,
1,
left_num);
kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
&reduce_compute, &reduce_input, transformer);
kps::Reduce<MPType,
1,
1,
1,
ReduceOp,
kps::details::ReduceMode::kLocalMode>(
&reduce_var, &reduce_compute, reducer, false);
}
Ty result = static_cast<Ty>(reduce_var);
kps::WriteData<Ty, 1, 1, 1, true>(
y + store_offset + idx, &result, dim.rem_x);
}
}
template <typename Tx,
typename Ty,
typename MPType,
typename ReduceOp,
typename TransformOp>
static void LaunchReduceKernel(const Tx* x_data,
Ty* y_data,
const ReduceOp& reducer,
const TransformOp& transform,
MPType init,
KPStream stream,
ReduceConfig<Ty> config) {
if (config.reduce_type == kReduceLastDim) {
int stride_reduce = 1;
int stride_left = config.reduce_num;
// for higher performance
auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
auto left_index_calculator = OneDimIndexCal(stride_left);
kps::DimConfig dim = kps::DimConfig(config.grid.x,
config.grid.y,
config.grid.z,
config.block.x,
config.block.y,
0);
dim.SetRem(config.reduce_num % config.block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
ReduceAnyKernel<Tx,
Ty,
MPType,
ReduceOp,
TransformOp,
OneDimIndexCal><<<8, 64, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
init,
config.reduce_num,
config.left_num,
config.reduce_last_dim,
reduce_index_calculator,
left_index_calculator,
dim);
#else
ReduceAnyKernel<Tx,
Ty,
MPType,
ReduceOp,
TransformOp,
OneDimIndexCal><<<config.grid, config.block, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
init,
config.reduce_num,
config.left_num,
config.reduce_last_dim,
reduce_index_calculator,
left_index_calculator,
dim);
#endif
} else {
int reduce_rank = config.reduce_strides.size();
int left_rank = config.left_strides.size();
auto reduce_index_calculator = IndexCalculator(reduce_rank,
config.reduce_dim,
config.reduce_strides,
config.x_strides);
auto left_index_calculator = IndexCalculator(
left_rank, config.left_dim, config.left_strides, config.x_strides);
kps::DimConfig dim = kps::DimConfig(config.grid.x,
config.grid.y,
config.grid.z,
config.block.x,
config.block.y,
0);
dim.SetRem(config.reduce_num % config.block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
ReduceAnyKernel<Tx,
Ty,
MPType,
ReduceOp,
TransformOp,
IndexCalculator><<<8, 64, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
init,
config.reduce_num,
config.left_num,
config.reduce_last_dim,
reduce_index_calculator,
left_index_calculator,
dim);
#else
ReduceAnyKernel<Tx,
Ty,
MPType,
ReduceOp,
TransformOp,
IndexCalculator><<<config.grid, config.block, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
init,
config.reduce_num,
config.left_num,
config.reduce_last_dim,
reduce_index_calculator,
left_index_calculator,
dim);
#endif
}
if (config.should_reduce_again) {
dim3 block;
dim3 grid;
if (config.reduce_last_dim) {
block = dim3(32, 1, 1);
grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
} else {
block = dim3(config.block.x, 1, 1);
grid = dim3(config.grid.x, 1, config.grid.z);
}
auto last_index = OneDimIndexCal(1);
auto first_index = OneDimIndexCal(config.left_num);
kps::DimConfig dim =
kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
dim.SetRem(config.left_num % block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
ReduceHigherDimKernel<
Ty,
Ty,
MPType,
ReduceOp,
kps::IdentityFunctor<Ty, MPType>><<<8, 64, 0, stream>>>(
config.output_data,
y_data,
reducer,
kps::IdentityFunctor<Ty, MPType>(),
init,
config.grid.y,
config.left_num,
config.grid.y,
dim);
#else
ReduceHigherDimKernel<
Ty,
Ty,
MPType,
ReduceOp,
kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
config.output_data,
y_data,
reducer,
kps::IdentityFunctor<Ty, MPType>(),
init,
config.grid.y,
config.left_num,
config.grid.y,
dim);
#endif
}
}
template <typename Tx,
typename Ty,
template <typename> class ReduceOp,
typename TransformOp>
static typename std::enable_if<!std::is_same<Tx, phi::dtype::float16>::value,
void>::type
CubTensorReduceImpl(const Tx* x_data,
Ty* y_data,
const TransformOp& transform,
int reduce_num,
const phi::GPUContext& dev_ctx,
KPStream stream) {
auto reducer = ReduceOp<Ty>();
cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(x_data,
transform);
size_t temp_storage_bytes = 0;
cub::DeviceReduce::Reduce(nullptr,
temp_storage_bytes,
trans_x,
y_data,
reduce_num,
reducer,
reducer.initial(),
stream);
phi::DenseTensor tmp =
phi::Empty<uint8_t>(dev_ctx, {static_cast<int64_t>(temp_storage_bytes)});
auto* temp_storage = dev_ctx.Alloc<uint8_t>(&tmp);
cub::DeviceReduce::Reduce(temp_storage,
temp_storage_bytes,
trans_x,
y_data,
reduce_num,
reducer,
reducer.initial(),
stream);
}
template <typename Tx,
typename Ty,
template <typename> class ReduceOp,
typename TransformOp>
static typename std::enable_if<std::is_same<Tx, phi::dtype::float16>::value,
void>::type
CubTensorReduceImpl(const Tx* x_data,
Ty* y_data,
const TransformOp& transform,
int reduce_num,
const phi::GPUContext& dev_ctx,
KPStream stream) {
PADDLE_THROW(phi::errors::InvalidArgument(
"Tx should not be float16 when using cub::DeviceReduce::Reduce()."));
}
template <typename Tx,
typename Ty,
template <typename> class ReduceOp,
typename TransformOp>
void TensorReduceImpl(const phi::GPUContext& dev_ctx,
const phi::DenseTensor& x,
phi::DenseTensor* y,
const TransformOp& transform,
const std::vector<int>& origin_reduce_dims,
KPStream stream) {
dev_ctx.Alloc<Ty>(y);
auto x_dim = phi::vectorize<int>(x.dims());
auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
