diff --git a/.gitignore b/.gitignore index 9622ab78e0e0556ec2b4cc974fee93ff680d54d2..351b8204100dfd71e94cb3efa2e946b44b9e4285 100644 --- a/.gitignore +++ b/.gitignore @@ -22,7 +22,9 @@ cmake-build-* # generated while compiling python/paddle/v2/framework/core.so +paddle/pybind/pybind.h CMakeFiles cmake_install.cmake paddle/.timestamp python/paddlepaddle.egg-info/ +paddle/pybind/pybind.h diff --git a/.travis.yml b/.travis.yml index e217c8f5a740ef5ab7315656ed7839ffa219c805..d0e2696f100e55f320e410afd6a3038db647f76f 100644 --- a/.travis.yml +++ b/.travis.yml @@ -36,10 +36,6 @@ before_install: # protobuf version. - sudo pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt - sudo pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker - - curl https://glide.sh/get | bash - - eval "$(GIMME_GO_VERSION=1.8.3 gimme)" - - go get -u github.com/alecthomas/gometalinter - - gometalinter --install - | function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; } script: diff --git a/CMakeLists.txt b/CMakeLists.txt index 5739c2a26039426ab544f762e9401445f01e7de7..4921226ec1c90a969fa1cfc383823820500c7757 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -27,7 +27,7 @@ if(NOT CMAKE_CROSSCOMPILING) endif(NOT CMAKE_CROSSCOMPILING) find_package(Git REQUIRED) find_package(Threads REQUIRED) -if(NOT ANDROID) +if(NOT ANDROID AND NOT IOS) find_package(Boost QUIET) endif() @@ -64,27 +64,29 @@ if(NOT CMAKE_BUILD_TYPE) FORCE) endif() -if(ANDROID) - if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16") - message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16") - elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21") - # TODO: support glog for Android api 16 ~ 19 in the future - message(WARNING "Using the unofficial git repository instead") +if(ANDROID OR IOS) + if(ANDROID) + if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16") + message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16") + elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21") + # TODO: support glog for Android api 16 ~ 19 in the future + message(WARNING "Using the unofficial git repository instead") + endif() endif() set(WITH_GPU OFF CACHE STRING - "Disable GPU when cross-compiling for Android" FORCE) + "Disable GPU when cross-compiling for Android and iOS" FORCE) set(WITH_AVX OFF CACHE STRING - "Disable AVX when cross-compiling for Android" FORCE) + "Disable AVX when cross-compiling for Android and iOS" FORCE) set(WITH_PYTHON OFF CACHE STRING - "Disable PYTHON when cross-compiling for Android" FORCE) + "Disable PYTHON when cross-compiling for Android and iOS" FORCE) set(WITH_RDMA OFF CACHE STRING - "Disable RDMA when cross-compiling for Android" FORCE) + "Disable RDMA when cross-compiling for Android and iOS" FORCE) set(WITH_MKLDNN OFF CACHE STRING - "Disable MKLDNN when cross-compiling for Android" FORCE) + "Disable MKLDNN when cross-compiling for Android and iOS" FORCE) set(WITH_MKLML OFF CACHE STRING - "Disable MKLML package when cross-compiling for Android" FORCE) -endif(ANDROID) + "Disable MKLML package when cross-compiling for Android and iOS" FORCE) +endif() set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING "A path setting third party libraries download & build directories.") diff --git a/README.md b/README.md index b9793c3eab5d40c28f01cc67ad607b97261b3235..db0fbd88b250cdc2a3cc77521cc1c2cea77c6e87 100644 --- a/README.md +++ b/README.md @@ -51,19 +51,19 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl - **Connected to Products** In addition, PaddlePaddle is also designed to be easily deployable. At Baidu, - PaddlePaddle has been deployed into products or service with a vast number + PaddlePaddle has been deployed into products and services with a vast number of users, including ad click-through rate (CTR) prediction, large-scale image classification, optical character recognition(OCR), search ranking, computer virus detection, recommendation, etc. It is widely utilized in products at - Baidu and it has achieved a significant impact. We hope you can also exploit - the capability of PaddlePaddle to make a huge impact for your product. + Baidu and it has achieved a significant impact. We hope you can also explore + the capability of PaddlePaddle to make an impact on your product. ## Installation It is recommended to check out the [Docker installation guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/docker_install_en.html) before looking into the -[build from source guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html) +[build from source guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html). ## Documentation @@ -72,7 +72,7 @@ We provide [English](http://doc.paddlepaddle.org/develop/doc/) and - [Deep Learning 101](http://book.paddlepaddle.org/index.html) - You might want to start from this online interactive book that can run in Jupyter Notebook. + You might want to start from this online interactive book that can run in a Jupyter Notebook. - [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html) diff --git a/benchmark/paddle/image/provider.py b/benchmark/paddle/image/provider.py index 1ac47212b5a75667e8e9d4465b33f575516e2836..4703944c8722552d56ba80a8e0663de5fb4df53d 100644 --- a/benchmark/paddle/image/provider.py +++ b/benchmark/paddle/image/provider.py @@ -22,5 +22,5 @@ def initHook(settings, height, width, color, num_class, **kwargs): def process(settings, file_list): for i in xrange(1024): img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten() - lab = random.randint(0, settings.num_class) + lab = random.randint(0, settings.num_class - 1) yield img.astype('float32'), int(lab) diff --git a/benchmark/paddle/image/run_mkldnn.sh b/benchmark/paddle/image/run_mkldnn.sh new file mode 100755 index 0000000000000000000000000000000000000000..e31fec1cd850157d90ddcab2d559d52381ecd317 --- /dev/null +++ b/benchmark/paddle/image/run_mkldnn.sh @@ -0,0 +1,51 @@ +set -e + +function train() { + unset OMP_NUM_THREADS MKL_NUM_THREADS + export OMP_DYNAMIC="FALSE" + export KMP_AFFINITY="granularity=fine,compact,0,0" + topology=$1 + bs=$2 + use_mkldnn=$3 + if [ $3 == "True" ]; then + thread=1 + log="logs/${topology}-mkldnn-${bs}.log" + elif [ $3 == "False" ]; then + thread=`nproc` + # each trainer_count use only 1 core to avoid conflict + export OMP_NUM_THREADS=1 + export MKL_NUM_THREADS=1 + log="logs/${topology}-${thread}mklml-${bs}.log" + else + echo "Wrong input $3, use True or False." + exit 0 + fi + args="batch_size=${bs}" + config="${topology}.py" + paddle train --job=time \ + --config=$config \ + --use_mkldnn=$use_mkldnn \ + --use_gpu=False \ + --trainer_count=$thread \ + --log_period=10 \ + --test_period=100 \ + --config_args=$args \ + 2>&1 | tee ${log} +} + +if [ ! -d "train.list" ]; then + echo " " > train.list +fi +if [ ! -d "logs" ]; then + mkdir logs +fi + +#========== mkldnn ==========# +train vgg 64 True +train vgg 128 True +train vgg 256 True + +#========== mklml ===========# +train vgg 64 False +train vgg 128 False +train vgg 256 False diff --git a/benchmark/paddle/image/vgg.py b/benchmark/paddle/image/vgg.py new file mode 100644 index 0000000000000000000000000000000000000000..b8429975f5c83df6996e71478fe276b246e8b77b --- /dev/null +++ b/benchmark/paddle/image/vgg.py @@ -0,0 +1,103 @@ +#!