未验证 提交 e2e1c57b 编写于 作者: Y Yuang Liu 提交者: GitHub

softmax mask fuse upper triangle (#33981)

* softmax mask fuse upper triangle

* cover not implemented cpu code
上级 bfbea8fd
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/softmax_mask_fuse_upper_triangle_op.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class SoftmaxMaskFuseUpperTriangleOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X",
"SoftmaxMaskFuseUpperTriangle");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
"SoftmaxMaskFuseUpperTriangle");
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(
x_dims.size(), 4,
platform::errors::InvalidArgument("Input x must be in 4D dimension but "
"received the dimension of X is %d",
x_dims.size()));
ctx->SetOutputDim("Out", x_dims);
ctx->ShareLoD("X", "Out");
}
};
class SoftmaxMaskFuseUpperTriangleOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input of softmax_mask_fuse_upper_triangle op, "
"which is the result of matmul(QK)/sqrt(dk).");
AddOutput("Out", "The result of softmax_mask_fuse_upper_triangle op.");
AddComment(R"DOC(
Softmax Mask Fuse Operator.
product = matmul(QK)/sqrt(dk)
output = softmax_mask_fuse_upper_triangle(product)
to get the final output.
)DOC");
}
};
class SoftmaxMaskFuseUpperTriangleOpGrad
: public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
framework::GradVarName("Out"),
"SoftmaxMaskFuseUpperTriangleGrad");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
ctx->ShareLoD(framework::GradVarName("Out"), framework::GradVarName("X"));
}
};
template <typename T>
class SoftmaxMaskFuseUpperTriangleGradOpMaker
: public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("softmax_mask_fuse_upper_triangle_grad");
op->SetInput("Softmax", this->Output("Out"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(
softmax_mask_fuse_upper_triangle, ops::SoftmaxMaskFuseUpperTriangleOp,
ops::SoftmaxMaskFuseUpperTriangleOpMaker,
ops::SoftmaxMaskFuseUpperTriangleGradOpMaker<paddle::framework::OpDesc>,
ops::SoftmaxMaskFuseUpperTriangleGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(softmax_mask_fuse_upper_triangle_grad,
ops::SoftmaxMaskFuseUpperTriangleOpGrad);
REGISTER_OP_CPU_KERNEL(softmax_mask_fuse_upper_triangle,
ops::SoftmaxMaskFuseUpperTriangleCPUKernel<
paddle::platform::CPUDeviceContext, float>,
ops::SoftmaxMaskFuseUpperTriangleCPUKernel<
paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// this file is inspired by:
// https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/fused_kernels/scaled_upper_triang_masked_softmax.h
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#include <curand_kernel.h>
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
#include <hiprand_kernel.h>
#endif
#include <stdint.h>
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/transform.h>
#include <algorithm>
#include <string>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/softmax_mask_fuse_upper_triangle_op.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
using framework::Tensor;
#ifdef PADDLE_WITH_HIP
#define WARP_SIZE 64
#else
#define WARP_SIZE 32
#endif
#define MASK 0xffffffff
namespace plat = paddle::platform;
__device__ __inline__ void load_data_upper_tri(plat::float16* dst,
const plat::float16* src) {
*(reinterpret_cast<float2*>(dst)) = *(reinterpret_cast<const float2*>(src));
}
__device__ __inline__ void load_data_upper_tri(float* dst, const float* src) {
*(reinterpret_cast<float4*>(dst)) = *(reinterpret_cast<const float4*>(src));
}
__device__ __inline__ void load_zero_vector_upper_tri(plat::float16* dst) {
*(reinterpret_cast<float2*>(dst)) = make_float2(0.0f, 0.0f);
}