config.Run();
int numel = x.numel();
// after config.run()
// SetOutputData for ReduceHigherDim when should_reduce_again is true,
// temp_output should be stored temp_data in output_data space or stored in
// y_data;
phi::DDim tmp_ddim;
phi::DenseTensor tmp = phi::Empty<Ty>(dev_ctx);
auto x_data = x.data<Tx>();
auto y_data = y->data<Ty>();
if (config.reduce_num == 1) {
std::vector<const DenseTensor*> inputs = {&x};
std::vector<DenseTensor*> outputs = {y};
funcs::ElementwiseKernel<Ty>(dev_ctx, inputs, &outputs, transform);
return;
}
config.SetOutputData(y_data, dev_ctx, &tmp);
constexpr bool kIsTxFP16 = std::is_same<Tx, phi::dtype::float16>::value;
bool use_cub_reduce = config.reduce_num == numel && !kIsTxFP16;
#ifndef PADDLE_WITH_XPU_KP
if (use_cub_reduce) {
CubTensorReduceImpl<Tx, Ty, ReduceOp, TransformOp>(
x_data, y_data, transform, config.reduce_num, dev_ctx, stream);
return;
}
#endif
using MPType = typename kps::details::MPTypeTrait<Ty>::Type;
auto reducer = ReduceOp<MPType>();
// launch ReduceHigherDimKernel
// when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
// function will be used
// eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
// if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
// 32
// else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
if (config.reduce_type == ReduceType::kReduceHigherDim) {
kps::DimConfig dim = kps::DimConfig(config.grid.x,
config.grid.y,
config.grid.z,
config.block.x,
config.blocking_size,
0);
dim.SetRem(config.left_num % config.block.x,
config.reduce_num % config.blocking_size,
0);
#ifdef PADDLE_WITH_XPU_KP
ReduceHigherDimKernel<Tx,
Ty,
MPType,
ReduceOp<MPType>,
TransformOp><<<8, 64, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
reducer.initial(),
config.reduce_num,
config.left_num,
config.blocking_size,
dim);
#else
ReduceHigherDimKernel<
Tx,
Ty,
MPType,
ReduceOp<MPType>,
TransformOp><<<config.grid, config.block, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
reducer.initial(),
config.reduce_num,
config.left_num,
config.blocking_size,
dim);
#endif
if (config.should_reduce_again) {
dim3 block = dim3(config.block.x, 1, 1);
dim3 grid = dim3(config.grid.x, 1, config.grid.z);
kps::DimConfig dim2 =
kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
dim2.SetRem(config.left_num % config.block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
ReduceHigherDimKernel<
Ty,
Ty,
MPType,
ReduceOp<MPType>,
kps::IdentityFunctor<Ty, MPType>><<<8, 64, 0, stream>>>(
config.output_data,
y_data,
reducer,
kps::IdentityFunctor<Ty, MPType>(config.grid.y),
reducer.initial(),
config.grid.y,
config.left_num,
config.grid.y,
dim2);
#else
ReduceHigherDimKernel<
Ty,
Ty,
MPType,
ReduceOp<MPType>,
kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
config.output_data,
y_data,
reducer,
kps::IdentityFunctor<Ty, MPType>(config.grid.y),
reducer.initial(),
config.grid.y,
config.left_num,
config.grid.y,
dim2);
#endif
}
return;
}
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<MPType>, TransformOp>(
x_data, y_data, reducer, transform, reducer.initial(), stream, config);
}
} // namespace funcs
} // namespace phi
#endif
......@@ -20,7 +20,7 @@
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
namespace phi {
......@@ -87,7 +87,7 @@ void BroadcastTensorsGradKernel(const Context& ctx,
*input_tensor, ctx.GetPlace(), ctx, output_tensor);
} else {
// reduce_sum implementation on CUDA
kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
ctx,
*input_tensor,
output_tensor,
......
......@@ -80,7 +80,7 @@ inline void CompareAllKernelImpl(const Context& ctx,
for (int i = 0; i < reduce_dims.size(); ++i) {
reduce_dims[i] = i;
}
kernels::TensorReduceImpl<bool, bool, BitwiseAdd, kps::IdentityFunctor<bool>>(
funcs::TensorReduceImpl<bool, bool, BitwiseAdd, kps::IdentityFunctor<bool>>(
ctx, tmp, out, kps::IdentityFunctor<bool>(), reduce_dims, ctx.stream());
}
......
......@@ -16,7 +16,7 @@ limitations under the License. */
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_grad_base.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace phi {
......@@ -84,7 +84,7 @@ void DefaultElementwiseAddGrad(const GPUContext &ctx,
std::vector<int> reduce_dims =
funcs::GetReduceDim(x.dims(), out.dims(), axis);
gpuStream_t stream = ctx.stream();
kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
ctx, dout, dx, kps::IdentityFunctor<T>(), reduce_dims, stream);
}
}
......@@ -99,7 +99,7 @@ void DefaultElementwiseAddGrad(const GPUContext &ctx,
std::vector<int> reduce_dims =
funcs::GetReduceDim(y.dims(), out.dims(), axis);
gpuStream_t stream = ctx.stream();
kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
ctx, dout, dy, kps::IdentityFunctor<T>(), reduce_dims, stream);
}
}
......@@ -197,7 +197,7 @@ void default_elementwise_sub_grad(const GPUContext &ctx,
std::vector<int> reduce_dims =
funcs::GetReduceDim(x.dims(), out.dims(), axis);
gpuStream_t stream = ctx.stream();
kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
ctx, dout, dx, kps::IdentityFunctor<T>(), reduce_dims, stream);
}
}
......@@ -218,7 +218,7 @@ void default_elementwise_sub_grad(const GPUContext &ctx,
std::vector<int> reduce_dims =
funcs::GetReduceDim(y.dims(), out.dims(), axis);
gpuStream_t stream = ctx.stream();
kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::InverseFunctor<T>>(
funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::InverseFunctor<T>>(
ctx, dout, dy, kps::InverseFunctor<T>(), reduce_dims, stream);
}
}
......
