Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e2474595
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e2474595
编写于
1月 31, 2023
作者:
L
Leo Guo
提交者:
GitHub
1月 31, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[XPU] Add unitest for set_value_grad. (#50049)
上级
754ab705
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
558 addition
and
5 deletion
+558
-5
python/paddle/fluid/tests/unittests/xpu/test_set_value_op_xpu.py
...paddle/fluid/tests/unittests/xpu/test_set_value_op_xpu.py
+558
-5
未找到文件。
python/paddle/fluid/tests/unittests/xpu/test_set_value_op_xpu.py
浏览文件 @
e2474595
...
@@ -16,12 +16,10 @@
...
@@ -16,12 +16,10 @@
import
sys
import
sys
import
unittest
import
unittest
from
functools
import
reduce
import
numpy
as
np
import
numpy
as
np
# from functools import reduce
sys
.
path
.
append
(
"../"
)
sys
.
path
.
append
(
"../"
)
from
op_test_xpu
import
XPUOpTest
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
(
from
xpu.get_test_cover_info
import
(
...
@@ -31,8 +29,7 @@ from xpu.get_test_cover_info import (
...
@@ -31,8 +29,7 @@ from xpu.get_test_cover_info import (
)
)
import
paddle
import
paddle
from
paddle.fluid.layer_helper
import
LayerHelper
# from paddle.fluid.layer_helper import LayerHelper
class
XPUTestSetValueOp
(
XPUOpTestWrapper
):
class
XPUTestSetValueOp
(
XPUOpTestWrapper
):
...
@@ -927,6 +924,562 @@ class XPUTestSetValueOp(XPUOpTestWrapper):
...
@@ -927,6 +924,562 @@ class XPUTestSetValueOp(XPUOpTestWrapper):
self
.
_bool_tensor_error
()
self
.
_bool_tensor_error
()
self
.
_broadcast_mismatch
()
self
.
_broadcast_mismatch
()
# 5. Test backward
class
XPUTestBackward
(
XPUOpTest
):
def
setUp
(
self
):
self
.
__class__
.
op_type
=
"set_value"
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
def
test_static
(
self
):
paddle
.
enable_static
()
main_program
=
paddle
.
static
.
Program
()
startup_program
=
paddle
.
static
.
Program
()
x_np
=
np
.
random
.
random
(
size
=
(
4
,
4
)).
astype
(
'float32'
)
y_np
=
np
.
random
.
random
(
size
=
(
4
,
4
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
4
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
4
,
4
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
4
,
1
],
dtype
=
'int64'
)
z
=
paddle
.
add
(
x
,
y
)
var
=
y
[
0
,
:]
z
[
0
,
:]
=
var
prediction
=
paddle
.
static
.
nn
.
fc
(
x
=
z
,
size
=
2
,
activation
=
'softmax'
)
cost
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
paddle
.
mean
(
cost
)
sgd
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
exe
.
run
(
startup_program
)
var_grad
,
z_grad
=
exe
.
run
(
main_program
,
feed
=
{
"x"
:
x_np
,
"y"
:
y_np
,
"label"
:
label_np
},
fetch_list
=
[
var
.
name
+
"@GRAD"
,
z
.
name
+
"@GRAD"
],
)
self
.
assertTrue
((
var_grad
==
z_grad
[
0
,
:]).
all
())
paddle
.
disable_static
()
class
XPUTestGradientTruncated
(
XPUOpTest
):
def
setUp
(
self
):
self
.
__class__
.
op_type
=
"set_value"
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
def
test_consistent_with_competitor
(
self
):
paddle
.
disable_static
()
def
set_value
(
t
,
value
):
a
=
t
*
t
a
[
0
,
1
]
=
value
y
=
a
*
a
return
y
.
sum
()
# case 1
array
=
np
.
arange
(
1
,
1
+
2
*
3
*
4
,
dtype
=
"float32"
).
reshape
(
[
1
,
2
,
1
,
3
,
1
,
4
]
)
value
=
np
.
arange
(
100
,
104
,
dtype
=
"float32"
).
reshape
(
1
,
4
)
inps
=
paddle
.
to_tensor
(
array
,
stop_gradient
=
False
)
value
=
paddle
.
to_tensor
(
value
,
stop_gradient
=
False
)
loss
=
set_value
(
inps
,
value
)
loss
.
backward
()
value_grad
=
np
.
array
([[
600.0
,
606.0
,
612.0
,
618.0
]])
input_grad
=
np
.
