Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e176cc40
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e176cc40
编写于
6月 22, 2022
作者:
J
Jackwaterveg
提交者:
GitHub
6月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Initializer] Improve MSRAInitializer (#43334)
* improve MSRAInitializer * improve the doc
上级
4b3e8d56
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
44 addition
and
19 deletion
+44
-19
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+24
-9
python/paddle/nn/initializer/kaiming.py
python/paddle/nn/initializer/kaiming.py
+20
-10
未找到文件。
python/paddle/fluid/initializer.py
浏览文件 @
e176cc40
...
...
@@ -676,20 +676,23 @@ class MSRAInitializer(Initializer):
.. math::
x =
\sqrt{\\frac{6.0
}{fan\_in}}
x =
gain \times \sqrt{\frac{3
}{fan\_in}}
In case of Normal distribution, the mean is 0 and the standard deviation
is
.. math::
\
sqrt{\\frac{2.0}{fan\_in
}}
\
frac{gain}{\sqrt{{fan\_in}
}}
Args:
uniform (bool): whether to use uniform or normal distribution
fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
inferred from the variable. default is None.
fan_in (float32|None): fan_in (in_features) of trainable Tensor,\
If None, it will be infered automaticly. If you don't want to use in_features of the Tensor,\
you can set the value of 'fan_in' smartly by yourself. default is None.
seed (int32): random seed
negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
nonlinearity(str, optional): the non-linear function. default is relu.
Note:
It is recommended to set fan_in to None for most cases.
...
...
@@ -706,7 +709,12 @@ class MSRAInitializer(Initializer):
"""
def
__init__
(
self
,
uniform
=
True
,
fan_in
=
None
,
seed
=
0
):
def
__init__
(
self
,
uniform
=
True
,
fan_in
=
None
,
seed
=
0
,
negative_slope
=
0
,
nonlinearity
=
'relu'
):
"""Constructor for MSRAInitializer
"""
assert
uniform
is
not
None
...
...
@@ -715,6 +723,8 @@ class MSRAInitializer(Initializer):
self
.
_uniform
=
uniform
self
.
_fan_in
=
fan_in
self
.
_seed
=
seed
self
.
_negative_slope
=
negative_slope
self
.
_nonlinearity
=
nonlinearity
def
__call__
(
self
,
var
,
block
=
None
):
"""Initialize the input tensor with MSRA initialization.
...
...
@@ -755,13 +765,16 @@ class MSRAInitializer(Initializer):
if
framework
.
_non_static_mode
():
if
self
.
_uniform
:
limit
=
math
.
sqrt
(
6.0
/
float
(
fan_in
))
gain
=
calculate_gain
(
self
.
_nonlinearity
,
self
.
_negative_slope
)
limit
=
gain
*
math
.
sqrt
(
3.0
/
float
(
fan_in
))
out_var
=
_C_ops
.
uniform_random
(
'shape'
,
out_var
.
shape
,
'min'
,
-
limit
,
'max'
,
limit
,
'seed'
,
self
.
_seed
,
'dtype'
,
int
(
out_dtype
))
else
:
std
=
math
.
sqrt
(
2.0
/
float
(
fan_in
))
gain
=
calculate_gain
(
self
.
_nonlinearity
,
self
.
_negative_slope
)
std
=
gain
/
math
.
sqrt
(
float
(
fan_in
))
if
in_dygraph_mode
():
place
=
_current_expected_place
()
out_var
=
_C_ops
.
final_state_gaussian_random
(
...
...
@@ -783,7 +796,8 @@ class MSRAInitializer(Initializer):
return
None
else
:
if
self
.
_uniform
:
limit
=
math
.
sqrt
(
6.0
/
float
(
fan_in
))
gain
=
calculate_gain
(
self
.
_nonlinearity
,
self
.
_negative_slope
)
limit
=
gain
*
math
.
sqrt
(
3.0
/
float
(
fan_in
))
op
=
block
.
append_op
(
type
=
"uniform_random"
,
inputs
=
{},
outputs
=
{
"Out"
:
out_var
},
...
...
@@ -797,7 +811,8 @@ class MSRAInitializer(Initializer):
stop_gradient
=
True
)
else
:
std
=
math
.
sqrt
(
2.0
/
float
(
fan_in
))
gain
=
calculate_gain
(
self
.
_nonlinearity
,
self
.
_negative_slope
)
std
=
gain
/
math
.
sqrt
(
float
(
fan_in
))
op
=
block
.
append_op
(
type
=
"gaussian_random"
,
outputs
=
{
"Out"
:
out_var
},
attrs
=
{
...
...
python/paddle/nn/initializer/kaiming.py
浏览文件 @
e176cc40
...
...
@@ -33,11 +33,14 @@ class KaimingNormal(MSRAInitializer):
.. math::
\
sqrt{\frac{2.0}{fan\_in
}}
\
frac{gain}{\sqrt{{fan\_in}
}}
Args:
fan_in (float32|None, optional): fan_in for Kaiming normal Initializer. If None, it is
inferred from the variable. default is None.
fan_in (float32|None): fan_in (in_features) of trainable Tensor,\
If None, it will be infered automaticly. If you don't want to use in_features of the Tensor,\
you can set the value of 'fan_in' smartly by yourself. default is None.
negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
nonlinearity(str, optional): the non-linear function. default is relu.
Note:
It is recommended to set fan_in to None for most cases.
...
...
@@ -56,10 +59,12 @@ class KaimingNormal(MSRAInitializer):
"""
def
__init__
(
self
,
fan_in
=
None
):
def
__init__
(
self
,
fan_in
=
None
,
negative_slope
=
0.0
,
nonlinearity
=
'relu'
):
super
(
KaimingNormal
,
self
).
__init__
(
uniform
=
False
,
fan_in
=
fan_in
,
seed
=
0
)
seed
=
0
,
negative_slope
=
negative_slope
,
nonlinearity
=
nonlinearity
)
class
KaimingUniform
(
MSRAInitializer
):
...
...
@@ -76,11 +81,14 @@ class KaimingUniform(MSRAInitializer):
.. math::
x =
\sqrt{\frac{6.0
}{fan\_in}}
x =
gain \times \sqrt{\frac{3
}{fan\_in}}
Args:
fan_in (float32|None, optional): fan_in for Kaiming uniform Initializer. If None, it is
inferred from the variable. default is None.
fan_in (float32|None): fan_in (in_features) of trainable Tensor,\
If None, it will be infered automaticly. If you don't want to use in_features of the Tensor,\
you can set the value of 'fan_in' smartly by yourself. default is None.
negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
nonlinearity(str, optional): the non-linear function. default is relu.
Note:
It is recommended to set fan_in to None for most cases.
...
...
@@ -99,7 +107,9 @@ class KaimingUniform(MSRAInitializer):
"""
def
__init__
(
self
,
fan_in
=
None
):
def
__init__
(
self
,
fan_in
=
None
,
negative_slope
=
0.0
,
nonlinearity
=
'relu'
):
super
(
KaimingUniform
,
self
).
__init__
(
uniform
=
True
,
fan_in
=
fan_in
,
seed
=
0
)
seed
=
0
,
negative_slope
=
negative_slope
,
nonlinearity
=
nonlinearity
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录