......@@ -17,1229 +17,9 @@
// CUDA and HIP use same api
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include <algorithm>
#include <cmath>
#include <numeric>
#include <set>
#include <vector>
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/fast_divmod.h"
#include "paddle/fluid/string/string_helper.h"
#include "paddle/phi/api/ext/dispatch.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/utils/array.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_base.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
#define REDUCE_VEC_SIZE 4
namespace kps = phi::kps;
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace phi {
namespace kernels {
namespace details {
static inline int GetLastPow2(int n) {
n |= (n >> 1);
n |= (n >> 2);
n |= (n >> 4);
n |= (n >> 8);
n |= (n >> 16);
return std::max(1, n - (n >> 1));
}
static inline int64_t AlignUp(int64_t a, int64_t b) { return (a + b - 1) / b; }
// get strides of x_dim, reduce_dim and left_dim for reduceLastDim and reduceAny
static inline std::vector<int> GetDimStrides(const std::vector<int>& dims,
const std::vector<int>& idx) {
int n = static_cast<int>(idx.size());
if (n == 0) return std::vector<int>();
std::vector<int> strides(n);
strides.back() = 1;
for (int i = n - 2; i >= 0; --i) {
strides[i] = strides[i + 1] * dims[idx[i + 1]];
}
return strides;
}
// get blockDim for reduceLastDim and reduceAny
static inline int GetBlockDim(int block_dim) {
return block_dim >= kps::details::kReduceMaxThread
? kps::details::kReduceMaxThread
: GetLastPow2(block_dim);
}
// check reduce rand is valid
static inline void CheckReduceRank(int reduce_rank, int rank) {
if (rank % 2 == 0) {
PADDLE_ENFORCE_EQ(reduce_rank,
rank / 2,
phi::errors::InvalidArgument(
"ReduceOp: invalid reduce rank. When rank = %d, "
"reduce_rank must be %d, but got %d.",
rank,
rank / 2,
reduce_rank));
} else {
auto lower_rank = (rank - 1) / 2;
auto upper_rank = (rank + 1) / 2;
PADDLE_ENFORCE_EQ(
reduce_rank == lower_rank || reduce_rank == upper_rank,
true,
phi::errors::InvalidArgument(
"ReduceOp: invalid reduce rank. When rank = %d, reduce_rank "
"must be %d or %d, but got %d.",
rank,
lower_rank,
upper_rank,
reduce_rank));
}
}
// convert dims from vector to array
template <typename T, size_t ElementCount, typename VectorLikeType>
static inline phi::Array<T, ElementCount> VectorToArray(
const VectorLikeType& vec) {
PADDLE_ENFORCE_LE(
vec.size(),
ElementCount,
phi::errors::InvalidArgument("Cub reduce Array: size not match. Received "
"vec.size() %d > ElementCount %d.",
vec.size(),
ElementCount));
size_t n = static_cast<size_t>(vec.size());
phi::Array<T, ElementCount> ret;
for (size_t i = 0; i < n; ++i) {
ret[i] = vec[i];
}
return ret;
}
static inline std::vector<int> GetReduceDim(const std::vector<int64_t>& dims,
int dim_size,
bool reduce_all) {
std::vector<int> reduce_dims;
if (reduce_all) {
reduce_dims.resize(dim_size);
int reduce_size = reduce_dims.size();
for (int i = 0; i < reduce_size; ++i) {
reduce_dims[i] = i;
}
} else {
for (auto e : dims) {
PADDLE_ENFORCE_LT(e,
dim_size,
phi::errors::InvalidArgument(
"ReduceOp: invalid axis, when x_dims is %d, "
"axis[i] should less than x_dims, but got %d.",
dim_size,
e));
reduce_dims.push_back(e >= 0 ? e : e + dim_size);
}
}
return reduce_dims;
}
} // namespace details
constexpr int kMaxRank = phi::DDim::kMaxRank;
enum ReduceType {
kReduceLastDim = 0x01, // when reduce_dim[0] == x_dim.size() - 1;
kReduceHigherDim = 0x02, // ReduceFirstDim or reduceSecondDim
kReduceAny = 0x03, // when reduce_dim.size() > 1
};
struct IndexCalculator {
IndexCalculator(int dim,
const std::vector<int>& cal_dims,
const std::vector<int>& cal_strides,
const std::vector<int>& full_strides)
: dim(dim) {
dims = details::VectorToArray<int, kMaxRank>(cal_dims);
strides = details::VectorToArray<int, kMaxRank>(full_strides);
reduce_strides = details::VectorToArray<int, kMaxRank>(cal_strides);
#ifndef PADDLE_WITH_XPU_KP
std::vector<paddle::platform::FastDivMod> cal_divmoders;
// fast divmod
for (auto i : cal_strides) {
cal_divmoders.push_back(paddle::platform::FastDivMod(i));
}
divmoders = details::VectorToArray<paddle::platform::FastDivMod, kMaxRank>(
cal_divmoders);
#endif
}
__device__ inline int operator()(int offset) const {
#ifdef PADDLE_WITH_XPU_KP
int index = 0;
#pragma unroll
for (int i = 0; i < kMaxRank; ++i) {
if (i == dim) {
break;
}
index += (offset / reduce_strides[i]) * strides[dims[i]];
offset = offset % reduce_strides[i];
}
return index;
#else
int index = 0;
#pragma unroll
for (int i = 0; i < kMaxRank; ++i) {
if (i == dim) {
break;
}
auto divmod = divmoders[i].Divmod(offset);
index += (divmod.val[0] * strides[dims[i]]);
offset = divmod.val[1];
}
return index;
#endif
}
int dim;
phi::Array<int, kMaxRank> dims;
phi::Array<int, kMaxRank> strides;
phi::Array<int, kMaxRank> reduce_strides;
#ifndef PADDLE_WITH_XPU2
phi::Array<paddle::platform::FastDivMod, kMaxRank> divmoders;
#endif
};
template <bool ReduceLastDim = false>
struct ReduceIndexMapping {
const kps::DimConfig dim;
HOSTDEVICE explicit ReduceIndexMapping(const kps::DimConfig& dims)
: dim(dims) {}
__device__ __forceinline__ int BlockIdX() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return (cluster_id() / dim.split_num_x % dim.split_num_y);
} else {
return cluster_id() % dim.split_num_x;
}
#else
return blockIdx.x;
#endif
}
__device__ __forceinline__ int BlockIdY() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return (cluster_id() % dim.split_num_x);
} else {
return (cluster_id() / dim.split_num_x % dim.split_num_y);
}
#else
return blockIdx.y;
#endif
}
__device__ __forceinline__ int BlockDimX() {
#ifdef PADDLE_WITH_XPU2
return dim.deal_size_x;
#else
return blockDim.x;
#endif
}
__device__ __forceinline__ int BlockDimY() {
#ifdef PADDLE_WITH_XPU2