__device__ __inline__ void load_zero_vector_upper_tri(float* dst) {
*(reinterpret_cast<float4*>(dst)) = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
int get_pow2_index_value(int value) {
int pow2_index = 0;
while ((1 << pow2_index) < value) {
++pow2_index;
}
return pow2_index;
}
template <typename T>
struct AddOP_upper_tri {
__device__ __forceinline__ T operator()(T a, T b) const { return a + b; }
};
template <typename T>
struct MaxOP_upper_tri {
__device__ __forceinline__ T operator()(T a, T b) const {
return a < b ? b : a;
}
};
template <typename T>
__device__ __forceinline__ T warp_shfl_xor_upper_tri(T value, int laneMask,
int width,
unsigned int mask = MASK) {
#if CUDA_VERSION >= 9000
return __shfl_xor_sync(mask, value, laneMask, width);
#else
return __shfl_xor(value, laneMask, width);
#endif
}
template <typename T, int batch, int width, template <typename> class ReduceOp>
__device__ __forceinline__ void warp_reduce_upper_tri(T* sum) {
ReduceOp<T> r;
#pragma unroll
for (int offset = width / 2; offset > 0; offset /= 2) {
#pragma unroll
for (int i = 0; i < batch; ++i) {
T b = warp_shfl_xor_upper_tri(sum[i], offset, width);
sum[i] = r(sum[i], b);
}
}
}
template <typename T, int pow2_index>
__global__ void SoftmaxMaskFuseUpperTriangleGPUKernel(const T* src, T* dst,
int batch_count,
int key_seq_len) {
constexpr int next_pow2 = 1 << pow2_index;
constexpr int warp_size = (next_pow2 < WARP_SIZE) ? next_pow2 : WARP_SIZE;
constexpr int kLocalIterations = std::max(next_pow2 / warp_size, 4);
constexpr int kLocalBatchSize = (next_pow2 <= 128) ? 2 : 1;
constexpr int kOneLoadingCounts = 4;
int key_seq_len_pow_2 = key_seq_len * key_seq_len;
int first_idx =
(blockDim.y * blockIdx.y + threadIdx.y) * gridDim.x * kLocalBatchSize +
blockIdx.x;
int local_block_idx = blockIdx.x + 1;
int warp_iter_upper_bound =
(local_block_idx + kOneLoadingCounts * warp_size - 1) / warp_size;
int local_batches = batch_count - first_idx;
if (local_batches > kLocalBatchSize) local_batches = kLocalBatchSize;
int local_idx = threadIdx.x;
src += first_idx * key_seq_len + kOneLoadingCounts * local_idx;
dst += first_idx * key_seq_len + kOneLoadingCounts * local_idx;
float data[kLocalBatchSize][kLocalIterations];
T temp_in[kOneLoadingCounts];
#pragma unroll
for (int i = 0; i < kLocalBatchSize; ++i) {
int batch_total_number = (i >= local_batches) ? 0 : local_block_idx;
#pragma unroll
for (int ii = 0; ii < kLocalIterations; ii += kOneLoadingCounts) {
int element_index = kOneLoadingCounts * local_idx + ii * warp_size;
if (element_index < batch_total_number) {
load_data_upper_tri(temp_in,
src + i * key_seq_len_pow_2 + ii * warp_size);
#pragma unroll
for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
if ((element_index + counter) < batch_total_number) {
data[i][ii + counter] = static_cast<float>(temp_in[counter]);
} else {
data[i][ii + counter] = -std::numeric_limits<float>::infinity();
}
}
} else {
#pragma unroll
for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
data[i][ii + counter] = -std::numeric_limits<float>::infinity();
}
}
}
}
float max_value[kLocalBatchSize];
#pragma unroll
for (int i = 0; i < kLocalBatchSize; ++i) {
max_value[i] = data[i][0];
#pragma unroll
for (int ii = 1; ii < kLocalIterations; ++ii) {
max_value[i] = (max_value[i] > data[i][ii]) ? max_value[i] : data[i][ii];
}
}
warp_reduce_upper_tri<float, kLocalBatchSize, warp_size, MaxOP_upper_tri>(
max_value);
float sum[kLocalBatchSize]{0.0f};
#pragma unroll
for (int i = 0; i < kLocalBatchSize; ++i) {
#pragma unroll
for (int ii = 0; ii < kLocalIterations; ++ii) {
if (ii < warp_iter_upper_bound) {
data[i][ii] = std::exp((data[i][ii] - max_value[i]));
sum[i] += data[i][ii];