/usr/bin/env python +from paddle.trainer_config_helpers import * + +height = 224 +width = 224 +num_class = 1000 +batch_size = get_config_arg('batch_size', int, 64) +layer_num = get_config_arg('layer_num', int, 19) + +args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} +define_py_data_sources2( + "train.list", None, module="provider", obj="process", args=args) + +settings( + batch_size=batch_size, + learning_rate=0.01 / batch_size, + learning_method=MomentumOptimizer(0.9), + regularization=L2Regularization(0.0005 * batch_size)) + +img = data_layer(name='image', size=height * width * 3) + + +def vgg_network(vgg_num=3): + tmp = img_conv_group( + input=img, + num_channels=3, + conv_padding=1, + conv_num_filter=[64, 64], + conv_filter_size=3, + conv_act=ReluActivation(), + pool_size=2, + pool_stride=2, + pool_type=MaxPooling()) + + tmp = img_conv_group( + input=tmp, + conv_num_filter=[128, 128], + conv_padding=1, + conv_filter_size=3, + conv_act=ReluActivation(), + pool_stride=2, + pool_type=MaxPooling(), + pool_size=2) + + channels = [] + for i in range(vgg_num): + channels.append(256) + tmp = img_conv_group( + input=tmp, + conv_num_filter=channels, + conv_padding=1, + conv_filter_size=3, + conv_act=ReluActivation(), + pool_stride=2, + pool_type=MaxPooling(), + pool_size=2) + channels = [] + for i in range(vgg_num): + channels.append(512) + tmp = img_conv_group( + input=tmp, + conv_num_filter=channels, + conv_padding=1, + conv_filter_size=3, + conv_act=ReluActivation(), + pool_stride=2, + pool_type=MaxPooling(), + pool_size=2) + tmp = img_conv_group( + input=tmp, + conv_num_filter=channels, + conv_padding=1, + conv_filter_size=3, + conv_act=ReluActivation(), + pool_stride=2, + pool_type=MaxPooling(), + pool_size=2) + + tmp = fc_layer( + input=tmp, + size=4096, + act=ReluActivation(), + layer_attr=ExtraAttr(drop_rate=0.5)) + + tmp = fc_layer( + input=tmp, + size=4096, + act=ReluActivation(), + layer_attr=ExtraAttr(drop_rate=0.5)) + + return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation()) + + +if layer_num == 16: + vgg = vgg_network(3) +elif layer_num == 19: + vgg = vgg_network(4) +else: + print("Wrong layer number.") + +lab = data_layer('label', num_class) +loss = cross_entropy(input=vgg, label=lab) +outputs(loss) diff --git a/cmake/cblas.cmake b/cmake/cblas.cmake index 854066fd1d205c337fbdbe08997d88251095c799..8fdc382f0c1c453a01dba884a3dad216e1c3092c 100644 --- a/cmake/cblas.cmake +++ b/cmake/cblas.cmake @@ -171,3 +171,10 @@ if (REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY) add_definitions(-DPADDLE_USE_REFERENCE_CBLAS) message(STATUS "Found reference-cblas (include: ${CBLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})") endif() + +if(IOS_USE_VECLIB_FOR_BLAS AND VECLIB_FOUND) + set(CBLAS_FOUND ON) + set(CBLAS_PROVIDER vecLib) + set(CBLAS_INC_DIR ${VECLIB_INC_DIR}) + add_definitions(-DPADDLE_USE_VECLIB) +endif() diff --git a/cmake/cpplint.cmake b/cmake/cpplint.cmake index 8d5d533126c9b7fa84c725d614cf3486126d0284..4823dc3e91390002aefac70f7931b4197db05789 100644 --- a/cmake/cpplint.cmake +++ b/cmake/cpplint.cmake @@ -26,9 +26,9 @@ set(IGNORE_PATTERN .*ImportanceSampler.* .*cblas\\.h.* .*\\.pb\\.txt - .*LtrDataProvider.* .*MultiDataProvider.* - .*pb.*) + .*pb.* + .*pybind.h) # add_style_check_target # diff --git a/cmake/cross_compiling/ios.cmake b/cmake/cross_compiling/ios.cmake new file mode 100644 index 0000000000000000000000000000000000000000..0b38943952f7fb9052368fe95eb31dd7592d8a47 --- /dev/null +++ b/cmake/cross_compiling/ios.cmake @@ -0,0 +1,350 @@ +# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This is a toolchain file for cross-compiling for iOS, and the +# configuration largely refers to public toolchain file: +# https://raw.githubusercontent.com/leetal/ios-cmake/master/ios.toolchain.cmake +# and +# https://github.com/cristeab/ios-cmake +# +# Supports options: +# IOS_PLATFORM = OS (default) or SIMULATOR +# This decides if SDKS will be selected from the iPhoneOS.platform or iPhoneSimulator.platform folders +# OS - the default, used to build for iPhone and iPad physical devices, which have an arm arch. +# SIMULATOR - used to build for the Simulator platforms, which have an x86 arch. +# IOS_ARCH +# The archectures wanted to support, such "arm64", "armv7;arm64" +# IOS_DEPLOYMENT_TARGET +# The minimum iOS deployment version, such as "7.0" +# IOS_ENABLE_BITCODE = ON (default) or OFF +# IOS_USE_VECLIB_FOR_BLAS = OFF (default) or ON +# IOS_DEVELOPER_ROOT = automatic(default) or /path/to/platform/Developer folder +# By default this location is automatcially chosen based on the IOS_PLATFORM value above. +# If set manually, it will override the default location and force the user of a particular Developer Platform +# IOS_SDK_ROOT = automatic(default) or /path/to/platform/Developer/SDKs/SDK folder +# By default this location is automatcially chosen based on the IOS_DEVELOPER_ROOT value. +# In this case it will always be the most up-to-date SDK found in the IOS_DEVELOPER_ROOT path. +# If set manually, this will force the use of a specific SDK version + +# Macros: +# set_xcode_property (TARGET XCODE_PROPERTY XCODE_VALUE) +# A convenience macro for setting xcode specific properties on targets +# example: set_xcode_property (myioslib IPHONEOS_DEPLOYMENT_TARGET "3.1") +# find_host_package (PROGRAM ARGS) +# A macro used to find executable programs on the host system, not within the iOS environment. +# Thanks to the android-cmake project for providing the command + +if(NOT IOS) + return() +endif() + +set(CMAKE_SYSTEM_NAME Darwin) + +# Get the Xcode version being used. +execute_process(COMMAND xcodebuild -version + OUTPUT_VARIABLE XCODE_VERSION + RESULT_VARIABLE XCODE_VERSION_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) +if(NOT ${XCODE_VERSION_RESULT}) + string(REGEX MATCH "Xcode [0-9\\.]