return 1;
#else
return blockDim.y;
#endif
}
__device__ __forceinline__ int GridDimX() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return dim.split_num_y;
} else {
return dim.split_num_x;
}
#else
return gridDim.x;
#endif
}
__device__ __forceinline__ int GridDimY() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return dim.split_num_x;
} else {
return dim.split_num_y;
}
#else
return gridDim.y;
#endif
}
__device__ __forceinline__ int GetLoopSize() {
#ifdef PADDLE_WITH_XPU2
if (ReduceLastDim) {
return dim.deal_size_y;
} else {
return dim.deal_size_x;
}
#else
return 1;
#endif
}
};
// when reduce_type == kReduceLastDim this struct will be used
// for higher performance
struct OneDimIndexCal {
explicit OneDimIndexCal(int num) : stride(num) {}
__device__ inline int operator()(int index) const { return index * stride; }
int stride;
};
// reduce config
template <typename Ty>
struct ReduceConfig {
ReduceConfig(const std::vector<int>& origin_reduce_dims,
const std::vector<int>& origin_x_dim)
: reduce_dims_origin(origin_reduce_dims), x_dim(origin_x_dim) {}
// get the parameters of reduceKernel
void Run() {
// step1: update the reduce_dim left_dim and x_dim
SetReduceDim();
// step2: get the strides of dim for reduceAny and reduceLastDim
SetStrides();
// step3: get the type of reduce
SetReduceType();
// step4: set the block and grid for launch kernel
SetBlockDim();
}
// when should_reduce_again is true, we need malloc temp space for temp data
void SetOutputData(Ty* y_data,
const paddle::platform::Place& place,
phi::DenseTensor* tmp) {
if (should_reduce_again) {
tmp->ResizeAndAllocate(phi::make_ddim(
{static_cast<int64_t>(left_num * grid.z * grid.y * sizeof(Ty))}));
output_data = tmp->mutable_data<Ty>(place);
} else {
output_data = y_data;
}
}
private:
// set reduce_dim, left_dim and update x_dim
// eg: x_dim = [2, 4, 6] origin_reduce_dims = [0, 1]
// --SetReduceDim--> x_dim = [8,6], reduce_dim = [0], left_dim = [1]
void SetReduceDim() {
std::set<int> reduce_set;
for (auto e : reduce_dims_origin) {
auto pos = e >= 0 ? e : e + x_dim.size();
reduce_set.insert(pos);
}
std::vector<int> reduce_dim_temp(reduce_set.begin(), reduce_set.end());
std::sort(reduce_dim_temp.begin(), reduce_dim_temp.end());
// update reduce_dim and x_dim
std::vector<int> x_new_dim;
reduce_dim.push_back(reduce_dim_temp[0]);
x_new_dim.push_back(x_dim[0]);
int idx_reduce = 1;
int num = 0;
if (reduce_dim_temp.size() > 1) {
for (int i = 1; i < x_dim.size(); i++) {
if ((idx_reduce < reduce_dim_temp.size()) &&
(i == reduce_dim_temp[idx_reduce])) {
int result =
reduce_dim_temp[idx_reduce] - reduce_dim[reduce_dim.size() - 1];
bool is_equal = ((result - num) == 1);
if (is_equal) {
x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
num++;
} else {
reduce_dim.push_back(reduce_dim_temp[idx_reduce] - num);
x_new_dim.push_back(x_dim[i]);
}
idx_reduce++;
} else {
x_new_dim.push_back(x_dim[i]);
}
}
} else {
x_new_dim = x_dim;
}
// update x_dim
x_dim = x_new_dim;
std::vector<int>().swap(x_new_dim);
std::vector<int> reduce_dim_new;
int is_reduced = 0;
for (auto e : reduce_dim) {
is_reduced |= 1 << e;
}
std::vector<int>().swap(reduce_dim);
for (int i = 0; i < x_dim.size(); i++) {
if ((i == 0) || (((is_reduced >> i) ^ (is_reduced >> (i - 1))) & 1)) {
x_new_dim.push_back(x_dim[i]);
if ((is_reduced >> i) & 1)
reduce_dim_new.push_back(x_new_dim.size() - 1);
} else {
x_new_dim[x_new_dim.size() - 1] *= x_dim[i];
}
}
x_dim = x_new_dim;
reduce_dim = reduce_dim_new;
int x_rank = static_cast<int>(x_dim.size());
std::set<int> left_set;
for (int i = 0; i < x_rank; ++i) {
left_set.insert(i);
}
for (auto e : reduce_dim) {
left_set.erase(e);
}
left_dim.assign(left_set.begin(), left_set.end());
// if the last dim gets involved in reduction
reduce_last_dim = (reduce_dim.back() == x_dim.size() - 1);
}
// set x_strides, reduce_strides, left_strides for reduceLastDim and reduceAny
// eg: x_dim = [8, 6], reduce_dim = [0], left_dim = [1]
// --SetStrides--> x_strides= [6,1], reduce_strides = [1],
// left_strides = [1]
void SetStrides() {
std::vector<int> idx_dim;
for (int i = 0; i < x_dim.size(); i++) {
idx_dim.push_back(i);
}
x_strides = details::GetDimStrides(x_dim, idx_dim);
reduce_strides = details::GetDimStrides(x_dim, reduce_dim);
left_strides = details::GetDimStrides(x_dim, left_dim);
reduce_num = reduce_strides[0] * x_dim[reduce_dim[0]];
left_num = 1;
if (left_dim.size()) {
left_num = left_strides[0] * x_dim[left_dim[0]];
}
}
// get the reduceType
// eg: x_dim = [8, 6] reduce_dim = [0] --> ReduceHigherDim -->reduceFirstDim
// x_dim = [8, 6] reduce_dim = [1] --> reduceLastDim
// x_dim = [8] reduce_dim = [0] --> reduceAll
// x_dim = [8, 6, 4, 2] reduce_dim = [0, 2] --> reduceAny
void SetReduceType() {
int rank = x_dim.size();
int reduce_rank = reduce_dim.size();
bool is_last_dim =
(rank == 2) && (reduce_rank == 1) && (reduce_dim[0] == 1);
if (rank == reduce_rank || is_last_dim) {
#ifdef PADDLE_WITH_XPU_KP
reduce_type = static_cast<int>(ReduceType::kReduceAny);
#else
reduce_type = static_cast<int>(ReduceType::kReduceLastDim);
#endif
} else if (reduce_rank == 1) {
// ReduceFirstDim and reduceSecondDim
#ifdef PADDLE_WITH_XPU_KP
if (reduce_dim[0] == 0) {
reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
} else {
reduce_type = static_cast<int>(ReduceType::kReduceAny);
}
#else
reduce_type = static_cast<int>(ReduceType::kReduceHigherDim);
#endif
} else {
reduce_type = static_cast<int>(ReduceType::kReduceAny);
}
}
#ifndef PADDLE_WITH_XPU_KP
void SetBlockDimForReduceAny(dim3* block_dim, dim3* grid_dim) {
constexpr int min_reduce_num_per_thread = 16;
constexpr int max_reduce_num_per_thread = 256;
constexpr int max_num_threads = kps::details::kReduceMaxThread;
// set block size.