}
}
}
warp_reduce_upper_tri<float, kLocalBatchSize, warp_size, AddOP_upper_tri>(
sum);
T out[kOneLoadingCounts];
#pragma unroll
for (int i = 0; i < kLocalBatchSize; ++i) {
if (i >= local_batches) break;
#pragma unroll
for (int ii = 0; ii < kLocalIterations; ii += kOneLoadingCounts) {
int element_index = kOneLoadingCounts * local_idx + ii * warp_size;
if (element_index < local_block_idx) {
#pragma unroll
for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
if (element_index + counter < local_block_idx) {
out[counter] = data[i][ii + counter] / sum[i];
} else {
out[counter] = 0;
}
}
load_data_upper_tri(dst + i * key_seq_len_pow_2 + ii * warp_size, out);
} else if (element_index < key_seq_len) {
load_zero_vector_upper_tri(dst + i * key_seq_len_pow_2 +
ii * warp_size);
} else {
break;
}
}
}
}
template <typename T, int pow2_index>
__global__ void SoftmaxMaskFuseUpperTriangleGradGPUKernel(const T* grad_input,
T* grad_output,
const T* softmax_rst,
int batch_count,
int key_seq_len) {
constexpr int next_pow2 = 1 << pow2_index;
constexpr int warp_size = (next_pow2 < WARP_SIZE) ? next_pow2 : WARP_SIZE;
constexpr int kLocalIterations = std::max(next_pow2 / warp_size, 4);
constexpr int kLocalBatchSize = (next_pow2 <= 128) ? 2 : 1;
constexpr int kOneLoadingCounts = 4;
int key_seq_len_pow_2 = key_seq_len * key_seq_len;
int first_idx =
(blockDim.y * blockIdx.y + threadIdx.y) * gridDim.x * kLocalBatchSize +
blockIdx.x;
int local_block_idx = blockIdx.x + 1;
// micro_batch_size might not be a multiple of WARP_BATCH. Check how
// many batches have to computed within this WARP.
int local_batches = batch_count - first_idx;
if (local_batches > kLocalBatchSize) local_batches = kLocalBatchSize;
// there might be multiple batches per warp. compute the index within the
// batch
int local_idx = threadIdx.x;
// the first element to process by the current thread
int offset = first_idx * key_seq_len + kOneLoadingCounts * local_idx;
grad_input += offset;
grad_output += offset;
softmax_rst += offset;
// load data from global memory
float grad_input_reg[kLocalBatchSize][kLocalIterations]{0.0f};
float softmax_rst_reg[kLocalBatchSize][kLocalIterations]{0.0f};
T temp_grad_input[kOneLoadingCounts];
T temp_softmax_rst[kOneLoadingCounts];
#pragma unroll
for (int i = 0; i < kLocalBatchSize; ++i) {
int batch_total_number = (i >= local_batches) ? 0 : local_block_idx;
#pragma unroll
for (int ii = 0; ii < kLocalIterations; ii += kOneLoadingCounts) {
int element_index = kOneLoadingCounts * local_idx + ii * warp_size;
if (element_index < batch_total_number) {
load_data_upper_tri(
temp_grad_input,
grad_input + i * key_seq_len_pow_2 + ii * warp_size);
load_data_upper_tri(
temp_softmax_rst,
softmax_rst + i * key_seq_len_pow_2 + ii * warp_size);
#pragma unroll
for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
if (element_index + counter < batch_total_number) {
softmax_rst_reg[i][ii + counter] =
static_cast<float>(temp_softmax_rst[counter]);
}
}
#pragma unroll
for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
if (element_index + counter < batch_total_number) {
grad_input_reg[i][ii + counter] =
static_cast<float>(temp_grad_input[counter]) *
softmax_rst_reg[i][ii + counter];
}
}
}
}
}
float sum[kLocalBatchSize];
#pragma unroll
for (int i = 0; i < kLocalBatchSize; ++i) {
sum[i] = grad_input_reg[i][0];
#pragma unroll
for (int ii = 1; ii < kLocalIterations; ++ii) {
sum[i] += grad_input_reg[i][ii];
}
}
warp_reduce_upper_tri<float, kLocalBatchSize, warp_size, AddOP_upper_tri>(
sum);
#pragma unroll
for (int i = 0; i < kLocalBatchSize; ++i) {
if (i >= local_batches) break;
#pragma unroll
