Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e1a7a880
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e1a7a880
编写于
4月 28, 2020
作者:
S
Sylwester Fraczek
提交者:
GitHub
4月 28, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
added reshape transpose matmul fuse pass (#23754)
上级
61d19a8e
变更
14
显示空白变更内容
内联
并排
Showing
14 changed file
with
724 addition
and
64 deletion
+724
-64
paddle/fluid/framework/ddim.cc
paddle/fluid/framework/ddim.cc
+9
-19
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+4
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+51
-1
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+23
-0
paddle/fluid/framework/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass.cc
...rk/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass.cc
+119
-0
paddle/fluid/framework/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass.h
...ork/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass.h
+41
-0
paddle/fluid/framework/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass_tester.cc
...kldnn/reshape_transpose_matmul_mkldnn_fuse_pass_tester.cc
+124
-0
paddle/fluid/framework/ir/pass_tester_helper.h
paddle/fluid/framework/ir/pass_tester_helper.h
+23
-2
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+7
-6
paddle/fluid/operators/matmul_op.cc
paddle/fluid/operators/matmul_op.cc
+44
-3
paddle/fluid/operators/mkldnn/matmul_mkldnn_op.cc
paddle/fluid/operators/mkldnn/matmul_mkldnn_op.cc
+99
-32
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+4
-1
python/paddle/fluid/contrib/slim/quantization/qat2_int8_mkldnn_pass.py
.../fluid/contrib/slim/quantization/qat2_int8_mkldnn_pass.py
+2
-0
python/paddle/fluid/tests/unittests/mkldnn/test_matmul_mkldnn_op.py
...dle/fluid/tests/unittests/mkldnn/test_matmul_mkldnn_op.py
+174
-0
未找到文件。
paddle/fluid/framework/ddim.cc
浏览文件 @
e1a7a880
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ddim.h"
#include <set>
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
...
...
@@ -158,6 +159,11 @@ DDim DDim::transpose(const std::vector<int>& axis) const {
size_t
in_rank
=
in_dims
.
size
();
size_t
axis_size
=
axis
.
size
();
auto
axis_set
=
std
::
set
<
int
>
(
axis
.
begin
(),
axis
.
end
());
PADDLE_ENFORCE_EQ
(
axis_set
.
size
(),
axis_size
,
platform
::
errors
::
InvalidArgument
(
"In an axis array, elements must be unique."
));
PADDLE_ENFORCE_EQ
(
in_rank
,
axis_size
,
platform
::
errors
::
InvalidArgument
(
"The input dimension's size "
...
...
@@ -166,25 +172,9 @@ DDim DDim::transpose(const std::vector<int>& axis) const {
"axis's size is %d"
,
in_rank
,
axis_size
));
std
::
vector
<
int
>
count
(
axis_size
,
0
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
i
++
)
{
PADDLE_ENFORCE_LT
(
axis
[
i
],
static_cast
<
int
>
(
axis_size
),
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
axis
.
begin
(),
axis
.
end
()),
axis_size
,
platform
::
errors
::
InvalidArgument
(
"ValueError: Each element of axis must appear "
"exactly once in the range from 0 to (dims - 1), "
"where the dims is the axis's size, "
"but received axis[%d] is %d, axis_size is %d"
,
i
,
axis
[
i
],
axis_size
));
PADDLE_ENFORCE_EQ
(
++
count
[
axis
[
i
]],
1
,
platform
::
errors
::
InvalidArgument
(
"ValueError: Each element of axis should "
"be a unique value range from 0 to (dims - 1), "
"where the dims is the axis's size, "
"unique value means this axis value can appear only once. "
"But received count[axis[%d]] is %d"
,
i
,
count
[
axis
[
i
]]));
}
"Axis values must be ranging from 0 to (dims - 1)."
));
DDim
out_dims
(
in_dims
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
i
++
)
{
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
e1a7a880
...
...
@@ -97,6 +97,7 @@ if(WITH_MKLDNN)
pass_library
(
cpu_quantize_placement_pass base DIR mkldnn
)
pass_library
(
cpu_quantize_pass inference DIR mkldnn
)
pass_library
(
cpu_quantize_squash_pass inference DIR mkldnn
)
pass_library
(
reshape_transpose_matmul_mkldnn_fuse_pass inference DIR mkldnn
)
pass_library
(
matmul_transpose_reshape_fuse_pass inference DIR mkldnn
)
endif
()
...
...
@@ -145,5 +146,8 @@ if (WITH_MKLDNN)
cc_test
(
test_cpu_quantize_placement_pass SRCS mkldnn/cpu_quantize_placement_pass_tester.cc DEPS cpu_quantize_placement_pass
)
cc_test
(
test_cpu_quantize_pass SRCS mkldnn/cpu_quantize_pass_tester.cc DEPS cpu_quantize_pass naive_executor
)
cc_test
(
test_cpu_quantize_squash_pass SRCS mkldnn/cpu_quantize_squash_pass_tester.cc DEPS cpu_quantize_squash_pass naive_executor
)
if
(
NOT WITH_COVERAGE
)
cc_test
(
test_reshape_transpose_matmul_mkldnn_fuse_pass SRCS mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass_tester.cc DEPS reshape_transpose_matmul_mkldnn_fuse_pass
)
endif
()
cc_test
(
test_matmul_transpose_reshape_fuse_pass SRCS mkldnn/matmul_transpose_reshape_fuse_pass_tester.cc DEPS matmul_transpose_reshape_fuse_pass
)
endif
()
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
e1a7a880
...
...
@@ -33,7 +33,6 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
using
string
::
PrettyLogEndl
;
using
string
::
PrettyLog
;
using
string
::
Style
;
...
...