+" XCODE_VERSION "${XCODE_VERSION}") + string(REGEX REPLACE "Xcode ([0-9\\.]+)" "\\1" XCODE_VERSION "${XCODE_VERSION}") + message(STATUS "Building with Xcode version: ${XCODE_VERSION}") +else() + message(FATAL_ERROR "Cannot execute xcodebuild, please check whether xcode is installed.") +endif() + +# Required as of cmake 2.8.10 +set(CMAKE_OSX_DEPLOYMENT_TARGET "" CACHE STRING "Force unset of the deployment target for iOS" FORCE) + +# Setup iOS platform unless specified manually with IOS_PLATFORM +if(NOT DEFINED IOS_PLATFORM) + set(IOS_PLATFORM "OS") +endif() +set(IOS_PLATFORM ${IOS_PLATFORM} CACHE STRING "Type of iOS Platform") + +# Set the architecture for iOS +if(NOT DEFINED IOS_ARCH) + if(IOS_PLATFORM STREQUAL "OS") + # FIXME(liuyiqun): support "armv7;armv7s;arm64" future + set(IOS_ARCH "arm64") + elseif(IOS_PLATFORM STREQUAL "SIMULATOR") + set(IOS_ARCH "i386;x86_64") + elseif(IOS_PLATFORM STREQUAL "WATCHOS") + set(IOS_ARCH armv7k) + endif() +endif() +set(CMAKE_OSX_ARCHITECTURES ${IOS_ARCH} CACHE string "Build architecture for iOS") + +# Specify minimum iOS deployment version +if(NOT DEFINED IOS_DEPLOYMENT_TARGET) + set(IOS_DEPLOYMENT_TARGET "7.0") +endif() +set(IOS_DEPLOYMENT_TARGET ${IOS_DEPLOYMENT_TARGET} CACHE STRING "Minimum iOS version") + +# Whether to enable bitcode +if(NOT DEFINED IOS_ENABLE_BITCODE) + set(IOS_ENABLE_BITCODE ON) +endif() +set(IOS_ENABLE_BITCODE ${IOS_ENABLE_BITCODE} CACHE BOOL "Whether to enable bitcode") + +if(NOT DEFINED IOS_USE_VECLIB_FOR_BLAS) + set(IOS_USE_VECLIB_FOR_BLAS OFF) +endif() +set(IOS_USE_VECLIB_FOR_BLAS ${IOS_UES_VECLIB_FOR_BLAS} CACHE BOOL "Whether to use veclib") + +# Check the platform selection and setup for developer root +if(${IOS_PLATFORM} STREQUAL "OS") + set(IOS_PLATFORM_LOCATION "iPhoneOS.platform") + set(XCODE_IOS_PLATFORM iphoneos) + + # This causes the installers to properly locate the output libraries + set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-iphoneos") +elseif(${IOS_PLATFORM} STREQUAL "SIMULATOR") + set(IOS_PLATFORM_LOCATION "iPhoneSimulator.platform") + set(XCODE_IOS_PLATFORM iphonesimulator) + + # This causes the installers to properly locate the output libraries + set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-iphonesimulator") +elseif(${IOS_PLATFORM} STREQUAL "WATCHOS") + set(IOS_PLATFORM_LOCATION "WatchOS.platform") + set(XCODE_IOS_PLATFORM watchos) + + # This causes the installers to properly locate the output libraries + set(CMAKE_XCODE_EFFECTIVE_PLATFORMS "-watchos") +else(${IOS_PLATFORM} STREQUAL "OS") + message(FATAL_ERROR "Unsupported IOS_PLATFORM value selected. Please set to\n" + "\t OS, SIMULATOR, or WATCHOS.") +endif() + +# Check iOS developer toolchain +if(NOT DEFINED IOS_DEVELOPER_ROOT) + # Setup iOS developer location + execute_process(COMMAND xcode-select -print-path + OUTPUT_VARIABLE XCODE_DEVELOPER_DIR + RESULT_VARIABLE XCODE_DEVELOPER_DIR_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) + # Xcode 4.3 changed the installation location, choose the most recent one available + if(${XCODE_VERSION} VERSION_LESS "4.3.0") + set(IOS_DEVELOPER_ROOT "/Developer/Platforms/${IOS_PLATFORM_LOCATION}/Developer") + else() + set(IOS_DEVELOPER_ROOT "${XCODE_DEVELOPER_DIR}/Platforms/${IOS_PLATFORM_LOCATION}/Developer") + endif() +endif() +if(EXISTS ${IOS_DEVELOPER_ROOT}) + set(IOS_DEVELOPER_ROOT ${IOS_DEVELOPER_ROOT} CACHE PATH "Location of iOS Platform") +else() + message(FATAL_ERROR "Invalid IOS_DEVELOPER_ROOT: ${IOS_DEVELOPER_ROOT} does not exist.") +endif() + +# Check iOS SDK +if(NOT DEFINED IOS_SDK_ROOT) + # Find and use the most recent iOS sdk + file(GLOB IOS_SDK_LISTS "${IOS_DEVELOPER_ROOT}/SDKs/*") + if(IOS_SDK_LISTS) + list(SORT IOS_SDK_LISTS) + list(REVERSE IOS_SDK_LISTS) + list(GET IOS_SDK_LISTS 0 IOS_SDK_ROOT) + else(IOS_SDK_LISTS) + message(FATAL_ERROR "No iOS SDK's found in default search path ${IOS_DEVELOPER_ROOT}." + " Please manually set IOS_SDK_ROOT or install the iOS SDK.") + endif(IOS_SDK_LISTS) +endif() +if(EXISTS ${IOS_SDK_ROOT}) + set(IOS_SDK_ROOT ${IOS_SDK_ROOT} CACHE PATH "Location of the selected iOS SDK") + message(STATUS "iOS toolchain: ${IOS_SDK_ROOT}") +else() + message(FATAL_ERROR "Invalid IOS_SDK_ROOT: ${IOS_SDK_ROOT} does not exist.") +endif() + +# Set the sysroot default to the most recent SDK +set(CMAKE_OSX_SYSROOT ${IOS_SDK_ROOT} CACHE PATH "Sysroot used for iOS support") + +# Get version of iOS SDK +execute_process(COMMAND xcodebuild -sdk ${CMAKE_OSX_SYSROOT} -version SDKVersion + OUTPUT_VARIABLE IOS_SDK_VERSION + RESULT_VARIABLE IOS_SDK_VERSION_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) +if(${IOS_SDK_VERSION_RESULT}) + string(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" IOS_SDK_VERSION "${IOS_SDK_ROOT}") +endif() +if(NOT IOS_SDK_VERSION) + message(WARNING "Cannot get SDK's version.") + set(IOS_SDK_VERSION 1) +endif() +set(CMAKE_SYSTEM_VERSION ${IOS_SDK_VERSION}) + +# Find the C & C++ compilers for the specified SDK. +if(NOT CMAKE_C_COMPILER) + # Default to use clang + execute_process(COMMAND xcrun -sdk ${CMAKE_OSX_SYSROOT} -find clang + OUTPUT_VARIABLE IOS_C_COMPILER + RESULT_VARIABLE IOS_C_COMPILER_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) + if(${IOS_C_COMPILER_RESULT}) + get_filename_component(IOS_C_COMPILER clang PROGRAM) + endif() +else(NOT CMAKE_C_COMPILER) + # User can set it in cmake command + get_filename_component(IOS_C_COMPILER ${CMAKE_C_COMPILER} PROGRAM) +endif(NOT CMAKE_C_COMPILER) +if(NOT EXISTS ${IOS_C_COMPILER}) + message(FATAL_ERROR "Cannot find C compiler: ${IOS_C_COMPILER}") +endif() + +if(NOT CMAKE_CXX_COMPILER) + # Default to use clang++ + execute_process(COMMAND xcrun -sdk ${CMAKE_OSX_SYSROOT} -find clang++ + OUTPUT_VARIABLE IOS_CXX_COMPILER + RESULT_VARIABLE IOS_CXX_COMPILER_RESULT + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) + if(${IOS_CXX_COMPILER_RESULT}) + get_filename_component(IOS_CXX_COMPILER