for (int ii = 0; ii < kLocalIterations; ii += kOneLoadingCounts) {
int element_index = kOneLoadingCounts * local_idx + ii * warp_size;
if (element_index < key_seq_len) {
// compute gradients
T samples_out[kOneLoadingCounts];
#pragma unroll
for (int counter = 0; counter < kOneLoadingCounts; ++counter) {
samples_out[counter] = grad_input_reg[i][ii + counter] -
softmax_rst_reg[i][ii + counter] * sum[i];
}
load_data_upper_tri(
grad_output + i * key_seq_len_pow_2 + ii * warp_size, samples_out);
}
}
}
}
template <typename Place, typename T>
class SoftmaxMaskFuseUpperTriangleKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Output<Tensor>("Out");
auto* x_data = x->data<T>();
auto* y_data = y->mutable_data<T>(context.GetPlace());
auto x_dim = x->dims();
auto batches = x_dim[0];
auto attn_heads = x_dim[1];
auto attn_mul_batch = batches * attn_heads;
auto query_seq_len = x_dim[2];
auto key_seq_len = x_dim[3];
PADDLE_ENFORCE_EQ(key_seq_len, query_seq_len,
platform::errors::InvalidArgument(
"Key seq len must be equal with query seq len "
"received key len: %d, query len: %d",
key_seq_len, query_seq_len));
PADDLE_ENFORCE_EQ(key_seq_len >= 32 && key_seq_len < 8192, true,
platform::errors::InvalidArgument(
"Input x's last dim must be between [32, 8192) "
"received the last dimension of x is %d",
key_seq_len));
auto& place = *context.template device_context<Place>().eigen_device();
auto stream = context.cuda_device_context().stream();
int pow2_index = get_pow2_index_value(key_seq_len);
const int next_pow2 = 1 << pow2_index;
int batch_count = attn_mul_batch * query_seq_len;
int warp_size = (next_pow2 < WARP_SIZE) ? next_pow2 : WARP_SIZE;
int batches_per_warp = (next_pow2 <= 128) ? 2 : 1;
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
PADDLE_ENFORCE_EQ(
query_seq_len % batches_per_block, 0,
platform::errors::InvalidArgument(
"The query seq len (third dim of input X) must can divide the "
"number of batches per block. The query seq len is %d, while "
"the number of batches per block is %d.",
query_seq_len, batches_per_block));
dim3 blocks(query_seq_len,
(attn_mul_batch + batches_per_block) / batches_per_block, 1);
dim3 threads(warp_size, warps_per_block, 1);
switch (pow2_index) {
case 5: // 32
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 5><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
case 6: // 64
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 6><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
case 7: // 128
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 7><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
case 8: // 256
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 8><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
case 9: // 512
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 9><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
case 10: // 1024
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 10><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
case 11: // 2048
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 11><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
case 12: // 4096
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 12><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
case 13: // 8192
SoftmaxMaskFuseUpperTriangleGPUKernel<
T, 13><<<blocks, threads, 0, stream>>>(x_data, y_data, batch_count,
key_seq_len);
break;
default:
break;
}
}
};
template <typename Place, typename T>
class SoftmaxMaskFuseUpperTriangleGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
auto* softmax_rst = context.Input<Tensor>("Softmax");
auto* grad_x_data = grad_x->mutable_data<T>(context.GetPlace());
auto* grad_y_data = grad_y->data<T>();