@@ -2148,6 +2147,57 @@ void patterns::DeleteQuantDequantOpPattern::operator()() {
any_op2
->
LinksFrom
({
quant_dequant_out
});
}
PDNode
*
patterns
::
ReshapeTransposeMatmulPattern
::
operator
()(
bool
with_reshape_xshape
,
bool
with_transpose_xshape
)
{
auto
reshape_op
=
pattern
->
NewNode
(
reshape_op_repr
())
->
assert_is_op
(
"reshape2"
);
auto
transpose_op
=
pattern
->
NewNode
(
transpose_op_repr
())
->
assert_is_op
(
"transpose2"
);
auto
matmul_op
=
pattern
->
NewNode
(
matmul_op_repr
())
->
assert_is_op
(
"matmul"
);
auto
reshape_in
=
pattern
->
NewNode
(
reshape_in_repr
())
->
AsInput
()
->
assert_is_op_input
(
"reshape2"
,
"X"
);
auto
reshape_out
=
pattern
->
NewNode
(
reshape_out_repr
())
->
AsIntermediate
()
->
assert_is_op_input
(
"transpose2"
,
"X"
)
->
assert_is_op_output
(
"reshape2"
,
"Out"
);
if
(
!
with_reshape_xshape
)
reshape_out
->
assert_is_only_output_of_op
(
"reshape2"
);
auto
reshape_xshape
=
with_reshape_xshape
?
pattern
->
NewNode
(
reshape_xshape_repr
())
->
AsIntermediate
()
->
assert_is_op_output
(
"reshape2"
,
"XShape"
)
:
nullptr
;
auto
transpose_out
=
pattern
->
NewNode
(
transpose_out_repr
())
->
AsIntermediate
()
->
assert_is_op_input
(
"matmul"
)
->
assert_is_op_output
(
"transpose2"
,
"Out"
);
if
(
!
with_transpose_xshape
)
transpose_out
->
assert_is_only_output_of_op
(
"transpose2"
);
auto
transpose_xshape
=
with_transpose_xshape
?
pattern
->
NewNode
(
transpose_xshape_repr
())
->
AsIntermediate
()
->
assert_is_op_output
(
"transpose2"
,
"XShape"
)
:
nullptr
;
auto
matmul_out
=
pattern
->
NewNode
(
matmul_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"matmul"
,
"Out"
);
reshape_op
->
LinksFrom
({
reshape_in
}).
LinksTo
({
reshape_out
});
if
(
with_reshape_xshape
)
reshape_op
->
LinksTo
({
reshape_xshape
});
transpose_op
->
LinksFrom
({
reshape_out
}).
LinksTo
({
transpose_out
});
if
(
with_transpose_xshape
)
transpose_op
->
LinksTo
({
transpose_xshape
});
matmul_op
->
LinksFrom
({
transpose_out
}).
LinksTo
({
matmul_out
});
return
matmul_out
;
}
PDNode
*
patterns
::
MatmulTransposeReshapePattern
::
operator
()()
{
auto
reshape_op
=
pattern
->
NewNode
(
reshape_op_repr
())
->
assert_is_op
(
"reshape2"
);
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
e1a7a880
...
...
@@ -1210,6 +1210,29 @@ struct DeleteQuantDequantOpPattern : public PatternBase {
PATTERN_DECL_NODE
(
any_op2
);
};
// Reshape + Transpose + Matmul
// named nodes:
// reshape_op, reshape_out, reshape_xshape,
// transpose_op, transpose_out, transpose_xshape,
// matmul_op, matmul_out
struct
ReshapeTransposeMatmulPattern
:
public
PatternBase
{
ReshapeTransposeMatmulPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"reshape_transpose_matmul"
)
{}
PDNode
*
operator
()(
bool
with_reshape_xshape
,
bool
with_transpose_xshape
);
PATTERN_DECL_NODE
(
reshape_in
);
PATTERN_DECL_NODE
(
reshape_op
);
PATTERN_DECL_NODE
(
reshape_out
);
PATTERN_DECL_NODE
(
reshape_xshape
);
PATTERN_DECL_NODE
(
transpose_op
);
PATTERN_DECL_NODE
(
transpose_out
);
PATTERN_DECL_NODE
(
transpose_xshape
);
PATTERN_DECL_NODE
(
matmul_op
);
PATTERN_DECL_NODE
(
matmul_out
);
};
// Matmul + Transpose + Reshape
struct
MatmulTransposeReshapePattern
:
public
PatternBase
{
MatmulTransposeReshapePattern
(
PDPattern
*
pattern
,
...
...
paddle/fluid/framework/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass.cc
0 → 100644
浏览文件 @
e1a7a880
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass.h"
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/pretty_log.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
ReshapeTransposeMatmulMkldnnFusePass
::
Fuse
(
Graph
*
graph
,
bool
with_reshape_xshape
,
bool
with_transpose_xshape
)
const
{
GraphPatternDetector
gpd
;
patterns
::
ReshapeTransposeMatmulPattern
rtm_pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
rtm_pattern
(
with_reshape_xshape
,
with_transpose_xshape
);
int
found_reshape_transpose_matmul_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"handle ReshapeTransposeMatmulMkldnn fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
reshape_in
,
reshape_in
,
rtm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
reshape_op
,
reshape_op
,
rtm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
reshape_out
,
reshape_out
,
rtm_pattern
);
ir
::
Node
*
reshape_xshape
{
nullptr
};
if
(
with_reshape_xshape
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
reshape_xshape1
,
reshape_xshape
,
rtm_pattern
);
reshape_xshape
=
reshape_xshape1
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
transpose_op
,
transpose_op
,
rtm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
transpose_out
,
transpose_out
,
rtm_pattern
);
ir
::
Node
*
transpose_xshape
{
nullptr
};
if
(
with_transpose_xshape
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
transpose_xshape1
,
transpose_xshape
,
rtm_pattern
);
transpose_xshape
=
transpose_xshape1
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_op
,
matmul_op
,
rtm_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
matmul_out
,
matmul_out
,
rtm_pattern
);
auto
reshape_shape
=
boost
::
get
<
std
::
vector
<
int
>>
(
reshape_op
->
Op
()
->
GetAttr
(
"shape"
));
auto
transpose_axis
=
boost
::
get
<
std
::
vector
<
int
>>
(
transpose_op
->
Op
()
->
GetAttr
(
"axis"
));
OpDesc
*
matmul_desc
=
matmul_op
->
Op
();
std
::
string
input_var_name
=
transpose_out
->
Name
();
auto
UpdateMatmul
=
[
&
](
std
::
string
matmul_input_name
)
{
matmul_desc
->
SetInput
(
matmul_input_name
,
{(
reshape_in
)
->
Name
()});
matmul_desc
->
SetAttr
(
"fused_reshape_"
+
matmul_input_name
,
reshape_shape
);
matmul_desc
->
SetAttr
(
"fused_transpose_"
+
matmul_input_name
,
transpose_axis
);
};
if
(
matmul_desc
->
Inputs
().
at
(
"X"
).
at
(
0
)
==
input_var_name
)
{
UpdateMatmul
(
"X"
);
}
else
if
(
matmul_desc
->
Inputs
().
at
(
"Y"
).
at
(
0
)
==
input_var_name
)
{
UpdateMatmul
(
"Y"
);
}
else
{
throw
platform
::
errors
::
InvalidArgument
(
"Unexpected input to MatMul encountered."