// 1. If reduce_last_dim == true, all the threads whose threadIdx.y are same
// will process the reduction for one output.
// The number of output for one block is blockDim.y;
// 2. If reduce_last_dim == false, different threadIdx.x will process
// different reduction and gets the output separately. If it is
// necessary, it should reduce in block y.
// The number of output for one block is blockDim.x;
int block_x, block_y;
int grid_num, reduce_num_per_thread;
if (reduce_last_dim) {
block_x = details::GetBlockDim(reduce_num);
block_y = details::GetBlockDim(left_num);
block_dim->x = block_x;
block_dim->y =
std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
grid_num = details::AlignUp(left_num, block_dim->y);
reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->x);
} else {
block_x = details::GetBlockDim(left_num);
block_y = details::GetBlockDim(reduce_num);
block_dim->x = std::min(block_x, 32);
block_dim->y =
std::min(block_y, static_cast<int>(max_num_threads / block_dim->x));
block_dim->x =
std::min(block_x, static_cast<int>(max_num_threads / block_dim->y));
grid_num = details::AlignUp(left_num, block_dim->x);
reduce_num_per_thread = details::AlignUp(reduce_num, block_dim->y);
}
int device_id = paddle::platform::GetCurrentDeviceId();
int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
int max_threads_per_mp =
paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
int max_threads = max_threads_per_mp * max_mp;
int num_threads = block_dim->x * block_dim->y;
int max_num_blocks = max_threads / num_threads;
// set grid size.
// Whether to set grid.y larger than 1, there are 3 following rules:
// 1. The number that each thread process should no less than
// min_reduce_num_per_threadbut no more than max_reduce_num_per_thread;
// 2. It should maximize the utilization of SM.
// So we choose the minimum between input_split_num_1 and input_split_num_3
// to make each thread process as mush data as possible. Meanwhile,
// the number cannot be larger than max_reduce_num_per_thread, so we
// choose the maximum between the result above and input_split_num_2.
int input_split_num_1 =
details::AlignUp(reduce_num_per_thread, min_reduce_num_per_thread);
int input_split_num_2 =
details::AlignUp(reduce_num_per_thread, max_reduce_num_per_thread);
int input_split_num_3 = details::AlignUp(max_num_blocks, grid_num);
grid_dim->x = grid_num;
grid_dim->y = std::max(std::min(input_split_num_1, input_split_num_3),
input_split_num_2);
// if grid.y > 1, we need launch reduce kernel again.
if (grid_dim->y > 1) {
should_reduce_again = true;
}
}
// set block and grid for launch kernel
// for ReduceHigherDim: if block is enough -> splite reduce_num
// else init block(32, 1) grid(block_num, 1)
// for others: block(block_num, 1) , grid(left_num, 1)
void SetBlockDimForHigher(dim3* block_dim, dim3* grid_dim) {
int last_dim_num = x_dim.back();
// update left_num
int grid_z = left_num / last_dim_num;
left_num = last_dim_num;
grid_dim->z = grid_z;
int device_id = paddle::platform::GetCurrentDeviceId();
int max_mp = paddle::platform::GetGPUMultiProcessors(device_id);
int max_threads_per_mp =
paddle::platform::GetGPUMaxThreadsPerMultiProcessor(device_id);
int max_threads = max_threads_per_mp * max_mp;
// init
int num_block = (max_threads / left_num);
block_dim->x = details::GetBlockDim(left_num);
grid_dim->x = details::AlignUp(left_num, block_dim->x);
blocking_size = reduce_num;
if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
blocking_size = details::GetLastPow2(reduce_num / num_block);
if (blocking_size <= 1) {
blocking_size = details::GetLastPow2(sqrt(reduce_num));
} else if (blocking_size * 2 < reduce_num) {
blocking_size *= 2;
}
should_reduce_again = true;
grid_dim->y = details::AlignUp(reduce_num, blocking_size);
}
}
#endif
void SetBlockDim() {
// init
int block_num = details::GetBlockDim(reduce_num);
should_reduce_again = false;
dim3 block_dim(block_num, 1, 1);
dim3 grid_dim(left_num, 1, 1);
blocking_size = reduce_num;
#ifdef PADDLE_WITH_XPU_KP
if (reduce_last_dim) {
block_dim.x = 64;
block_dim.y = reduce_num;
grid_dim.x = 1;
grid_dim.y = 8;
} else {
block_dim.x = 64;
block_dim.y = left_num;
grid_dim.x = 8;
grid_dim.y = 1;
}
#else
if (reduce_type == ReduceType::kReduceHigherDim) {
SetBlockDimForHigher(&block_dim, &grid_dim);
} else {
SetBlockDimForReduceAny(&block_dim, &grid_dim);
}
#endif
block = block_dim;
grid = grid_dim;
}
public:
std::vector<int> reduce_dims_origin;
std::vector<int> reduce_dim;
std::vector<int> x_dim;
std::vector<int> left_dim;
std::vector<int> x_strides;
std::vector<int> left_strides;
std::vector<int> reduce_strides;
int reduce_type;
int reduce_num;
int left_num;
int blocking_size;
bool should_reduce_again;
bool reduce_last_dim;
Ty* output_data;
dim3 block;
dim3 grid;
};
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
template <typename Tx,
typename Ty,
typename MPType,
typename ReduceOp,
typename TransformOp,
typename Calculator>
__global__ void ReduceAnyKernel(const Tx* x,
Ty* y,
ReduceOp reducer,
TransformOp transformer,
MPType init,
int reduce_num,
int left_num,
bool reduce_last_dim,
const Calculator reduce_index_calculator,
const Calculator left_index_calculator,
const kps::DimConfig dim) {
int input_idx, left_idx, stride;
int block_size = 0;
bool need_store = true;
int loop_left = 0;
int tid = 0;
// the last dim gets involved in reduction
int store_offset = 0;
int stride_left = 0;
if (reduce_last_dim) {
auto block = ReduceIndexMapping<true>(dim);
input_idx = block.BlockIdY() * block.BlockDimX();
left_idx = block.BlockIdX() * block.BlockDimY() + THREAD_ID_Y;
stride = block.GridDimY() * block.BlockDimX();
block_size = block.BlockDimX();
need_store = (THREAD_ID_X == 0) && (left_idx < left_num);
store_offset = block.BlockIdY() * left_num + left_idx;
loop_left = min(block.GetLoopSize(), left_num - left_idx);
stride_left = 1;
tid = THREAD_ID_X;
} else {
auto block = ReduceIndexMapping<false>(dim);
input_idx = block.BlockIdY() * block.BlockDimY();
left_idx = block.BlockIdX() * block.BlockDimX() + THREAD_ID_X;
stride = block.GridDimY() * block.BlockDimY();
block_size = block.BlockDimY();
need_store = (THREAD_ID_Y == 0) && (left_idx < left_num);
loop_left = min(block.GetLoopSize(), left_num - left_idx);
stride_left = block.BlockDimX() * block.GridDimX();
store_offset = block.BlockIdY() * left_num + left_idx;
tid = THREAD_ID_Y;
}
// calculate the offset, means the addr where each thread really start.