auto* softmax_rst_data = softmax_rst->data<T>();
auto y_dim = grad_y->dims();
auto batches = y_dim[0];
auto attn_heads = y_dim[1];
auto attn_mul_batch = batches * attn_heads;
auto query_seq_len = y_dim[2];
auto key_seq_len = y_dim[3];
auto& place = *context.template device_context<Place>().eigen_device();
auto stream = context.cuda_device_context().stream();
int pow2_index = get_pow2_index_value(key_seq_len);
const int next_pow2 = 1 << pow2_index;
int batch_count = attn_mul_batch * query_seq_len;
int warp_size = (next_pow2 < WARP_SIZE) ? next_pow2 : WARP_SIZE;
int batches_per_warp = (next_pow2 <= 128) ? 2 : 1;
// use 128 threads per block to maximum gpu utilization
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
dim3 blocks(query_seq_len,
(attn_mul_batch + batches_per_block) / batches_per_block, 1);
dim3 threads(warp_size, warps_per_block, 1);
switch (pow2_index) {
case 5: // 32
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 5><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data, batch_count,
key_seq_len);
break;
case 6: // 64
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 6><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data, batch_count,
key_seq_len);
break;
case 7: // 128
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 7><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data, batch_count,
key_seq_len);
break;
case 8: // 256
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 8><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data, batch_count,
key_seq_len);
break;
case 9: // 512
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 9><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data, batch_count,
key_seq_len);
break;
case 10: // 1024
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 10><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data,
batch_count, key_seq_len);
break;
case 11: // 2048
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 11><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data,
batch_count, key_seq_len);
break;
case 12: // 4096
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 12><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data,
batch_count, key_seq_len);
break;
case 13: // 8192
SoftmaxMaskFuseUpperTriangleGradGPUKernel<
T, 13><<<blocks, threads, 0, stream>>>(grad_y_data, grad_x_data,
softmax_rst_data,
batch_count, key_seq_len);
break;
default:
break;
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
softmax_mask_fuse_upper_triangle,
ops::SoftmaxMaskFuseUpperTriangleKernel<plat::CUDADeviceContext,
plat::float16>,
ops::SoftmaxMaskFuseUpperTriangleKernel<plat::CUDADeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
softmax_mask_fuse_upper_triangle_grad,
ops::SoftmaxMaskFuseUpperTriangleGradKernel<plat::CUDADeviceContext,
plat::float16>,
ops::SoftmaxMaskFuseUpperTriangleGradKernel<plat::CUDADeviceContext,
float>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class SoftmaxMaskFuseUpperTriangleCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
platform::errors::Unimplemented(
"Softmax mask fuse op only supports GPU now."));
}
};
} // namespace operators
} // namespace paddle
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.incubate as incubate
paddle.enable_static()
def _get_softmax_upper(x, fp16=True):
x_lower = np.tril(x)
masked_x = np.where(x_lower == 0, -10000.0, x_lower).astype("float32")
max_value = np.max(masked_x, axis=-1, keepdims=True)
before_exp = masked_x - max_value
exp = np.exp(before_exp)
exp_sum = np.sum(exp, axis=-1, keepdims=True)
rst = exp / exp_sum
if fp16:
rst = rst.astype("float16")
return rst