);
}
std
::
unordered_set
<
const
ir
::
Node
*>
nodes_to_remove
{
reshape_op
,
reshape_out
,
transpose_op
,
transpose_out
};
if
(
with_reshape_xshape
)
nodes_to_remove
.
insert
(
reshape_xshape
);
if
(
with_transpose_xshape
)
nodes_to_remove
.
insert
(
transpose_xshape
);
GraphSafeRemoveNodes
(
graph
,
nodes_to_remove
);
IR_NODE_LINK_TO
(
reshape_in
,
matmul_op
);
++
found_reshape_transpose_matmul_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_reshape_transpose_matmul_count
);
std
::
stringstream
msg_ss
;
msg_ss
<<
"--- Fused "
<<
found_reshape_transpose_matmul_count
<<
" ReshapeTransposeMatmulMkldnn patterns"
;
if
(
with_reshape_xshape
)
msg_ss
<<
" with reshape's xshape"
;
if
(
with_transpose_xshape
)
msg_ss
<<
" with transpose's xshape"
;
string
::
PrettyLogDetail
(
msg_ss
.
str
().
c_str
());
}
void
ReshapeTransposeMatmulMkldnnFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Pointer to graph argument should not be NULL."
));
FusePassBase
::
Init
(
name_scope_
,
graph
);
Fuse
(
graph
,
false
,
false
);
Fuse
(
graph
,
false
,
true
);
Fuse
(
graph
,
true
,
false
);
Fuse
(
graph
,
true
,
true
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
reshape_transpose_matmul_mkldnn_fuse_pass
,
paddle
::
framework
::
ir
::
ReshapeTransposeMatmulMkldnnFusePass
);
paddle/fluid/framework/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass.h
0 → 100644
浏览文件 @
e1a7a880
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
* Fuse Reshape->Transpose->MatMul when MatMul uses mkldnn.
*/
class
ReshapeTransposeMatmulMkldnnFusePass
:
public
FusePassBase
{
public:
virtual
~
ReshapeTransposeMatmulMkldnnFusePass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
const
std
::
string
name_scope_
{
"reshape_transpose_matmul_fuse"
};
void
Fuse
(
Graph
*
graph
,
bool
with_reshape_xshape
,
bool
with_transpose_xshape
)
const
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass_tester.cc
0 → 100644
浏览文件 @
e1a7a880
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/reshape_transpose_matmul_mkldnn_fuse_pass.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
AddVarToScope
(
Scope
*
param_scope
,
const
std
::
string
&
name
,
const
DDim
&
dims
)
{
auto
*
tensor
=
param_scope
->
Var
(
name
)
->
GetMutable
<
LoDTensor
>
();
tensor
->
Resize
(
dims
);
tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
}
Scope
*
CreateParamScope
()
{
auto
param_scope
=
new
Scope
();
AddVarToScope
(
param_scope
,
"w1"
,
{
768
,
768
});
AddVarToScope
(
param_scope
,
"bias1"
,
{
768
});
AddVarToScope
(
param_scope
,
"w2"
,
{
768
,
768
});
AddVarToScope
(
param_scope
,
"bias2"
,
{
768
});
return
param_scope
;
}
void
TestMain
(
bool
with_xshapes
)
{
// inputs operator output
// -----------------------------------------------
// a1,w1,bias1 fc -> b1
// b1 reshape -> c1
// c1 transpose -> d1
// a2,w2,bias2 fc -> b2
// b2 reshape -> c2
// c2 transpose -> d2
// (d1, d2) matmul -> (...)
Layers
layers
;
auto
*
a1
=
layers
.
data
(
"a1"
,
{
-
1
,
128
,
768
});
auto
*
w1
=
layers
.
data
(
"w1"
,
{
768
,
768
},
true
);
auto
*
bias1
=
layers
.
data
(
"bias1"
,
{
768
},
true
);
auto
*
b1
=
layers
.
fc
(
a1
,
w1
,
bias1
,
2
);
b1
->
SetShape
({
-
1
,
128
,
768
});
auto
*
c1
=
layers
.
reshape2
(
b1
,
{
0
,
0
,
12
,
64
},
with_xshapes
);
c1
->
SetShape
({
-
1
,
128
,
12
,
64
});
auto
*
d1
=
layers
.
transpose2
(
c1
,
{
0
,
2
,
1
,
3
},
with_xshapes
);
d1
->
SetShape
({
-
1
,
12
,
128
,
64
});
auto
*
a2
=
layers
.
data
(
"a2"
,
{
-
1
,
128
,
768
});
auto
*
w2
=
layers
.
data
(
"w2"
,
{
768
,
768
},
true
);
auto
*
bias2
=
layers
.
data
(
"bias2"
,
{
768
},
true
);
auto
*
b2
=
layers
.
fc
(
a2
,
w2
,
bias2
,
2
);
b2
->
SetShape
({
-
1
,
128
,
768
});
auto
*
c2
=
layers
.
reshape2
(
b2
,
{
0
,
0
,
12
,
64
});
c2
->
SetShape
({
-
1
,
128
,
12
,
64
});
auto
*
d2
=
layers
.
transpose2
(
c2
,
{
0
,
2
,
1
,
3
});
d2
->
SetShape
({
-
1
,
12
,
128
,
64
});
layers
.
matmul
(
d1
,
d2
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
layers
.
main_program
()));
graph
->
Set
(
"__param_scope__"
,
CreateParamScope
());
int
num_reshape_nodes_before
=
GetNumOpNodes
(
graph
,
"reshape2"
);
int
num_transpose_nodes_before
=
GetNumOpNodes
(
graph
,
"transpose2"
);
int
total_nodes_before
=
graph
->
Nodes
().