clang++ PROGRAM) + endif() +else(NOT CMAKE_CXX_COMPILER) + # User can set it in cmake command + get_filename_component(IOS_CXX_COMPILER ${CMAKE_CXX_COMPILER} PROGRAM) +endif(NOT CMAKE_CXX_COMPILER) +if(NOT EXISTS ${IOS_CXX_COMPILER}) + message(FATAL_ERROR "Cannot find CXX compiler: ${IOS_CXX_COMPILER}") +endif() + +set(CMAKE_C_COMPILER ${IOS_C_COMPILER} CACHE PATH "C compiler" FORCE) +set(CMAKE_CXX_COMPILER ${IOS_CXX_COMPILER} CACHE PATH "CXX compiler" FORCE) + +set(CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG "-compatibility_version ") +set(CMAKE_C_OSX_CURRENT_VERSION_FLAG "-current_version ") +set(CMAKE_CXX_OSX_COMPATIBILITY_VERSION_FLAG "${CMAKE_C_OSX_COMPATIBILITY_VERSION_FLAG}") +set(CMAKE_CXX_OSX_CURRENT_VERSION_FLAG "${CMAKE_C_OSX_CURRENT_VERSION_FLAG}") + +# Set iOS specific C/C++ flags +if(IOS_PLATFORM STREQUAL "OS") + if(XCODE_VERSION VERSION_LESS "7.0") + set(XCODE_IOS_PLATFORM_VERSION_FLAGS "-mios-version-min=${IOS_DEPLOYMENT_TARGET}") + else() + # Xcode 7.0+ uses flags we can build directly from XCODE_IOS_PLATFORM. + set(XCODE_IOS_PLATFORM_VERSION_FLAGS "-m${XCODE_IOS_PLATFORM}-version-min=${IOS_DEPLOYMENT_TARGET}") + endif() +else() + set(XCODE_IOS_FLATFORM_VERSION_FLAGS "-mios-simulator-version-min=${IOS_DEPLOYMENT_TARGET}") +endif() + +if(IOS_ENABLE_BITCODE) + set(XCODE_IOS_BITCODE_FLAGS "${IOS_COMPILER_FLAGS} -fembed-bitcode") +else() + set(XCODE_IOS_BITCODE_FLAGS "") +endif() + +set(IOS_COMPILER_FLAGS "${XCODE_IOS_PLATFORM_VERSION_FLAGS} ${XCODE_IOS_BITCODE_FLAGS}") + +# Hidden visibilty is required for cxx on iOS +set(CMAKE_C_FLAGS "${IOS_COMPILER_FLAGS} ${CMAKE_C_FLAGS}" CACHE STRING "C flags") +set(CMAKE_CXX_FLAGS "${IOS_COMPILER_FLAGS} -fvisibility-inlines-hidden ${CMAKE_CXX_FLAGS}" CACHE STRING "CXX flags") + +set(IOS_LINK_FLAGS "${XCODE_IOS_PLATFORM_VERSION_FLAGS} -Wl,-search_paths_first") + +if(IOS_USE_VECLIB_FOR_BLAS) + # Find vecLib for iOS + set(VECLIB_SEARCH_DIRS + ${IOS_SDK_ROOT}/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks + ${IOS_SDK_ROOT}/System/Library/Frameworks/Accelerate.framework/Frameworks + ) + find_path(VECLIB_INC_DIR vecLib.h PATHS ${VECLIB_SEARCH_DIRS}/vecLib.framework/Headers) + + include(FindPackageHandleStandardArgs) + find_package_handle_standard_args(vecLib DEFAULT_MSG VECLIB_INC_DIR) + + if(VECLIB_FOUND) + if(VECLIB_INC_DIR MATCHES "^/System/Library/Frameworks/vecLib.framework.*") + set(IOS_LINK_FLAGS ${IOS_LINK_FLAGS} -lcblas "-framework vecLib") + message(STATUS "Found standalone vecLib.framework") + else() + set(IOS_LINK_FLAGS ${IOS_LINK_FLAGS} -lcblas "-framework Accelerate") + message(STATUS "Found vecLib as part of Accelerate.framework") + endif() + + endif() +endif() + +set(CMAKE_C_LINK_FLAGS "${IOS_LINK_FLAGS} ${CMAKE_C_LINK_FLAGS}") +set(CMAKE_CXX_LINK_FLAGS "${IOS_LINK_FLAGS} ${CMAKE_CXX_LINK_FLAGS}") + +set(CMAKE_PLATFORM_HAS_INSTALLNAME 1) +if(NOT IOS_ENABLE_BITCODE) + set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib -headerpad_max_install_names") + set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle -headerpad_max_install_names") +else() + set(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "-dynamiclib") + set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS "-bundle") +endif() +set(CMAKE_SHARED_MODULE_LOADER_C_FLAG "-Wl,-bundle_loader,") +set(CMAKE_SHARED_MODULE_LOADER_CXX_FLAG "-Wl,-bundle_loader,") +set(CMAKE_FIND_LIBRARY_SUFFIXES ".dylib" ".so" ".a") + +# hack: if a new cmake (which uses CMAKE_INSTALL_NAME_TOOL) runs on an old build tree +# (where install_name_tool was hardcoded) and where CMAKE_INSTALL_NAME_TOOL isn't in the cache +# and still cmake didn't fail in CMakeFindBinUtils.cmake (because it isn't rerun) +# hardcode CMAKE_INSTALL_NAME_TOOL here to install_name_tool, so it behaves as it did before, Alex +if(NOT DEFINED CMAKE_INSTALL_NAME_TOOL) + find_program(CMAKE_INSTALL_NAME_TOOL install_name_tool) +endif() + +# Set the find root to the iOS developer roots and to user defined paths +set(CMAKE_FIND_ROOT_PATH ${IOS_DEVELOPER_ROOT} ${IOS_SDK_ROOT} ${CMAKE_PREFIX_PATH} + CACHE string "iOS find search path root") + +# default to searching for frameworks first +set(CMAKE_FIND_FRAMEWORK FIRST) + +# set up the default search directories for frameworks +set(CMAKE_SYSTEM_FRAMEWORK_PATH + ${IOS_SDK_ROOT}/System/Library/Frameworks + ${IOS_SDK_ROOT}/System/Library/PrivateFrameworks + ${IOS_SDK_ROOT}/Developer/Library/Frameworks + ) + +# only search the iOS sdks, not the remainder of the host filesystem +set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER) +set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY) +set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY) + +message(STATUS "iOS: Targeting iOS '${CMAKE_SYSTEM_VERSION}', " + "building for '${IOS_PLATFORM}' platform, with architecture '${CMAKE_OSX_ARCHITECTURES}'") +message(STATUS "System CMAKE_C_FLAGS: ${CMAKE_C_FLAGS}") +message(STATUS "System CMAKE_CXX_FLAGS: ${CMAKE_CXX_FLAGS}") + +# Used in ExternalProject command +string(REPLACE ";" "\\$" EXTERNAL_IOS_ARCHITECTURES "${CMAKE_OSX_ARCHITECTURES}") +set(EXTERNAL_OPTIONAL_ARGS + -DCMAKE_OSX_SYSROOT=${CMAKE_OSX_SYSROOT} + -DCMAKE_OSX_ARCHITECTURES=${EXTERNAL_IOS_ARCHITECTURES}) + +# This little macro lets you set any XCode specific property +macro(set_xcode_property TARGET XCODE_PROPERTY XCODE_VALUE) + set_property (TARGET ${TARGET} PROPERTY XCODE_ATTRIBUTE_${XCODE_PROPERTY} ${XCODE_VALUE}) +endmacro(set_xcode_property) + +# This macro lets you find executable programs on the host system +macro(find_host_package) + set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER) + set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY NEVER) + set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE NEVER) + set(IOS FALSE) + + find_package(${ARGN}) + + set(IOS TRUE) + set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM ONLY) + set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY) + set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY) +endmacro(find_host_package) diff --git a/cmake/external/gflags.cmake b/cmake/external/gflags.cmake index 01a2f4d5fa357ca882162247cc52299a3d1d3030..957f8271e4841836956b0c3f2cf3d8c88a31192a 100644 --- a/cmake/external/gflags.cmake +++ b/cmake/external/gflags.cmake @@ -39,13 +39,14 @@ ExternalProject_Add( PREFIX ${GFLAGS_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} - CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR} - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DBUILD_TESTING=OFF - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR} + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DBUILD_TESTING=OFF + -DCMAKE_BUILD_TYPE=Release + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GFLAGS_INSTALL_DIR} -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_BUILD_TYPE:STRING=Release diff --git a/cmake/external/glog.cmake b/cmake/external/glog.cmake index b450a3016667dcb4ab229fe7ec8aaae8609d8171..b3fef738ccc0b5886bb0a32501bb7b7adade0ff1 100644 --- a/cmake/external/glog.cmake +++ b/cmake/external/glog.cmake @@ -34,16 +34,17 @@ ExternalProject_Add( PREFIX ${GLOG_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} - CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR} - CMAKE_ARGS -DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DWITH_GFLAGS=ON - CMAKE_ARGS -Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags - CMAKE_ARGS -DBUILD_TESTING=OFF - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR} + -DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DWITH_GFLAGS=ON + -Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags + -DBUILD_TESTING=OFF + -DCMAKE_BUILD_TYPE=Release + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GLOG_INSTALL_DIR} -DCMAKE_INSTALL_LIBDIR:PATH=${GLOG_INSTALL_DIR}/lib -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON diff --git a/cmake/external/gtest.cmake b/cmake/external/gtest.cmake index e3970073a1a0b946fa1db6642799719d7a9fcf4f..6a2a79b7631b32e8a099797de509af64533bbb95 100644 --- a/cmake/external/gtest.cmake +++ b/cmake/external/gtest.cmake @@ -48,15 +48,16 @@ IF(WITH_TESTING) PREFIX ${GTEST_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} - CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR} - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DBUILD_GMOCK=ON - CMAKE_ARGS -Dgtest_disable_pthreads=ON - CMAKE_ARGS -Dgtest_force_shared_crt=ON - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR} + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DBUILD_GMOCK=ON + -Dgtest_disable_pthreads=ON + -Dgtest_force_shared_crt=ON + -DCMAKE_BUILD_TYPE=Release + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GTEST_INSTALL_DIR} -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_BUILD_TYPE:STRING=Release diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake index 4fc8d43fc10891603b79c01a1c769cae21c52655..143b57a954e4e6b2bf273535ebdf0fa8e3dab768 100644 --- a/cmake/external/openblas.cmake +++ b/cmake/external/openblas.cmake @@ -29,30 +29,41 @@ IF(NOT ${CBLAS_FOUND}) "${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}" CACHE FILEPATH "openblas library." FORCE) - IF(APPLE) - SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}") - SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs) - ELSE() - SET(COMMON_ARGS CC=${CMAKE_C_COMPILER} NO_SHARED=1 NO_LAPACK=1 libs) - ENDIF() + SET(OPENBLAS_CC "${CMAKE_C_COMPILER}") IF(CMAKE_CROSSCOMPILING) + SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER}) + GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY) + SET(CROSS_SUFFIX ${CROSS_SUFFIX}/) IF(ANDROID) # arm_soft_fp_abi branch of OpenBLAS to support softfp # https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$") - SET(TARGET "ARMV7") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0) ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a") - SET(TARGET "ARMV8") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0) + ENDIF() + ELSEIF(IOS) + # FIXME(liuyiqun): support multiple architectures + SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5") + SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}") + IF(CMAKE_OSX_ARCHITECTURES MATCHES "armv7") + SET(OPENBLAS_CC "${OPENBLAS_CC} -arch armv7") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0) + ELSEIF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64") + SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64") + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX}) ENDIF() - SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=${TARGET} ARM_SOFTFP_ABI=1 USE_THREAD=0) ELSEIF(RPI) # use hardfp SET(OPENBLAS_COMMIT "v0.2.20") - SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 USE_THREAD=0) + SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0) ENDIF() ELSE() + IF(APPLE) + SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}") + ENDIF() SET(OPENBLAS_COMMIT "v0.2.20") SET(OPTIONAL_ARGS "") IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$") @@ -60,6 +71,8 @@ IF(NOT ${CBLAS_FOUND}) ENDIF() ENDIF() + SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs) + ExternalProject_Add( extern_openblas ${EXTERNAL_PROJECT_LOG_ARGS} diff --git a/cmake/external/protobuf.cmake b/cmake/external/protobuf.cmake index a887be2e2ae5e21562fc15c775bb24cc1553480e..7cf7ba85cca4c248dcc74e078124c0b3815ee380 100644 --- a/cmake/external/protobuf.cmake +++ b/cmake/external/protobuf.cmake @@ -173,7 +173,8 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST) "-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}" "-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}" "-Dprotobuf_WITH_ZLIB=ON" - "-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}") + "-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}" + ${EXTERNAL_OPTIONAL_ARGS}) SET(OPTIONAL_CACHE_ARGS "-DZLIB_ROOT:STRING=${ZLIB_ROOT}") ENDIF() diff --git a/cmake/external/python.cmake b/cmake/external/python.cmake index 490c87d67ed79a238dd506127cd4d9855fab6626..46c68cce324f565ec9985ef1a280d6d933f88f1f 100644 --- a/cmake/external/python.cmake +++ b/cmake/external/python.cmake @@ -12,16 +12,17 @@ # See the License for the specific language governing permissions and # limitations under the License. -INCLUDE(ExternalProject) +IF(NOT WITH_PYTHON) + return() +ENDIF() + INCLUDE(python_module) FIND_PACKAGE(PythonInterp 2.7) -IF(WITH_PYTHON) - FIND_PACKAGE(PythonLibs 2.7) - # Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE. - ADD_LIBRARY(python SHARED IMPORTED GLOBAL) - SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES}) -ENDIF(WITH_PYTHON) +FIND_PACKAGE(PythonLibs 2.7) +# Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE. +ADD_LIBRARY(python SHARED IMPORTED