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxMaskFuseOp(OpTest):
def setUp(self):
self.op_type = "softmax_mask_fuse_upper_triangle"
x = np.random.random((1, 1, 32, 32)).astype("float16")
self.inputs = {'X': x}
rst = _get_softmax_upper(x)
self.outputs = {'Out': rst}
def test_check_output(self):
self.check_output_with_place(core.CUDAPlace(0))
def test_check_grad(self):
self.check_grad_with_place(core.CUDAPlace(0), ["X"], "Out")
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestSoftmaxMaskFuseOp1(OpTest):
def setUp(self):
self.op_type = "softmax_mask_fuse_upper_triangle"
x = np.random.random((1, 1, 32, 32))
self.inputs = {'X': x}
rst = _get_softmax_upper(x)
self.outputs = {'Out': rst}
def test_check_output(self):
try:
self.check_output_with_place(core.CPUPlace())
except NotImplementedError:
pass
def test_check_grad(self):
try:
self.check_grad_with_place(core.CPUPlace(), ["X"], "Out")
except NotImplementedError:
pass
@unittest.skipIf(not core.is_compiled_with_cuda(),
"core is not compiled with CUDA")
class TestDropoutBiasFuseOp2(unittest.TestCase):
# test the python side API for softmax_mask_fuse op
def setUp(self):
np.random.seed(123)
self.dtypes = ['float16', 'float32']
def test_static(self):
for dtype in self.dtypes:
with fluid.program_guard(fluid.Program(), fluid.Program()):
input_x = fluid.data(
name="x", shape=[1, 1, 32, 32], dtype=dtype)
rst = incubate.softmax_mask_fuse_upper_triangle(input_x)
x_in_np = np.random.random((1, 1, 32, 32)).astype(dtype)
rst_np = _get_softmax_upper(x_in_np, dtype == 'float16')
exe = fluid.Executor(fluid.CUDAPlace(0))
fetches = exe.run(fluid.default_main_program(),
feed={"x": x_in_np},
fetch_list=[rst])
self.assertTrue(np.allclose(fetches[0], rst_np))
def test_dygraph(self):
for dtype in self.dtypes:
with fluid.dygraph.guard(fluid.CUDAPlace(0)):
x_in_np = np.random.random((1, 1, 32, 32)).astype(dtype)
rst_np = _get_softmax_upper(x_in_np, dtype == 'float16')
input_x = fluid.dygraph.to_variable(x_in_np)
rst = incubate.softmax_mask_fuse_upper_triangle(input_x)
self.assertTrue(np.allclose(rst, rst_np))
if __name__ == '__main__':
unittest.main()
......@@ -16,7 +16,8 @@ from .optimizer import LookAhead # noqa: F401
from .optimizer import ModelAverage # noqa: F401
from .checkpoint import auto_checkpoint # noqa: F401
from ..fluid.layer_helper import LayerHelper # noqa: F401
from .operators import softmax_mask_fuse_upper_triangle # noqa: F401
__all__ = [ # noqa
'LookAhead', 'ModelAverage'
'LookAhead', 'ModelAverage', 'softmax_mask_fuse_upper_triangle'
]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .softmax_mask_fuse_upper_triangle import softmax_mask_fuse_upper_triangle # noqa: F401
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid import core
def softmax_mask_fuse_upper_triangle(x):
"""
Fuse softmax mask together without even give a mask.
Under GPT model, the mask is always be a upper triangle
so we can simply mask the upper triangle part of x to get the mask result
:param x: the input x (rst of QK)
:return: the result of softmax mask fuse (upper triangle)
"""
if in_dygraph_mode():
out = core.ops.softmax_mask_fuse_upper_triangle(x)
return out
helper = LayerHelper('softmax_mask_fuse_upper_triangle', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='softmax_mask_fuse_upper_triangle',
inputs={'X': [x]},
outputs={'Out': [out]})
return out
......@@ -146,6 +146,7 @@ packages=['paddle',
'paddle.incubate',
'paddle.incubate.optimizer',
'paddle.incubate.checkpoint',
'paddle.incubate.operators',
'paddle.distributed.fleet',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.meta_optimizers',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册