size
();
VLOG
(
3
)
<<
DebugString
(
graph
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"reshape_transpose_matmul_mkldnn_fuse_pass"
);
graph
.
reset
(
pass
->
Apply
(
graph
.
release
()));
int
num_reshape_nodes_after
=
GetNumOpNodes
(
graph
,
"reshape2"
);
int
num_transpose_nodes_after
=
GetNumOpNodes
(
graph
,
"transpose2"
);
int
total_nodes_after
=
graph
->
Nodes
().
size
();
VLOG
(
3
)
<<
DebugString
(
graph
);
EXPECT_EQ
(
num_reshape_nodes_before
,
2
);
EXPECT_EQ
(
num_reshape_nodes_after
,
0
);
EXPECT_EQ
(
num_transpose_nodes_before
,
2
);
EXPECT_EQ
(
num_transpose_nodes_after
,
0
);
int
removed
=
8
;
// 2* reshape, reshape_out, transpose, transpose_out
if
(
with_xshapes
)
removed
+=
2
;
// transpose_xshape, reshape_xshape
EXPECT_EQ
(
total_nodes_before
-
removed
,
total_nodes_after
);
auto
*
matmul_op_desc
=
GetOpNodes
(
graph
,
"matmul"
).
at
(
0
)
->
Op
();
auto
check
=
[
&
matmul_op_desc
](
std
::
string
a
)
{
std
::
string
shape_str
=
"fused_reshape_"
+
a
;
EXPECT_THAT
(
matmul_op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
shape_str
),
testing
::
ElementsAre
(
0
,
0
,
12
,
64
));
std
::
string
axis_str
=
"fused_transpose_"
+
a
;
EXPECT_THAT
(
matmul_op_desc
->
GetAttrIfExists
<
std
::
vector
<
int
>>
(
axis_str
),
testing
::
ElementsAre
(
0
,
2
,
1
,
3
));
};
check
(
"X"
);
check
(
"Y"
);
}
TEST
(
ReshapeTransposeMatmulMkldnnFusePass
,
both_matmul_inputs_reshape_transpose
)
{
TestMain
(
false
);
}
TEST
(
ReshapeTransposeMatmulMkldnnFusePass
,
both_matmul_inputs_reshape_transpose_one_with_xshapes
)
{
TestMain
(
true
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
reshape_transpose_matmul_mkldnn_fuse_pass
);
paddle/fluid/framework/ir/pass_tester_helper.h
浏览文件 @
e1a7a880
...
...
@@ -258,23 +258,33 @@ struct Layers {
return
out
;
}
VarDesc
*
transpose2
(
VarDesc
*
x
,
std
::
vector
<
int
>
axis
)
{
VarDesc
*
transpose2
(
VarDesc
*
x
,
std
::
vector
<
int
>
axis
,
bool
with_xshape
=
false
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"transpose2"
);
op
->
SetInput
(
"X"
,
{
x
->
Name
()});
op
->
SetAttr
(
"axis"
,
axis
);
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
if
(
with_xshape
)
{
VarDesc
*
xshape
=
lod_tensor
(
unique_name
());
op
->
SetOutput
(
"XShape"
,
{
xshape
->
Name
()});
}
return
out
;
}
VarDesc
*
reshape2
(
VarDesc
*
x
,
std
::
vector
<
int
>
shape
)
{
VarDesc
*
reshape2
(
VarDesc
*
x
,
std
::
vector
<
int
>
shape
,
bool
with_xshape
=
false
)
{
VarDesc
*
out
=
lod_tensor
(
unique_name
());
OpDesc
*
op
=
program_
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"reshape2"
);
op
->
SetInput
(
"X"
,
{
x
->
Name
()});
op
->
SetAttr
(
"shape"
,
shape
);
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
if
(
with_xshape
)
{
VarDesc
*
xshape
=
lod_tensor
(
unique_name
());
op
->
SetOutput
(
"XShape"
,
{
xshape
->
Name
()});
}
return
out
;
}
...
...
@@ -579,6 +589,17 @@ static std::string DebugString(const std::unique_ptr<Graph>& graph) {
return
DebugString
(
graph
.
get
());
}
static
std
::
vector
<
ir
::
Node
*>
GetOpNodes
(
const
std
::
unique_ptr
<
Graph
>&
graph
,
std
::
string
op_type
)
{
std
::
vector
<
ir
::
Node
*>
rc
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
&&
node
->
Op
()
->
Type
()
==
op_type
)
{
rc
.
push_back
(
node
);
}
}
return
rc
;
}
static
int
GetNumOpNodes
(
const
std
::
unique_ptr
<
Graph
>&
graph
,
std
::
string
op_type
)
{
int
num_nodes
=
0
;
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
e1a7a880
...
...
@@ -196,6 +196,7 @@ void CpuPassStrategy::EnableMKLDNN() {
"conv_relu6_mkldnn_fuse_pass"
,
//
"conv_swish_mkldnn_fuse_pass"
,
//
"scale_matmul_fuse_pass"
,
//
"reshape_transpose_matmul_mkldnn_fuse_pass"
,
//
"matmul_transpose_reshape_fuse_pass"
,
//
// Disabled due to topology-dependent speed-up
// "fc_mkldnn_pass",
...
...
paddle/fluid/operators/matmul_op.cc
浏览文件 @
e1a7a880
...
...
@@ -318,6 +318,36 @@ class MatMulGradKernel : public framework::OpKernel<T> {
}
};
framework
::
DDim
GetDimForInput
(
const
framework
::
InferShapeContext
&
ctx
,
std
::
string
input_name
)
{
auto
shape
=
ctx
.
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"fused_reshape_"
+
input_name
);
auto
axis
=
ctx
.
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"fused_transpose_"
+
input_name
);
auto
dim
=
ctx
.
GetInputDim
(
input_name
);
if
(
!
shape
.
empty
()
&&
!
axis
.
empty
())
{
PADDLE_ENFORCE_GE
(
shape
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"shape_%s attribute of MatMulOp was implemented for 2, 3 "
"or 4 dimensions."
,
input_name
));
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"shape_%s attribute of MatMulOp was implemented for 2, 3 "
"or 4 dimensions."