array
(
[
[
[
[
[[
4.0
,
32.0
,
108.0
,
256.0
]],
[[
500.0
,
864.0
,
1372.0
,
2048.0
]],
[[
2916.0
,
4000.0
,
5324.0
,
6912.0
]],
]
],
[
[
[[
0.0
,
0.0
,
0.0
,
0.0
]],
[[
0.0
,
0.0
,
0.0
,
0.0
]],
[[
0.0
,
0.0
,
0.0
,
0.0
]],
]
],
]
]
)
np
.
testing
.
assert_array_equal
(
inps
.
grad
.
numpy
(),
input_grad
,
err_msg
=
'The gradient of value should be
\n
{},
\n
but reveived {}'
.
format
(
input_grad
,
inps
.
grad
.
numpy
()
),
)
np
.
testing
.
assert_array_equal
(
value
.
grad
.
numpy
(),
value_grad
,
err_msg
=
'The gradient of input should be
\n
{},
\n
but reveived {}'
.
format
(
value_grad
,
value
.
grad
.
numpy
()
),
)
# case 2
array
=
np
.
arange
(
1
,
2
*
3
*
4
+
1
,
dtype
=
"float32"
).
reshape
(
[
4
,
2
,
3
]
)
value
=
np
.
arange
(
100
,
100
+
1
,
dtype
=
"float32"
)
inps2
=
paddle
.
to_tensor
(
array
,
stop_gradient
=
False
)
value2
=
paddle
.
to_tensor
(
value
,
stop_gradient
=
False
)
loss
=
set_value
(
inps2
,
value2
)
loss
.
backward
()
value_grad2
=
np
.
array
([
600.0
])
input_grad2
=
np
.
array
(
[
[[
4.0
,
32.0
,
108.0
],
[
0.0
,
0.0
,
0.0
]],
[[
1372.0
,
2048.0
,
2916.0
],
[
4000.0
,
5324.0
,
6912.0
]],
[[
8788.0
,
10976.0
,
13500.0
],
[
16384.0
,
19652.0
,
23328.0
]],
[[
27436.0
,
32000.0
,
37044.0
],
[
42592.0
,
48668.0
,
55296.0
]],
]
)
np
.
testing
.
assert_array_equal
(
inps2
.
grad
.
numpy
(),
input_grad2
,
err_msg
=
'The gradient of value should be
\n
{},
\n
but reveived {}'
.
format
(
input_grad
,
inps2
.
grad
.
numpy
()
),
)
np
.
testing
.
assert_array_equal
(
value2
.
grad
.
numpy
(),
value_grad2
,
err_msg
=
'The gradient of input should be
\n
{},
\n
but reveived {}'
.
format
(
value_grad
,
value2
.
grad
.
numpy
()
),
)
# case 3
def
set_value3
(
t
,
value
):
a
=
t
*
t
a
[
0
,
:,
0
,
:]
=
value
y
=
a
*
a
return
y
.
sum
()
array
=
np
.
arange
(
1
,
1
+
2
*
3
*
4
,
dtype
=
"float32"
).
reshape
(
[
4
,
3
,
1
,
1
,
2
,
1
]
)
value
=
np
.
arange
(
100
,
100
+
2
,
dtype
=
"float32"
).
reshape
(
1
,
2
,
1
)
inps
=
paddle
.
to_tensor
(
array
,
stop_gradient
=
False
)
value
=
paddle
.
to_tensor
(
value
,
stop_gradient
=
False
)
loss
=
set_value3
(
inps
,
value
)
loss
.
backward
()
value_grad
=
np
.
array
([[[
600.0
],
[
606.0
]]])
input_grad
=
np
.
array
(
[
[
[[[[
0.0
],
[
0.0
]]]],
[[[[
0.0
],
[
0.0
]]]],
[[[[
0.0
],
[
0.0
]]]],
],
[
[[[[
1372.0
],
[
2048.0
]]]],
[[[[
2916.0
],
[
4000.0
]]]],
[[[[
5324.0
],
[
6912.0
]]]],
],
[
[[[[
8788.0
],
[
10976.0
]]]],
[[[[
13500.0
],
[
16384.0
]]]],
[[[[
19652.0
],
[
23328.0
]]]],
],
[
[[[[
27436.0
],
[
32000.0
]]]],
[[[[
37044.0
],
[
42592.0
]]]],
[[[[
48668.0
],
[
55296.0
]]]],
],
]
)
np
.
testing
.
assert_array_equal
(
inps
.
grad
.