// 1. reduce for each thread
MPType input_compute[REDUCE_VEC_SIZE];
Tx input_reg[REDUCE_VEC_SIZE];
int input_idx_tmp = input_idx;
for (int i = 0; i < loop_left; i += stride_left) {
int input_offset = left_index_calculator(left_idx + i);
const _ptr_ Tx* input = x + input_offset;
MPType reduce_var = init;
// load REDUCE_VEC_SIZE data once, and then compute
int bound = reduce_num - (REDUCE_VEC_SIZE - 1) * stride;
input_idx = input_idx_tmp;
for (; input_idx + block_size < bound;
input_idx += REDUCE_VEC_SIZE * stride) {
kps::ReadDataReduce<Tx,
Tx,
1,
REDUCE_VEC_SIZE,
1,
1,
Calculator,
kps::IdentityFunctor<Tx>,
false>(&input_reg[0],
input,
input_idx,
reduce_index_calculator,
1,
reduce_num,
1,
stride,
kps::IdentityFunctor<Tx>(),
reduce_last_dim);
kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
&input_compute[0], &input_reg[0], transformer);
kps::Reduce<MPType,
REDUCE_VEC_SIZE,
1,
1,
ReduceOp,
kps::details::ReduceMode::kLocalMode>(
&reduce_var, &input_compute[0], reducer, reduce_last_dim);
}
kps::Init<MPType, REDUCE_VEC_SIZE>(&input_compute[0], init);
kps::ReadDataReduce<Tx,
MPType,
1,
REDUCE_VEC_SIZE,
1,
1,
Calculator,
TransformOp,
true>(&input_compute[0],
input,
input_idx,
reduce_index_calculator,
1,
reduce_num - input_idx,
1,
stride,
transformer,
reduce_last_dim);
kps::Reduce<MPType,
REDUCE_VEC_SIZE,
1,
1,
ReduceOp,
kps::details::ReduceMode::kLocalMode>(
&reduce_var, &input_compute[0], reducer, reduce_last_dim);
kps::Reduce<MPType, 1, 1, 1, ReduceOp, kps::details::kGlobalMode>(
&reduce_var, &reduce_var, reducer, reduce_last_dim);
if (need_store) {
y[store_offset + i] = static_cast<Ty>(reduce_var);
}
}
}
template <typename Tx,
typename Ty,
typename MPType,
typename ReduceOp,
typename TransformOp>
__global__ void ReduceHigherDimKernel(const Tx* x,
Ty* y,
ReduceOp reducer,
TransformOp transformer,
MPType init,
int reduce_num,
int left_num,
int blocking_size,
const kps::DimConfig dim) {
// when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
// function will be used
auto block = ReduceIndexMapping<false>(dim);
int idy = block.BlockIdY() * blocking_size;
int idx = block.BlockIdX() * block.BlockDimX();
int idz = BLOCK_ID_Z * left_num;
int stride = dim.split_num_x * dim.deal_size_x;
int size = left_num - dim.rem_x;
int loop_size = min(reduce_num - idy, blocking_size);
int store_offset = block.BlockIdY() * left_num + idz * block.GridDimY();
int block_offset = idy * left_num + idz * reduce_num;
const _ptr_ Tx* input = x + block_offset;
Tx reduce_input;
for (; idx < size; idx += stride) {
MPType reduce_var = init;
MPType reduce_compute = init;
for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
kps::ReadData<Tx, Tx, 1, 1, 1, false>(&reduce_input,
input + loop_idx * left_num + idx,
block.BlockDimX(),
1,
1,
left_num);
kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
&reduce_compute, &reduce_input, transformer);
kps::Reduce<MPType,
1,
1,
1,
ReduceOp,
kps::details::ReduceMode::kLocalMode>(
&reduce_var, &reduce_compute, reducer, false);
}
Ty result = static_cast<Ty>(reduce_var);
kps::WriteData<Ty, 1, 1, 1, false>(
y + store_offset + idx, &result, block.BlockDimX());
}
if (idx < left_num) {
MPType reduce_var = init;
MPType reduce_compute = init;
for (int loop_idx = 0; loop_idx < loop_size; ++loop_idx) {
kps::ReadData<Tx, Tx, 1, 1, 1, true>(&reduce_input,
input + loop_idx * left_num + idx,
dim.rem_x,
1,
1,
left_num);
kps::ElementwiseUnary<Tx, MPType, REDUCE_VEC_SIZE, 1, 1, TransformOp>(
&reduce_compute, &reduce_input, transformer);
kps::Reduce<MPType,
1,
1,
1,
ReduceOp,
kps::details::ReduceMode::kLocalMode>(
&reduce_var, &reduce_compute, reducer, false);
}
Ty result = static_cast<Ty>(reduce_var);
kps::WriteData<Ty, 1, 1, 1, true>(
y + store_offset + idx, &result, dim.rem_x);
}
}
template <typename Tx,
typename Ty,
typename MPType,
typename ReduceOp,
typename TransformOp>
static void LaunchReduceKernel(const Tx* x_data,
Ty* y_data,
const ReduceOp& reducer,
const TransformOp& transform,
MPType init,
KPStream stream,
ReduceConfig<Ty> config) {
if (config.reduce_type == kReduceLastDim) {
int stride_reduce = 1;
int stride_left = config.reduce_num;
// for higher performance
auto reduce_index_calculator = OneDimIndexCal(stride_reduce);
auto left_index_calculator = OneDimIndexCal(stride_left);
kps::DimConfig dim = kps::DimConfig(config.grid.x,
config.grid.y,
config.grid.z,
config.block.x,
config.block.y,
0);
dim.SetRem(config.reduce_num % config.block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
ReduceAnyKernel<Tx,
Ty,
MPType,
ReduceOp,
TransformOp,
OneDimIndexCal><<<8, 64, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
init,
config.reduce_num,
config.left_num,
config.reduce_last_dim,
reduce_index_calculator,
left_index_calculator,
dim);
#else
ReduceAnyKernel<Tx,
Ty,
MPType,