,
input_name
));
PADDLE_ENFORCE_EQ
(
shape
.
size
(),
axis
.
size
(),
platform
::
errors
::
InvalidArgument
(
"Ranks of shape_%s and axis_%s attributes of MatMulOp "
"must be equal."
,
input_name
,
input_name
));
dim
=
dim
.
reshape
(
shape
).
transpose
(
axis
);
}
return
dim
;
}
class
MatMulOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -328,9 +358,8 @@ class MatMulOp : public framework::OperatorWithKernel {
OP_INOUT_CHECK
(
context
->
HasInput
(
"Y"
),
"Input"
,
"Y"
,
"matmul"
);
OP_INOUT_CHECK
(
context
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"matmul"
);
auto
dim_x
=
context
->
GetInputDim
(
"X"
);
auto
dim_y
=
context
->
GetInputDim
(
"Y"
);
auto
dim_x
=
GetDimForInput
(
*
context
,
"X"
);
auto
dim_y
=
GetDimForInput
(
*
context
,
"Y"
);
auto
mat_dim_x
=
math
::
CreateMatrixDescriptor
(
RowMatrixFromVector
(
dim_x
),
0
,
context
->
Attrs
().
Get
<
bool
>
(
"transpose_X"
));
...
...
@@ -484,6 +513,18 @@ class MatMulOpMaker : public framework::OpProtoAndCheckerMaker {
"use_mkldnn"
,
"(bool, default false) Indicates if MKL-DNN kernel will be used"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"fused_reshape_X"
,
R"DOC(Shape of fused reshape of `X` input.)DOC"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
int
>>
(
"fused_reshape_Y"
,
R"DOC(Shape of fused reshape of `Y` input.)DOC"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
int
>>
(
"fused_transpose_X"
,
R"DOC(Axis of fused transpose of `X` input.)DOC"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
int
>>
(
"fused_transpose_Y"
,
R"DOC(Axis of fused transpose of `Y` input.)DOC"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
int
>>
(
"fused_reshape_Out"
,
R"DOC(When MKLDNN MatMul_transpose_reshape fuse activated, "
...
...
paddle/fluid/operators/mkldnn/matmul_mkldnn_op.cc
浏览文件 @
e1a7a880
...
...
@@ -23,12 +23,12 @@ namespace operators {
using
dnnl
::
memory
;
using
dnnl
::
primitive
;
using
platform
::
to_void_cast
;
using
framework
::
DataLayout
;
using
framework
::
ExecutionContext
;
using
platform
::
GetMKLDNNFormat
;
using
platform
::
MKLDNNGetDataType
;
using
platform
::
MKLDNNDeviceContext
;
using
framework
::
ExecutionContext
;
using
platform
::
MKLDNNGetDataType
;
using
platform
::
to_void_cast
;
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
...
...
@@ -86,6 +86,74 @@ class MatMulFactory {
return
dnnl
::
memory
(
md
,
engine_
,
to_void_cast
(
data
));
}
std
::
vector
<
int64_t
>
Transpose
(
const
std
::
vector
<
int64_t
>&
x
,
const
std
::
vector
<
int
>&
axis
)
{
size_t
in_rank
=
x
.
size
();
size_t
axis_size
=
axis
.
size
();
auto
axis_set
=
std
::
set
<
int
>
(
axis
.
begin
(),
axis
.
end
());
PADDLE_ENFORCE_EQ
(
axis_set
.
size
(),
axis_size
,
platform
::
errors
::
InvalidArgument
(
"In an axis array, elements must be unique."
));
PADDLE_ENFORCE_EQ
(
in_rank
,
axis_size
,
platform
::
errors
::
InvalidArgument
(
"The input dimension's size "
"should be equal to the axis's size. "
"But received dimension is %d, "
"axis's size is %d"
,
in_rank
,
axis_size
));
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
axis
.
begin
(),
axis
.
end
()),
axis_size
,
platform
::
errors
::
InvalidArgument
(
"Axis values must be ranging from 0 to (dims - 1)."
));
std
::
vector
<
int64_t
>
new_x
(
x
.
size
());
for
(
size_t
i
=
0
;
i
<
x
.
size
();
i
++
)
{
new_x
[
i
]
=
x
[
axis
[
i
]];
}
return
new_x
;
}
std
::
pair
<
math
::
MatDescriptor
,
memory
::
dims
>
GetInputDimsAndStrides
(
const
ExecutionContext
&
ctx
,
std
::
string
input_name
)
{
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_"
+
input_name
);
auto
axis
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_transpose_"
+
input_name
);
auto
input_dims
=
ctx
.
Input
<
Tensor
>
(
input_name
)
->
dims
();
auto
new_dims
=
input_dims
;
if
(
!
shape
.
empty
()
&&
!
axis
.
empty
())
{
new_dims
=
input_dims
.
reshape
(
shape
).
transpose
(
axis
);
}
auto
&
MatrixDimsFromVector
=
input_name
==
"X"
?
RowMatrixDimsFromVector
:
ColumnMatrixDimsFromVector
;
math
::
MatDescriptor
mat_dim
=
math
::
CreateMatrixDescriptor
(
MatrixDimsFromVector
(
new_dims
),
0
,
ctx
.
Attr
<
bool
>
(
"transpose_"
+
input_name
));
memory
::
dims
strides
;
if
(
!
shape
.
empty
())
{
auto
shape2
=
input_dims
.
reshape
(
shape
);
strides
.
push_back
(
1
);
for
(
auto
i
=
shape2
.
size
()
-
1
;
i
>
0
;
--
i
)
{
strides
.
insert
(
strides
.
begin
(),
strides
.
front
()
*
shape2
[
i
]);
}
strides
=
Transpose
(
strides
,
axis
);
if
(
shape
.
size
()
==
4
)
strides
.
erase
(
strides
.
begin
());
else
if
(
shape
.
size
()
==
2
)
strides
.
insert
(
strides
.
begin
(),
shape
[
0
]
*
shape
[
1
]);
mat_dim
.
stride_
=
strides
[
0
];
if
(
mat_dim
.
trans_
)
std
::
swap
(
*
strides
.
rbegin
(),
*
(
++
strides
.
rbegin
()));
}
return
std
::
make_pair
(
mat_dim
,
strides
);
}
bool
IsInputFused
(
const
ExecutionContext
&
ctx
)
const
{
return
!