numpy
(),
input_grad
,
err_msg
=
'The gradient of value should be
\n
{},
\n
but reveived {}'
.
format
(
input_grad
,
inps
.
grad
.
numpy
()
),
)
np
.
testing
.
assert_array_equal
(
value
.
grad
.
numpy
(),
value_grad
,
err_msg
=
'The gradient of input should be
\n
{},
\n
but reveived {}'
.
format
(
value_grad
,
value
.
grad
.
numpy
()
),
)
# case 4: step >0
def
set_value4
(
t
,
value
):
a
=
t
*
t
a
[
0
,
:,
0
,
::
3
]
=
value
y
=
a
*
a
return
y
.
sum
()
array
=
np
.
arange
(
1
,
1
+
2
*
3
*
4
,
dtype
=
"float32"
).
reshape
(
[
2
,
3
,
1
,
4
,
1
]
)
value
=
np
.
arange
(
100
,
100
+
2
,
dtype
=
"float32"
).
reshape
(
1
,
2
,
1
)
inps
=
paddle
.
to_tensor
(
array
,
stop_gradient
=
False
)
value
=
paddle
.
to_tensor
(
value
,
stop_gradient
=
False
)
loss
=
set_value4
(
inps
,
value
)
loss
.
backward
()
value_grad
=
np
.
array
([[[
600.0
],
[
606.0
]]])
input_grad
=
np
.
array
(
[
[
[[[
0.0
],
[
32.0
],
[
108.0
],
[
0.0
]]],
[[[
0.0
],
[
864.0
],
[
1372.0
],
[
0.0
]]],
[[[
0.0
],
[
4000.0
],
[
5324.0
],
[
0.0
]]],
],
[
[[[
8788.0
],
[
10976.0
],
[
13500.0
],
[
16384.0
]]],
[[[
19652.0
],
[
23328.0
],
[
27436.0
],
[
32000.0
]]],
[[[
37044.0
],
[
42592.0
],
[
48668.0
],
[
55296.0
]]],
],
]
)
np
.
testing
.
assert_array_equal
(
inps
.
grad
.
numpy
(),
input_grad
,
err_msg
=
'The gradient of value should be
\n
{},
\n
but reveived {}'
.
format
(
input_grad
,
inps
.
grad
.
numpy
()
),
)
np
.
testing
.
assert_array_equal
(
value
.
grad
.
numpy
(),
value_grad
,
err_msg
=
'The gradient of input should be
\n
{},
\n
but reveived {}'
.
format
(
value_grad
,
value
.
grad
.
numpy
()
),
)
# case 5:a[0].shape==value.shape
def
set_value5
(
t
,
value
):
a
=
t
*
t
a
[
0
]
=
value
y
=
a
*
a
return
y
.
sum
()
array
=
np
.
arange
(
1
,
1
+
2
*
3
*
4
,
dtype
=
"float32"
).
reshape
(
[
2
,
3
,
4
]
)
value
=
np
.
arange
(
100
,
100
+
12
,
dtype
=
"float32"
).
reshape
(
3
,
4
)
inps
=
paddle
.
to_tensor
(
array
,
stop_gradient
=
False
)
value
=
paddle
.
to_tensor
(
value
,
stop_gradient
=
False
)
loss
=
set_value5
(
inps
,
value
)
loss
.
backward
()
value_grad
=
np
.
array
(
[
[
200.0
,
202.0
,
204.0
,
206.0
],
[
208.0
,
210.0
,
212.0
,
214.0
],
[
216.0
,
218.0
,
220.0
,
222.0
],
]
)
input_grad
=
np
.
array
(
[
[
[
0.0
,
0.0
,
0.0
,
0.0
],
[
0.0
,
0.0
,
0.0
,
0.0
],
[
0.0
,
0.0
,
0.0
,
0.0
],
],
[
[
8788.0
,
10976.0
,
13500.0
,
16384.0
],
[
19652.0
,
23328.0
,
27436.0
,
32000.0
],
[
37044.0
,
42592.0
,
48668.0
,
55296.0
],
],
]
)
np
.
testing
.
assert_array_equal
(
inps
.
grad
.
numpy
(),
input_grad
,
err_msg
=
'The gradient of value should be
\n
{},
\n
but reveived {}'
.
format
(
input_grad
,
inps
.
grad
.
numpy
()
),
)
np
.
testing
.
assert_array_equal
(
value
.
grad
.
numpy
(),
value_grad
,
err_msg
=
'The gradient of input should be
\n
{},
\n
but reveived {}'
.