GLOBAL) +SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES}) SET(py_env "") IF(PYTHONINTERP_FOUND) @@ -36,9 +37,5 @@ IF(PYTHONINTERP_FOUND) ENDIF() ENDIF(PYTHONINTERP_FOUND) -IF(WITH_PYTHON) - INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR}) - INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR}) -ELSE() - SET(PYTHON_LIBRARIES "") -ENDIF() +INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR}) +INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR}) diff --git a/cmake/external/swig.cmake b/cmake/external/swig.cmake index 744c766ee7b067058b2cb4aa7f7b761cbb9778d4..ce088ae7eaa3355f2f9761e8c421da0d7ef89fa7 100644 --- a/cmake/external/swig.cmake +++ b/cmake/external/swig.cmake @@ -12,6 +12,10 @@ # See the License for the specific language governing permissions and # limitations under the License. +IF(NOT WITH_SWIG_PY) + return() +ENDIF() + FIND_PACKAGE(SWIG) IF(NOT SWIG_FOUND) diff --git a/cmake/external/warpctc.cmake b/cmake/external/warpctc.cmake index 2d7daed9bcd5b8d854ffae6dc1ea191d154c16fe..bb258c7b5581fc22b44f4fe15c119f8081f4767e 100644 --- a/cmake/external/warpctc.cmake +++ b/cmake/external/warpctc.cmake @@ -16,25 +16,14 @@ INCLUDE(ExternalProject) SET(WARPCTC_SOURCES_DIR ${THIRD_PARTY_PATH}/warpctc) SET(WARPCTC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/warpctc) -SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include" CACHE PATH "Warp-ctc Directory" FORCE) -INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) - -SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib" CACHE PATH "Warp-ctc Library Directory" FORCE) - -IF(WIN32) - SET(WARPCTC_LIBRARIES - "${WARPCTC_INSTALL_DIR}/lib/warpctc.dll" CACHE FILEPATH "Warp-ctc Library" FORCE) -ELSE(WIN32) - IF(APPLE) - SET(_warpctc_SHARED_SUFFIX dylib) - ELSE(APPLE) - SET(_warpctc_SHARED_SUFFIX so) - ENDIF(APPLE) - - SET(WARPCTC_LIBRARIES - "${WARPCTC_INSTALL_DIR}/lib/libwarpctc.${_warpctc_SHARED_SUFFIX}" CACHE FILEPATH "Warp-ctc Library" FORCE) -ENDIF(WIN32) +SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include" + CACHE PATH "Warp-ctc Directory" FORCE) +# Used in unit test test_WarpCTCLayer +SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib" + CACHE PATH "Warp-ctc Library Directory" FORCE) +SET(WARPCTC_LIBRARIES "${WARPCTC_INSTALL_DIR}/lib/libwarpctc${CMAKE_SHARED_LIBRARY_SUFFIX}" + CACHE FILEPATH "Warp-ctc Library" FORCE) IF(CMAKE_CXX_COMPILER_ID STREQUAL "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" ) SET(USE_OMP OFF) @@ -49,22 +38,26 @@ ExternalProject_Add( PREFIX ${WARPCTC_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} - CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR} - CMAKE_ARGS -DWITH_GPU=${WITH_GPU} - CMAKE_ARGS -DWITH_OMP=${USE_OMP} - CMAKE_ARGS -DWITH_TORCH=OFF - CMAKE_ARGS -DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON - CMAKE_ARGS -DBUILD_SHARED=ON - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR} + -DWITH_GPU=${WITH_GPU} + -DWITH_OMP=${USE_OMP} + -DWITH_TORCH=OFF + -DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON + -DBUILD_SHARED=ON + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DCMAKE_BUILD_TYPE=Release + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=Release -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR} ) +MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}") +INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR}) + ADD_LIBRARY(warpctc STATIC IMPORTED GLOBAL) SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES}) ADD_DEPENDENCIES(warpctc extern_warpctc) diff --git a/cmake/external/zlib.cmake b/cmake/external/zlib.cmake index 5aecab90ca3cecdfdba0eac178a6ba07dfcb8745..c496a52b780364f3014f8fa3dfbc944a7aa7430e 100644 --- a/cmake/external/zlib.cmake +++ b/cmake/external/zlib.cmake @@ -34,15 +34,16 @@ ExternalProject_Add( GIT_TAG "v1.2.8" PREFIX ${ZLIB_SOURCES_DIR} UPDATE_COMMAND "" - CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} - CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} - CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} - CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR} - CMAKE_ARGS -DBUILD_SHARED_LIBS=OFF - CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON - CMAKE_ARGS -DCMAKE_MACOSX_RPATH=ON - CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release + -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} + -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR} + -DBUILD_SHARED_LIBS=OFF + -DCMAKE_POSITION_INDEPENDENT_CODE=ON + -DCMAKE_MACOSX_RPATH=ON + -DCMAKE_BUILD_TYPE=Release + ${EXTERNAL_OPTIONAL_ARGS} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ZLIB_INSTALL_DIR} -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON -DCMAKE_BUILD_TYPE:STRING=Release diff --git a/cmake/flags.cmake b/cmake/flags.cmake index ff246b2eb4ed97dd14d45763569b661cefd203c8..4593ae6180b6d7deb61d897eb634b17ac0bb1683 100644 --- a/cmake/flags.cmake +++ b/cmake/flags.cmake @@ -128,8 +128,10 @@ set(GPU_COMMON_FLAGS ) if (APPLE) - # On Mac OS X build fat binaries with x86_64 architectures by default. - set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE) + if(NOT CMAKE_CROSSCOMPILING) + # On Mac OS X build fat binaries with x86_64 architectures by default. + set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE) + endif() else() set(GPU_COMMON_FLAGS -Wall diff --git a/cmake/generic.cmake b/cmake/generic.cmake index d2aab938d4636b1583062e27b73cb30f5d56b7b0..ff9868fc4e0d970b11e4763d2e0c8581f4f85907 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -106,22 +106,22 @@ function(merge_static_libs TARGET_NAME) endforeach() list(REMOVE_DUPLICATES libs_deps) - if(APPLE) # Use OSX's libtool to merge archives - # To produce a library we need at least one source file. - # It is created by add_custom_command below and will helps - # also help to track dependencies. - set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}_dummy.c) + # To produce a library we need at least one source file. + # It is created by add_custom_command below and will helps + # also help to track dependencies. + set(target_SRCS ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}_dummy.c) + if(APPLE) # Use OSX's libtool to merge archives # Make the generated dummy source file depended on all static input # libs. If input lib changes,the source file is touched # which causes the desired effect (relink). - add_custom_command(OUTPUT ${dummyfile} - COMMAND ${CMAKE_COMMAND} -E touch ${dummyfile} + add_custom_command(OUTPUT ${target_SRCS} + COMMAND ${CMAKE_COMMAND} -E touch ${target_SRCS} DEPENDS ${libs}) # Generate dummy staic lib - file(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") - add_library(${TARGET_NAME} STATIC ${dummyfile}) + file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";") + add_library(${TARGET_NAME} STATIC ${target_SRCS}) target_link_libraries(${TARGET_NAME} ${libs_deps}) foreach(lib ${libs}) @@ -130,11 +130,14 @@ function(merge_static_libs TARGET_NAME) endforeach() add_custom_command(TARGET ${TARGET_NAME} POST_BUILD COMMAND rm "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a" - COMMAND /usr/bin/libtool -static -o "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a" ${libfiles}) + COMMAND /usr/bin/libtool -static -o "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a" ${libfiles} + ) else() # general UNIX: use "ar" to extract objects and re-add to a common lib + set(target_DIR ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}.dir) + foreach(lib ${libs}) - set(objlistfile ${lib}.objlist) # list of objects in the input library - set(objdir ${lib}.objdir) + set(objlistfile ${target_DIR}/${lib}.objlist) # list of objects in the input library + set(objdir ${target_DIR}/${lib}.objdir) add_custom_command(OUTPUT ${objdir} COMMAND ${CMAKE_COMMAND} -E make_directory ${objdir} @@ -142,31 +145,32 @@ function(merge_static_libs TARGET_NAME) add_custom_command(OUTPUT ${objlistfile} COMMAND ${CMAKE_AR} -x "$" - COMMAND ${CMAKE_AR} -t "$" > ../${objlistfile} + COMMAND ${CMAKE_AR} -t "$" > ${objlistfile} DEPENDS ${lib} ${objdir} WORKING_DIRECTORY ${objdir}) - # Empty dummy source file that goes into merged library - set(mergebase ${lib}.mergebase.c) - add_custom_command(OUTPUT ${mergebase} - COMMAND ${CMAKE_COMMAND} -E touch ${mergebase} - DEPENDS ${objlistfile}) - - list(APPEND mergebases "${mergebase}") + list(APPEND target_OBJS "${objlistfile}") endforeach() - add_library(${TARGET_NAME} STATIC ${mergebases}) + # Make the generated dummy source file depended on all static input + # libs. If input lib changes,the source file is touched + # which causes the desired effect (relink). + add_custom_command(OUTPUT ${target_SRCS} + COMMAND ${CMAKE_COMMAND} -E touch ${target_SRCS} + DEPENDS ${libs} ${target_OBJS}) + + # Generate dummy staic lib + file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";") + add_library(${TARGET_NAME} STATIC ${target_SRCS}) target_link_libraries(${TARGET_NAME} ${libs_deps}) # Get the file name of the generated library - set(outlibfile "$") + set(target_LIBNAME "$") - foreach(lib ${libs}) - add_custom_command(TARGET ${TARGET_NAME} POST_BUILD - COMMAND ${CMAKE_AR} cr ${outlibfile} *.o - COMMAND ${CMAKE_RANLIB} ${outlibfile} - WORKING_DIRECTORY ${lib}.objdir) - endforeach() + add_custom_command(TARGET ${TARGET_NAME} POST_BUILD + COMMAND ${CMAKE_AR} crs ${target_LIBNAME} `find ${target_DIR} -name '*.o'` + COMMAND ${CMAKE_RANLIB} ${target_LIBNAME} + WORKING_DIRECTORY ${target_DIR}) endif() endfunction(merge_static_libs) @@ -196,7 +200,7 @@ function(cc_library TARGET_NAME) add_style_check_target(${TARGET_NAME} ${cc_library_SRCS} ${cc_library_HEADERS}) else(cc_library_SRCS) - if (cc_library_DEPS) + if(cc_library_DEPS) merge_static_libs(${TARGET_NAME} ${cc_library_DEPS}) else() message(FATAL "Please specify source file or library in cc_library.") @@ -249,7 +253,7 @@ function(nv_library TARGET_NAME) foreach(source_file ${nv_library_SRCS}) string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file}) if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) - list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) + list(APPEND nv_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h) endif() endforeach() add_style_check_target(${TARGET_NAME} ${nv_library_SRCS} ${nv_library_HEADERS}) diff --git a/cmake/system.cmake b/cmake/system.cmake index adf5e2c539740076ad1808353522c7467d765e64..396bd1a0797edea0522bb1f02349373563b7726a 100644 --- a/cmake/system.cmake +++ b/cmake/system.cmake @@ -24,11 +24,10 @@ IF(WIN32) SET(HOST_SYSTEM "win32") ELSE(WIN32) IF(APPLE) - EXEC_PROGRAM (sw_vers ARGS -productVersion OUTPUT_VARIABLE MACOSX_VERSION) - STRING(REGEX MATCH "[0-9]+.[0-9]+" VERSION "${MACOSX_VERSION}") - SET(MACOS_VERSION ${VERSION}) SET(HOST_SYSTEM "macosx") - IF(NOT DEFINED ENV{MACOSX_DEPLOYMENT_TARGET}) + EXEC_PROGRAM(sw_vers ARGS -productVersion OUTPUT_VARIABLE HOST_SYSTEM_VERSION) + STRING(REGEX MATCH "[0-9]+.[0-9]+" MACOS_VERSION "${HOST_SYSTEM_VERSION}") + IF(NOT DEFINED $ENV{MACOSX_DEPLOYMENT_TARGET}) # Set cache variable - end user may change this during ccmake or cmake-gui configure. SET(CMAKE_OSX_DEPLOYMENT_TARGET ${MACOS_VERSION} CACHE STRING "Minimum OS X version to target for deployment (at runtime); newer APIs weak linked. Set to empty string for default value.") @@ -49,6 +48,8 @@ ELSE(WIN32) ELSEIF(LINUX_ISSUE MATCHES "Fedora") SET(HOST_SYSTEM "fedora") ENDIF() + + STRING(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" HOST_SYSTEM_VERSION "${LINUX_ISSUE}") ENDIF(EXISTS "/etc/issue") IF(EXISTS "/etc/redhat-release") @@ -70,7 +71,7 @@ CMAKE_HOST_SYSTEM_INFORMATION(RESULT CPU_CORES QUERY NUMBER_OF_LOGICAL_CORES) MARK_AS_ADVANCED(HOST_SYSTEM CPU_CORES) -MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}") +MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}, version: ${HOST_SYSTEM_VERSION}") MESSAGE(STATUS "Found Paddle host system's CPU: ${CPU_CORES} cores") # configuration for cross-compiling @@ -82,6 +83,9 @@ IF(DEFINED CMAKE_SYSTEM_NAME) ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "RPi") SET(RPI TRUE) INCLUDE(cross_compiling/raspberry_pi) + ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "iOS") + SET(IOS TRUE) + INCLUDE(cross_compiling/ios) ENDIF() ENDIF() diff --git a/cmake/util.cmake b/cmake/util.cmake index 0da4969d310368ab27b0ed65237813c07d6e59f0..d1aee3e170a2d143ac06b438725e907e96f041c8 100644 --- a/cmake/util.cmake +++ b/cmake/util.cmake @@ -25,7 +25,9 @@ function(target_circle_link_libraries TARGET_NAME) endif() endforeach() if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang") - list(APPEND LIBS "-undefined dynamic_lookup") + if(NOT IOS_ENABLE_BITCODE) + list(APPEND LIBS "-undefined