(
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_X"
).
empty
()
&&
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_Y"
).
empty
());
}
bool
IsOutputFused
(
const
ExecutionContext
&
ctx
)
const
{
auto
&
fused_reshape_Out
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_Out"
);
auto
&
fused_transpose_Out
=
...
...
@@ -100,12 +168,12 @@ class MatMulFactory {
}
MatMulDims
GetMatmulDims
(
const
ExecutionContext
&
ctx
)
{
auto
mat_dim_x
=
math
::
CreateMatrixDescriptor
(
RowMatrixDimsFromVector
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
()),
0
,
ctx
.
Attr
<
bool
>
(
"transpose_X"
)
);
auto
mat_dim_y
=
math
::
CreateMatrixDescriptor
(
ColumnMatrixDimsFromVector
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
()),
0
,
ctx
.
Attr
<
bool
>
(
"transpose_Y"
)
);
math
::
MatDescriptor
mat_dim_x
;
memory
::
dims
strides_x
;
std
::
tie
(
mat_dim_x
,
strides_x
)
=
GetInputDimsAndStrides
(
ctx
,
"X"
);
math
::
MatDescriptor
mat_dim_y
;
memory
::
dims
strides_y
;
std
::
tie
(
mat_dim_y
,
strides_y
)
=
GetInputDimsAndStrides
(
ctx
,
"Y"
);
const
auto
x_bs
=
mat_dim_x
.
batch_size_
;
const
auto
y_bs
=
mat_dim_y
.
batch_size_
;
...
...
@@ -122,25 +190,26 @@ class MatMulFactory {
batch_size_
=
1
;
auto
b
=
BS
;
if
(
BS
>
1
&&
IsOutputFused
(
ctx
))
{
batch_size_
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
()[
0
];
if
(
BS
>
1
&&
(
IsOutputFused
(
ctx
)
||
IsInputFused
(
ctx
)))
{
auto
&
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
&
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
batch_size_
=
x_bs
>
y_bs
?
x_dims
[
0
]
:
y_dims
[
0
];
b
=
BS
/
batch_size_
;
}
memory
::
dims
x_dims
=
{
b
,
M
,
K
};
memory
::
dims
y_dims
=
{
b
,
K
,
N
};
memory
::
dims
out_dims
=
{
b
,
M
,
N
};
size_t
x_size
=
b
*
M
*
K
*
sizeof
(
XT
);
size_t
y_size
=
b
*
K
*
N
*
sizeof
(
YT
);
size_t
out_size
=
b
*
M
*
N
*
sizeof
(
OT
);
offsets_
=
{
x_size
,
y_size
,
out_size
};
x_offset_
=
b
*
M
*
K
*
sizeof
(
XT
);
y_offset_
=
b
*
K
*
N
*
sizeof
(
YT
);
out_offset_
=
b
*
M
*
N
*
sizeof
(
OT
);
// Translate transA and transB
memory
::
dims
strides_x
=
!
ctx
.
Attr
<
bool
>
(
"transpose_X"
)
?
memory
::
dims
{
M
*
K
,
K
,
1
}
if
(
strides_x
.
empty
()
)
strides_x
=
!
ctx
.
Attr
<
bool
>
(
"transpose_X"
)
?
memory
::
dims
{
M
*
K
,
K
,
1
}
:
memory
::
dims
{
M
*
K
,
1
,
M
};
memory
::
dims
strides_y
=
!
ctx
.
Attr
<
bool
>
(
"transpose_Y"
)
?
memory
::
dims
{
N
*
K
,
N
,
1
}
if
(
strides_y
.
empty
()
)
strides_y
=
!
ctx
.
Attr
<
bool
>
(
"transpose_Y"
)
?
memory
::
dims
{
N
*
K
,
N
,
1
}
:
memory
::
dims
{
N
*
K
,
1
,
K
};
memory
::
dims
out_strides
=
memory
::
dims
{
M
*
N
,
N
,
1
};
...
...
@@ -187,12 +256,10 @@ class MatMulFactory {
void
Execute
()
{
dnnl
::
stream
stream
(
engine_
);
auto
offsets
=
offsets_
;
unsigned
bs
=
batch_size_
;
void
*
x_ptr
=
x_mem_
.
get_data_handle
();
void
*
y_ptr
=
y_mem_
.
get_data_handle
();
void
*
out_ptr
=
out_mem_
.
get_data_handle
();
for
(
u
nsigned
i
=
0
;
i
<
bs
;
i
++
)
{
for
(
u
int16_t
i
=
0
;
i
<
batch_size_
;
i
++
)
{
x_mem_
.
set_data_handle
(
x_ptr
);
y_mem_
.
set_data_handle
(
y_ptr
);
out_mem_
.
set_data_handle
(
out_ptr
);
...
...
@@ -201,9 +268,9 @@ class MatMulFactory {
{
MKLDNN_ARG_WEIGHTS
,
y_mem_
},
{
MKLDNN_ARG_DST
,
out_mem_
},
});
x_ptr
=
static_cast
<
char
*>
(
x_ptr
)
+
offsets
.
x_offset
;
y_ptr
=
static_cast
<
char
*>
(
y_ptr
)
+
offsets
.
y_offset
;
out_ptr
=
static_cast
<
char
*>
(
out_ptr
)
+
o
ffsets
.
out_offset
;
x_ptr
=
static_cast
<
char
*>
(
x_ptr
)
+
x_offset_
;
y_ptr
=
static_cast
<
char
*>
(
y_ptr
)
+
y_offset_
;
out_ptr
=
static_cast
<
char
*>
(
out_ptr
)
+
o
ut_offset_
;
}
stream
.
wait
();
}
...
...
@@ -243,21 +310,21 @@ class MatMulFactory {
dnnl
::
memory
y_mem_
;
dnnl
::
memory
out_mem_
;
dnnl
::
matmul
matmul_prim_
;
memory_offsets
offsets_
;
unsigned
batch_size_
;
uint32_t
x_offset_
;
uint32_t
y_offset_
;
uint32_t
out_offset_
;
uint16_t
batch_size_
;
bool
initialized_
=
false
;
};
template
<
typename
XT
,
typename
YT
,
typename
OT
>
static
std
::
shared_ptr
<
MatMulFactory
<
XT
,
YT
,
OT
>>
GetPrimitiveFactory
(
const
ExecutionContext
&
ctx
)
{
const
auto
x_dims
=
framework
::
vectorize
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
const
auto
y_dims
=
framework
::
vectorize
<
int
>
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
const
auto
&
out_name
=
ctx
.