format
(
value_grad
,
value
.
grad
.
numpy
()
),
)
# case 6: pass stop_gradient from value to x
x
=
paddle
.
zeros
([
8
,
8
],
dtype
=
'float32'
)
value
=
paddle
.
to_tensor
([
10
],
dtype
=
'float32'
,
stop_gradient
=
False
)
self
.
assertTrue
(
x
.
stop_gradient
)
self
.
assertTrue
(
x
.
is_leaf
)
x
[
0
,
:]
=
value
self
.
assertTrue
(
not
x
.
stop_gradient
)
self
.
assertTrue
(
not
x
.
is_leaf
)
def
test_static_graph
(
self
):
paddle
.
enable_static
()
to_string
=
lambda
x
,
i
:
x
+
'_'
+
str
(
i
)
numel
=
lambda
input_shape
:
reduce
(
lambda
x
,
y
:
x
*
y
,
input_shape
)
def
op1
(
x
):
value
=
paddle
.
fluid
.
layers
.
fill_constant
([
1
],
"float32"
,
1
)
# test stop_gradient
value
.
stop_gradient
=
True
x
.
stop_gradient
=
False
start
=
paddle
.
fluid
.
layers
.
fill_constant
(
[
1
],
"int32"
,
5
,
force_cpu
=
True
)
end
=
paddle
.
fluid
.
layers
.
fill_constant
(
[
1
],
"int32"
,
0
,
force_cpu
=
True
)
step
=
paddle
.
fluid
.
layers
.
fill_constant
(
[
1
],
"int32"
,
-
2
,
force_cpu
=
True
)
inputs
=
{
'Input'
:
x
,
'ValueTensor'
:
value
,
'StartsTensorList'
:
[
start
,
],
'EndsTensorList'
:
[
end
,
],
'StepsTensorList'
:
[
step
,
],
}
helper
=
LayerHelper
(
"set_value"
)
y
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"set_value"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
y
},
attrs
=
{
'axes'
:
[
0
]},
)
return
y
,
value
def
op2
(
x
):
value
=
paddle
.
fluid
.
layers
.
fill_constant
(
[
1
,
3
,
2
],
"float32"
,
1
)
# test stop_gradient
value
.
stop_gradient
=
False
x
.
stop_gradient
=
False
attrs
=
{
'axes'
:
[
0
],
'starts'
:
[
6
],
'ends'
:
[
0
],
'steps'
:
[
-
4
],
'decrease_axes'
:
[],
'none_axes'
:
[],
'dtype'
:
paddle
.
float32
,
}
inputs
=
{
'Input'
:
x
,
'ValueTensor'
:
value
}
helper
=
LayerHelper
(
"set_value"
)
y
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"set_value"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
y
},
attrs
=
attrs
,
)
return
y
,
value
def
op3
(
x
):
value
=
paddle
.
fluid
.
layers
.
fill_constant
([
1
],
"float32"
,
1
)
x
.
stop_gradient
=
True
value
.
stop_gradient
=
False
start
=
paddle
.
fluid
.
layers
.
fill_constant
(
[
1
],
"int32"
,
0
,
force_cpu
=
True
)
end
=
paddle
.
fluid
.
layers
.
fill_constant
(
[
1
],
"int32"
,
5
,
force_cpu
=
True
)
step
=
paddle
.
fluid
.
layers
.
fill_constant
(
[
1
],
"int32"
,
3
,
force_cpu
=
True
)
inputs
=
{
'Input'
:
x
,
'ValueTensor'
:
value
,
'StartsTensorList'
:
[
start
,
],
'EndsTensorList'
:
[
end
,
],
'StepsTensorList'
:
[
step
,
],
}
helper
=
LayerHelper
(
"set_value"
)
y
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"set_value"
,
inputs
=
inputs
,
outputs
=
{
'Out'
:
y
},
attrs
=
{
'axes'
:
[
0
]},
)
return
y
,
value
def
set_value
(
array
,
i
,
op
):
name_x
=
to_string
(
'x'
,
i
)
x
=
paddle
.
static
.
data
(
name
=
name_x
,
shape
=
array
.
shape
,
dtype
=
'float32'
)
# set_value_op in __get/setitem__ is an inplace operation.
# When `input.stop_gradient = True` and `value.stop_gradient = False`,
# set_value_grad_op will not be run during backward.
y
,
value
=
op
(
x
)
y2
=
y
+
1
loss
=
paddle
.
sum
(
y2
)
sgd
=
paddle
.
optimizer
.