ReduceOp,
TransformOp,
OneDimIndexCal><<<config.grid, config.block, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
init,
config.reduce_num,
config.left_num,
config.reduce_last_dim,
reduce_index_calculator,
left_index_calculator,
dim);
#endif
} else {
int reduce_rank = config.reduce_strides.size();
int left_rank = config.left_strides.size();
auto reduce_index_calculator = IndexCalculator(reduce_rank,
config.reduce_dim,
config.reduce_strides,
config.x_strides);
auto left_index_calculator = IndexCalculator(
left_rank, config.left_dim, config.left_strides, config.x_strides);
kps::DimConfig dim = kps::DimConfig(config.grid.x,
config.grid.y,
config.grid.z,
config.block.x,
config.block.y,
0);
dim.SetRem(config.reduce_num % config.block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
ReduceAnyKernel<Tx,
Ty,
MPType,
ReduceOp,
TransformOp,
IndexCalculator><<<8, 64, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
init,
config.reduce_num,
config.left_num,
config.reduce_last_dim,
reduce_index_calculator,
left_index_calculator,
dim);
#else
ReduceAnyKernel<Tx,
Ty,
MPType,
ReduceOp,
TransformOp,
IndexCalculator><<<config.grid, config.block, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
init,
config.reduce_num,
config.left_num,
config.reduce_last_dim,
reduce_index_calculator,
left_index_calculator,
dim);
#endif
}
if (config.should_reduce_again) {
dim3 block;
dim3 grid;
if (config.reduce_last_dim) {
block = dim3(32, 1, 1);
grid = dim3(details::AlignUp(config.left_num, 32), 1, 1);
} else {
block = dim3(config.block.x, 1, 1);
grid = dim3(config.grid.x, 1, config.grid.z);
}
auto last_index = OneDimIndexCal(1);
auto first_index = OneDimIndexCal(config.left_num);
kps::DimConfig dim =
kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
dim.SetRem(config.left_num % block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
ReduceHigherDimKernel<
Ty,
Ty,
MPType,
ReduceOp,
kps::IdentityFunctor<Ty, MPType>><<<8, 64, 0, stream>>>(
config.output_data,
y_data,
reducer,
kps::IdentityFunctor<Ty, MPType>(),
init,
config.grid.y,
config.left_num,
config.grid.y,
dim);
#else
ReduceHigherDimKernel<
Ty,
Ty,
MPType,
ReduceOp,
kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
config.output_data,
y_data,
reducer,
kps::IdentityFunctor<Ty, MPType>(),
init,
config.grid.y,
config.left_num,
config.grid.y,
dim);
#endif
}
}
template <typename Tx,
typename Ty,
template <typename> class ReduceOp,
typename TransformOp>
static typename std::enable_if<!std::is_same<Tx, phi::dtype::float16>::value,
void>::type
CubTensorReduceImpl(const Tx* x_data,
Ty* y_data,
const TransformOp& transform,
int reduce_num,
const paddle::platform::Place& place,
KPStream stream) {
auto reducer = ReduceOp<Ty>();
cub::TransformInputIterator<Ty, TransformOp, const Tx*> trans_x(x_data,
transform);
size_t temp_storage_bytes = 0;
cub::DeviceReduce::Reduce(nullptr,
temp_storage_bytes,
trans_x,
y_data,
reduce_num,
reducer,
reducer.initial(),
stream);
phi::DenseTensor tmp = phi::DenseTensor(
phi::make_intrusive<paddle::experimental::SharedStorage>(place),
phi::DenseTensorMeta(
phi::DataType::UINT8,
phi::make_ddim({static_cast<int64_t>(temp_storage_bytes)})));
auto* temp_storage = tmp.mutable_data<uint8_t>(place);
cub::DeviceReduce::Reduce(temp_storage,
temp_storage_bytes,
trans_x,
y_data,
reduce_num,
reducer,
reducer.initial(),
stream);
}
template <typename Tx,
typename Ty,
template <typename> class ReduceOp,
typename TransformOp>
static typename std::enable_if<std::is_same<Tx, phi::dtype::float16>::value,
void>::type
CubTensorReduceImpl(const Tx* x_data,
Ty* y_data,
const TransformOp& transform,
int reduce_num,
const paddle::platform::Place& place,
KPStream stream) {
PADDLE_THROW(phi::errors::InvalidArgument(
"Tx should not be float16 when using cub::DeviceReduce::Reduce()."));
}
template <typename Tx,
typename Ty,
template <typename> class ReduceOp,
typename TransformOp>
void TensorReduceImpl(const phi::GPUContext& dev_ctx,
const phi::DenseTensor& x,
phi::DenseTensor* y,
const TransformOp& transform,
const std::vector<int>& origin_reduce_dims,
KPStream stream) {
y->mutable_data<Ty>(x.place());
auto x_dim = phi::vectorize<int>(x.dims());
auto config = ReduceConfig<Ty>(origin_reduce_dims, x_dim);
config.Run();
int numel = x.numel();
// after config.run()
// SetOutputData for ReduceHigherDim when should_reduce_again is true,
// temp_output should be stored temp_data in output_data space or stored in
// y_data;
phi::DDim tmp_ddim;
phi::DenseTensor tmp = phi::DenseTensor(
phi::make_intrusive<paddle::experimental::SharedStorage>(y->place()),
phi::DenseTensorMeta(y->dtype(), tmp_ddim, y->layout()));
auto x_data = x.data<Tx>();
auto y_data = y->data<Ty>();
if (config.reduce_num == 1) {
std::vector<const DenseTensor*> inputs = {&x};