OutputName
(
"Out"
);
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
std
::
string
key
=
platform
::
CreateKey
(
platform
::
ThreadIDasStr
(),
x_dims
,
y_dims
,
out_name
);
platform
::
CreateKey
(
platform
::
ThreadIDasStr
(),
out_name
);
auto
factory
=
std
::
static_pointer_cast
<
MatMulFactory
<
XT
,
YT
,
OT
>>
(
dev_ctx
.
GetBlob
(
key
));
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
e1a7a880
...
...
@@ -408,7 +408,10 @@ framework::DataLayout get_cur_paddle_data_layout(void) {
return
cur_paddle_data_layout
;
}
void
MKLDNNDeviceContext
::
ResetBlobMap
()
const
{
p_blobmap_
->
clear
();
}
void
MKLDNNDeviceContext
::
ResetBlobMap
()
const
{
VLOG
(
3
)
<<
"Clearing DNNL cache."
;
p_blobmap_
->
clear
();
}
size_t
MKLDNNDeviceContext
::
GetShapeBlobSize
()
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
p_mutex_
);
...
...
python/paddle/fluid/contrib/slim/quantization/qat2_int8_mkldnn_pass.py
浏览文件 @
e1a7a880
...
...
@@ -500,6 +500,8 @@ class Qat2Int8MkldnnPass(object):
graph
.
draw
(
'.'
,
'qat_int8_{}'
.
format
(
ir_pass
.
type
()),
graph
.
all_op_nodes
())
graph
=
self
.
_apply_pass
(
graph
,
'scale_matmul_fuse_pass'
)
graph
=
self
.
_apply_pass
(
graph
,
'reshape_transpose_matmul_mkldnn_fuse_pass'
)
graph
=
self
.
_apply_pass
(
graph
,
'cpu_quantize_pass'
,
[
'quant_var_scales'
,
'data_layout'
],
[
self
.
_var_quant_scales
,
self
.
_get_data_layout
()])
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_matmul_mkldnn_op.py
浏览文件 @
e1a7a880
...
...
@@ -161,6 +161,180 @@ class TestDnnlMatMulOpInt8ForceFP32BasicScales(TestDnnlMatMulOp):
self
.
attrs
=
{
'force_fp32_output'
:
True
}
@
skip_check_grad_ci
(
reason
=
"DNNL's MatMul doesn't implement grad kernel."
)
class
TestMatMulOpReshapeTranspose
(
OpTest
):
def
init_data_type
(
self
):
self
.
data_type_
=
'float32'
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
random
([
2
,
128
,
768
]).
astype
(
"float32"
).
reshape
(
[
2
,
128
,
12
,
64
]).
transpose
([
0
,
2
,
1
,
3
])
self
.
y
=
np
.
random
.
random
([
2
,
128
,
768
]).
astype
(
"float32"
).
reshape
(
[
2
,
128
,
12
,
64
]).
transpose
([
0
,
2
,
1
,
3
])
self
.
out
=
np
.
matmul
(
self
.
x
,
self
.
y
.
transpose
([
0
,
1
,
3
,
2
]))
self
.
fused_reshape_X
=
[]
self
.
fused_transpose_X
=
[]
self
.
fused_reshape_Y
=
[]
self
.
fused_transpose_Y
=
[]
def
setUp
(
self
):
# Set max isa, otherwise fails on SKX and earlier
os
.
environ
[
"DNNL_MAX_CPU_ISA"
]
=
"AVX"
self
.
op_type
=
"matmul"
self
.
_cpu_only
=
True
self
.
use_mkldnn
=
True
self
.
transpose_y
=
True
self
.
init_data_type
()
self
.
generate_data
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'Y'
:
self
.
y
}
self
.
attrs
=
{
'use_mkldnn'
:
self
.
use_mkldnn
,
'transpose_Y'
:
self
.
transpose_y
}
if
len
(
self
.
fused_transpose_X
)
>
0
:
self
.
attrs
[
'fused_transpose_X'
]
=
self
.
fused_transpose_X
if
len
(
self
.
fused_transpose_Y
)
>
0
:
self
.
attrs
[
'fused_transpose_Y'
]
=
self
.
fused_transpose_Y
if
len
(
self
.
fused_reshape_X
)
>
0
:
self
.
attrs
[
'fused_reshape_X'
]
=
self
.
fused_reshape_X
if
len
(
self
.
fused_reshape_Y
)
>
0
:
self
.
attrs
[
'fused_reshape_Y'
]
=
self
.
fused_reshape_Y
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestMatMulOpReshapeTranspose4DXFloat
(
TestMatMulOpReshapeTranspose
):
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
random
([
2
,
128
,
768
]).
astype
(
"float32"
)
self
.
y
=
np
.
random
.
random
([
2
,
128
,
768
]).
astype
(
"float32"
).
reshape
(
[
2
,
128
,
12
,
64
]).
transpose
([
0
,
2
,
1
,
3
])
self
.
fused_transpose_X
=
[
0
,
2
,
1
,
3
]
self
.
fused_reshape_X
=
[
0
,
0
,
12
,
64
]
self
.
fused_transpose_Y
=
[]
self
.
fused_reshape_Y
=
[]
self
.
out
=
np
.
matmul
(
self
.
x
.
reshape
([
2
,
128
,
12
,
64
]).
transpose
([
0
,
2
,
1
,
3
]),
self
.
y
.
transpose
([
0
,
1
,
3
,
2
]))
class
TestMatMulOpReshapeTranspose4DXInt8
(
TestMatMulOpReshapeTranspose4DXFloat
):
def
init_data_type
(
self
):
self
.
data_type_
=
'int8'
class
TestMatMulOpReshapeTranspose4DYFloat
(
TestMatMulOpReshapeTranspose
):
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
random
([
2
,
128
,
768
]).
astype
(
"float32"
).
reshape
(
[
2
,
128
,
12
,
64
]).
transpose
([
0
,
2
,
1
,
3
])
self
.