Adam
()
sgd
.
minimize
(
loss
)
place
=
self
.
place
prog
=
paddle
.
static
.
default_main_program
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
fetch_list
=
[]
if
not
x
.
stop_gradient
:
fetch_list
.
append
(
x
.
grad_name
)
if
not
value
.
stop_gradient
:
fetch_list
.
append
(
value
.
grad_name
)
out
=
exe
.
run
(
prog
,
feed
=
{
x
.
name
:
array
},
fetch_list
=
fetch_list
)
return
out
input_shape
=
[
7
,
6
,
5
,
4
,
3
,
2
]
array
=
np
.
arange
(
0
,
numel
(
input_shape
),
dtype
=
"float32"
).
reshape
(
input_shape
)
for
i
in
range
(
len
(
input_shape
)):
program
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
program
):
out1
=
set_value
(
array
,
i
,
op1
)
self
.
assertTrue
((
out1
[
0
][
5
:
0
:
-
2
]
==
0
).
all
())
if
len
(
array
.
shape
)
>
2
:
program2
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
program2
):
out2
=
set_value
(
array
,
i
,
op2
)
self
.
assertTrue
((
out2
[
0
][
6
:
0
:
-
4
]
==
0
).
all
())
program3
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
program3
):
out3
=
set_value
(
array
,
i
,
op3
)
self
.
assertTrue
(
(
numel
(
out1
[
0
][
0
:
5
:
3
].
shape
)
==
out3
[
0
]).
all
()
)
array
=
array
[
0
]
paddle
.
disable_static
()
class
XPUTestSetValueInplace
(
XPUOpTest
):
def
setUp
(
self
):
self
.
__class__
.
op_type
=
"set_value"
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
def
test_inplace
(
self
):
paddle
.
disable_static
()
with
paddle
.
fluid
.
dygraph
.
guard
():
paddle
.
seed
(
100
)
a
=
paddle
.
rand
(
shape
=
[
1
,
4
])
a
.
stop_gradient
=
False
b
=
a
[:]
c
=
b
b
[
paddle
.
to_tensor
(
0
)]
=
1.0
self
.
assertTrue
(
id
(
b
)
==
id
(
c
))
np
.
testing
.
assert_array_equal
(
b
.
numpy
(),
c
.
numpy
())
self
.
assertEqual
(
b
.
inplace_version
,
0
)
paddle
.
enable_static
()
class
XPUTestSetValueInplaceLeafVar
(
XPUOpTest
):
def
setUp
(
self
):
self
.
__class__
.
op_type
=
"set_value"
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
XPUPlace
(
0
)
def
test_inplace_var_become_leaf_var
(
self
):
paddle
.
disable_static
()
a_grad_1
,
b_grad_1
,
a_grad_2
,
b_grad_2
=
0
,
1
,
2
,
3
with
paddle
.
fluid
.
dygraph
.
guard
():
paddle
.
seed
(
100
)
a
=
paddle
.
rand
(
shape
=
[
1
,
4
])
b
=
paddle
.
rand
(
shape
=
[
1
,
4
])
a
.
stop_gradient
=
False
b
.
stop_gradient
=
False
c
=
a
/
b
c
.
sum
().
backward
()
a_grad_1
=
a
.
grad
.
numpy
()
b_grad_1
=
b
.
grad
.
numpy
()
with
paddle
.
fluid
.
dygraph
.
guard
():
paddle
.
seed
(
100
)
a
=
paddle
.
rand
(
shape
=
[
1
,
4
])
b
=
paddle
.
rand
(
shape
=
[
1
,
4
])
a
.
stop_gradient
=
False
b
.
stop_gradient
=
False
c
=
a
/
b
d
=
paddle
.
zeros
((
4
,
4
))
self
.
assertTrue
(
d
.
stop_gradient
)
d
[
0
,
:]
=
c
self
.
assertFalse
(
d
.
stop_gradient
)
d
[
0
,
:].
sum
().
backward
()
a_grad_2
=
a
.
grad
.
numpy
()
b_grad_2
=
b
.
grad
.
numpy
()
np
.
testing
.
assert_array_equal
(
a_grad_1
,
a_grad_2
)
np
.
testing
.
assert_array_equal
(
b_grad_1
,
b_grad_2
)
paddle
.
enable_static
()
support_types
=
get_xpu_op_support_types
(
'set_value'
)
support_types
=
get_xpu_op_support_types
(
'set_value'
)
for
stype
in
support_types
:
for
stype
in
support_types
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录