std::vector<DenseTensor*> outputs = {y};
funcs::ElementwiseKernel<Ty>(dev_ctx, inputs, &outputs, transform);
return;
}
config.SetOutputData(y_data, x.place(), &tmp);
constexpr bool kIsTxFP16 = std::is_same<Tx, phi::dtype::float16>::value;
bool use_cub_reduce = config.reduce_num == numel && !kIsTxFP16;
#ifndef PADDLE_WITH_XPU_KP
if (use_cub_reduce) {
CubTensorReduceImpl<Tx, Ty, ReduceOp, TransformOp>(
x_data, y_data, transform, config.reduce_num, x.place(), stream);
return;
}
#endif
using MPType = typename kps::details::MPTypeTrait<Ty>::Type;
auto reducer = ReduceOp<MPType>();
// launch ReduceHigherDimKernel
// when reduce_dim.size() == 1 and reduce_dim[0] != x_dim.size() - 1, this
// function will be used
// eg: x_dim = {nz, ny, nx}, nx != 1, axis can be 0 or 1
// if axis = 1 then grid.z = nz, grid.y = ny / block_size, grid.x = nx /
// 32
// else grid.z = 1, grid.y = ny / block_size, grid.x = nx /32
if (config.reduce_type == ReduceType::kReduceHigherDim) {
kps::DimConfig dim = kps::DimConfig(config.grid.x,
config.grid.y,
config.grid.z,
config.block.x,
config.blocking_size,
0);
dim.SetRem(config.left_num % config.block.x,
config.reduce_num % config.blocking_size,
0);
#ifdef PADDLE_WITH_XPU_KP
ReduceHigherDimKernel<Tx,
Ty,
MPType,
ReduceOp<MPType>,
TransformOp><<<8, 64, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
reducer.initial(),
config.reduce_num,
config.left_num,
config.blocking_size,
dim);
#else
ReduceHigherDimKernel<
Tx,
Ty,
MPType,
ReduceOp<MPType>,
TransformOp><<<config.grid, config.block, 0, stream>>>(
x_data,
config.output_data,
reducer,
transform,
reducer.initial(),
config.reduce_num,
config.left_num,
config.blocking_size,
dim);
#endif
if (config.should_reduce_again) {
dim3 block = dim3(config.block.x, 1, 1);
dim3 grid = dim3(config.grid.x, 1, config.grid.z);
kps::DimConfig dim2 =
kps::DimConfig(grid.x, grid.y, grid.z, block.x, config.grid.y, 0);
dim2.SetRem(config.left_num % config.block.x, 0, 0);
#ifdef PADDLE_WITH_XPU_KP
ReduceHigherDimKernel<
Ty,
Ty,
MPType,
ReduceOp<MPType>,
kps::IdentityFunctor<Ty, MPType>><<<8, 64, 0, stream>>>(
config.output_data,
y_data,
reducer,
kps::IdentityFunctor<Ty, MPType>(config.grid.y),
reducer.initial(),
config.grid.y,
config.left_num,
config.grid.y,
dim2);
#else
ReduceHigherDimKernel<
Ty,
Ty,
MPType,
ReduceOp<MPType>,
kps::IdentityFunctor<Ty, MPType>><<<grid, block, 0, stream>>>(
config.output_data,
y_data,
reducer,
kps::IdentityFunctor<Ty, MPType>(config.grid.y),
reducer.initial(),
config.grid.y,
config.left_num,
config.grid.y,
dim2);
#endif
}
return;
}
// when reduce_dim.size() == 1 and reduce_dim[0] == x_dim.size() - 1, or
// when reduce_dim.size() != 1 and reduce_dim.size() != x_dim.size(), this
// function will be used
LaunchReduceKernel<Tx, Ty, MPType, ReduceOp<MPType>, TransformOp>(
x_data, y_data, reducer, transform, reducer.initial(), stream, config);
}
} // namespace kernels
template <typename T,
template <typename> class ReduceOp,
......@@ -1252,7 +32,7 @@ void Reduce(const KPDevice& dev_ctx,
DataType out_dtype,
DenseTensor* out) {
std::vector<int> reduce_dims =
phi::kernels::details::GetReduceDim(dims, x.dims().size(), reduce_all);
phi::funcs::details::GetReduceDim(dims, x.dims().size(), reduce_all);
int reduce_num = 1;
for (auto i : reduce_dims) {
......@@ -1271,10 +51,10 @@ void Reduce(const KPDevice& dev_ctx,
"TensorReduceImpl",
([&] {
using MPType = typename kps::details::MPTypeTrait<data_t>::Type;
phi::kernels::TensorReduceImpl<data_t,
data_t,
ReduceOp,
TransformOp<data_t, MPType>>(
phi::funcs::TensorReduceImpl<data_t,
data_t,
ReduceOp,
TransformOp<data_t, MPType>>(
dev_ctx,
tmp_tensor,
out,
......@@ -1284,7 +64,7 @@ void Reduce(const KPDevice& dev_ctx,
}));
} else {
using MPType = typename kps::details::MPTypeTrait<T>::Type;
phi::kernels::TensorReduceImpl<T, T, ReduceOp, TransformOp<T, MPType>>(
phi::funcs::TensorReduceImpl<T, T, ReduceOp, TransformOp<T, MPType>>(
dev_ctx,
x,
out,
......
......@@ -17,7 +17,7 @@
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/diagonal.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace phi {
......@@ -34,7 +34,7 @@ void TraceKernel(const Context& ctx,
auto stream = ctx.stream();
std::vector<int> reduce_dims;
reduce_dims.push_back(out->dims().size());
kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
ctx, diag, out, kps::IdentityFunctor<T>(), reduce_dims, stream);
} else {
phi::funcs::SetConstant<Context, T> functor;
......
......@@ -60,7 +60,7 @@ struct ReduceSumForMatmulGrad<GPUContext, T> {
DenseTensor* output,
const std::vector<int>& reduce_dims) {
auto stream = dev_ctx.stream();
kernels::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
dev_ctx, input, output, kps::IdentityFunctor<T>(), reduce_dims, stream);
}
};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册