y
=
np
.
random
.
random
([
2
,
128
,
768
]).
astype
(
"float32"
)
self
.
fused_transpose_X
=
[]
self
.
fused_reshape_X
=
[]
self
.
fused_transpose_Y
=
[
0
,
2
,
1
,
3
]
self
.
fused_reshape_Y
=
[
0
,
0
,
12
,
64
]
self
.
out
=
np
.
matmul
(
self
.
x
,
self
.
y
.
reshape
([
2
,
128
,
12
,
64
]).
transpose
([
0
,
2
,
3
,
1
]))
class
TestMatMulOpReshapeTranspose4DYInt8
(
TestMatMulOpReshapeTranspose4DYFloat
):
def
init_data_type
(
self
):
self
.
data_type_
=
'int8'
class
TestMatMulOpReshapeTranspose4DXYFloat
(
TestMatMulOpReshapeTranspose
):
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
random
([
2
,
128
,
768
]).
astype
(
"float32"
)
self
.
y
=
np
.
random
.
random
([
2
,
128
,
768
]).
astype
(
"float32"
)
self
.
fused_transpose_X
=
[
0
,
2
,
1
,
3
]
self
.
fused_reshape_X
=
[
0
,
0
,
12
,
64
]
self
.
fused_transpose_Y
=
[
0
,
2
,
1
,
3
]
self
.
fused_reshape_Y
=
[
0
,
0
,
12
,
64
]
self
.
out
=
np
.
matmul
(
self
.
x
.
reshape
([
2
,
128
,
12
,
64
]).
transpose
([
0
,
2
,
1
,
3
]),
self
.
y
.
reshape
([
2
,
128
,
12
,
64
]).
transpose
([
0
,
2
,
3
,
1
]))
class
TestMatMulOpReshapeTranspose4DXYInt8
(
TestMatMulOpReshapeTranspose4DXYFloat
):
def
init_data_type
(
self
):
self
.
data_type_
=
'int8'
class
TestMatMulOpReshapeTranspose2DXFloat
(
TestMatMulOpReshapeTranspose
):
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
random
([
2
,
5
,
10
]).
astype
(
"float32"
)
self
.
y
=
np
.
random
.
random
([
2
,
5
,
10
]).
astype
(
"float32"
).
reshape
(
[
10
,
10
]).
transpose
([
1
,
0
])
self
.
fused_transpose_X
=
[
1
,
0
]
self
.
fused_reshape_X
=
[
10
,
10
]
self
.
fused_transpose_Y
=
[]
self
.
fused_reshape_Y
=
[]
self
.
out
=
np
.
matmul
(
self
.
x
.
reshape
([
10
,
10
]).
transpose
([
1
,
0
]),
self
.
y
.
transpose
([
1
,
0
]))
class
TestMatMulOpReshapeTranspose2DXInt8
(
TestMatMulOpReshapeTranspose2DXFloat
):
def
init_data_type
(
self
):
self
.
data_type_
=
'int8'
class
TestMatMulOpReshapeTranspose2DYFloat
(
TestMatMulOpReshapeTranspose
):
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
random
([
2
,
5
,
10
]).
astype
(
"float32"
).
reshape
(
[
10
,
10
]).
transpose
([
1
,
0
])
self
.
y
=
np
.
random
.
random
([
2
,
5
,
10
]).
astype
(
"float32"
)
self
.
fused_transpose_X
=
[]
self
.
fused_reshape_X
=
[]
self
.
fused_transpose_Y
=
[
1
,
0
]
self
.
fused_reshape_Y
=
[
10
,
10
]
self
.
out
=
np
.
matmul
(
self
.
x
,
self
.
y
.
reshape
([
10
,
10
]))
class
TestMatMulOpReshapeTranspose2DYInt8
(
TestMatMulOpReshapeTranspose2DYFloat
):
def
init_data_type
(
self
):
self
.
data_type_
=
'int8'
class
TestMatMulOpReshapeTranspose3DXFloat
(
TestMatMulOpReshapeTranspose
):
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
random
([
2
,
2
,
5
,
5
]).
astype
(
"float32"
)
self
.
y
=
np
.
random
.
random
([
2
,
2
,
5
,
5
]).
astype
(
"float32"
).
reshape
(
[
2
,
10
,
5
]).
transpose
([
0
,
2
,
1
])
self
.
fused_transpose_X
=
[
0
,
2
,
1
]
self
.
fused_reshape_X
=
[
2
,
10
,
5
]
self
.
fused_transpose_Y
=
[]
self
.
fused_reshape_Y
=
[]
self
.
out
=
np
.
matmul
(
self
.
x
.
reshape
([
2
,
10
,
5
]).
transpose
(
0
,
2
,
1
),
self
.
y
.
transpose
(
0
,
2
,
1
))
class
TestMatMulOpReshapeTranspose3DXInt8
(
TestMatMulOpReshapeTranspose3DXFloat
):
def
init_data_type
(
self
):
self
.
data_type_
=
'int8'
class
TestMatMulOpReshapeTranspose3DYFloat
(
TestMatMulOpReshapeTranspose
):
def
generate_data
(
self
):
self
.
x
=
np
.
random
.
random
([
2
,
2
,
5
,
5
]).
astype
(
self
.
data_type_
).
reshape
(
[
2
,
10
,
5
]).
transpose
([
0
,
2
,
1
])
self
.
y
=
np
.
random
.
random
([
2
,
2
,
5
,
5
]).
astype
(
self
.
data_type_
)
self
.
fused_transpose_X
=
[]
self
.
fused_reshape_X
=
[]
self
.
fused_transpose_Y
=
[
0
,
2
,
1
]
self
.
fused_reshape_Y
=
[
2
,
10
,
5
]
self
.
out
=
np
.
matmul
(
self
.
x
,
self
.
y
.
reshape
([
2
,
10
,
5
]))
class
TestMatMulOpReshapeTranspose3DYInt8
(
TestMatMulOpReshapeTranspose3DYFloat
):
def
init_data_type
(
self
):
self
.
data_type_
=
'int8'
@
skip_check_grad_ci
(
reason
=
"Tests inference only optimization."
)
class
TestMatMulOpTransposeReshapeEmptyFloat
(
OpTest
):
def
init_data_type
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录