dynamic_lookup") + endif() endif() list(REVERSE libsInArgn) target_link_libraries(${TARGET_NAME} @@ -95,6 +97,10 @@ function(link_paddle_exe TARGET_NAME) target_link_libraries(${TARGET_NAME} log) endif(ANDROID) + if(WITH_MKLDNN AND WITH_MKLML AND MKLDNN_IOMP_DIR) + target_link_libraries(${TARGET_NAME} "-L${MKLDNN_IOMP_DIR} -liomp5 -Wl,--as-needed") + endif() + add_dependencies(${TARGET_NAME} ${external_project_dependencies}) endfunction() diff --git a/doc/api/v1/index_cn.rst b/doc/api/v1/index_cn.rst index 3718cd73a2003b8ef6c406a9bd51dc68e76402dc..cf146dc088e3905a751ff55c26fd82ef0ba02c89 100644 --- a/doc/api/v1/index_cn.rst +++ b/doc/api/v1/index_cn.rst @@ -21,7 +21,7 @@ Model Config API trainer_config_helpers/optimizers.rst trainer_config_helpers/data_sources.rst trainer_config_helpers/layers.rst - trainer_config_helpers/activations.rst + trainer_config_helpers/activations.rst trainer_config_helpers/poolings.rst trainer_config_helpers/networks.rst trainer_config_helpers/evaluators.rst diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index c94627a72806fa2eca77c79da24f7f3ca18f0259..d4e9d53e5c0955912a594fe8cd9cd41a4080a2d2 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -345,6 +345,11 @@ clip .. autoclass:: paddle.v2.layer.clip :noindex: +resize +------ +.. autoclass:: paddle.v2.layer.resize + :noindex: + slope_intercept --------------- .. autoclass:: paddle.v2.layer.slope_intercept diff --git a/doc/design/api.md b/doc/design/api.md index 8185d2af0ea264a2e7b4e28b9ed05279e4a22014..e6a4638d9100d9b07c3ee6b92b530a17eae1c162 100644 --- a/doc/design/api.md +++ b/doc/design/api.md @@ -3,7 +3,7 @@ ## Ingredients As our design principle is starting from the essence: how could we -allow users to express and solve their problems at neural networks. +allow users to express and solve their problems as neural networks. Some essential concepts that our API have to provide include: 1. A *topology* is an expression of *layers*. @@ -233,7 +233,7 @@ paddle.dist_train(model, num_parameter_servers=15) ``` -The pseudo code if `paddle.dist_train` is as follows: +The pseudo code of `paddle.dist_train` is as follows: ```python def dist_train(topology, parameters, trainer, reader, ...): diff --git a/doc/design/auto_gradient_check.md b/doc/design/auto_gradient_check.md index 1f4d4ec16f7c395005e610751d95c10f5f3adf52..f9991541bc51c6e13ffce4e9cec60f73dc800121 100644 --- a/doc/design/auto_gradient_check.md +++ b/doc/design/auto_gradient_check.md @@ -1,17 +1,17 @@ ## Auto Gradient Checker Design ## Backgraound: -- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right: - - 1. you should get the right backpropagation formula according to the forward computation. - - 2. you should implement it right in CPP. - - 3. it's difficult to prepare test data. +- Generally, it is easy to check whether the forward computation of an Operator is correct or not. However, backpropagation is a notoriously difficult algorithm to debug and get right: + 1. you should get the right backpropagation formula according to the forward computation. + 2. you should implement it right in CPP. + 3. it's difficult to prepare test data. -- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages: - - 1. numeric gradient checker only need forward operator. - - 2. user only need to prepare the input data for forward Operator. +- Auto gradient checking gets a numerical gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages: + 1. numerical gradient checker only need forward operator. + 2. user only need to prepare the input data for forward Operator. ## Mathematical Theory -The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful. +The following two document from Stanford has a detailed explanation of how to get numerical gradient and why it's useful. - [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization) - [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96) @@ -20,7 +20,7 @@ The following two document from stanford has a detailed explanation of how to ge ## Numeric Gradient Implementation ### Python Interface ```python -def get_numeric_gradient(op, +def get_numerical_gradient(op, input_values, output_name, input_to_check, @@ -30,13 +30,13 @@ def get_numeric_gradient(op, Get Numeric Gradient for an operator's input. :param op: C++ operator instance, could be an network - :param input_values: The input variables. Should be an dictionary, key is - variable name. Value is numpy array. + :param input_values: The input variables. Should be an dictionary, whose key is + variable name, and value is numpy array. :param output_name: The final output variable name. - :param input_to_check: The input variable need to get gradient. + :param input_to_check: The input variable with respect to which to compute the gradient. :param delta: The perturbation value for numeric gradient method. The smaller delta is, the more accurate result will get. But if that delta is - too small, it could occur numerical stability problem. + too small, it will suffer from numerical stability problem. :param local_scope: The local scope used for get_numeric_gradient. :return: The gradient array in numpy format. """ @@ -45,28 +45,28 @@ def get_numeric_gradient(op, ### Explaination: - Why need `output_name` - - One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate. + - An Operator may have multiple Output, one can get independent gradient from each Output. So caller should specify the name of the output variable. - Why need `input_to_check` - - One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times. + - One operator may have multiple inputs. Gradient Op can calculate the gradient of these inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times. ### Core Algorithm Implementation ```python - # we only compute gradient of one element each time. - # we use a for loop to compute the gradient of every element. + # we only compute gradient of one element a time. + # we use a for loop to compute the gradient of each element. for i in xrange(tensor_size): - # get one input element throw it's index i. + # get one input element by its index i. origin = tensor_to_check.get_float_element(i) - # add delta to it, run op and then get the sum of the result tensor. + # add delta to it, run op and then get the new value of the result tensor. x_pos = origin + delta tensor_to_check.set_float_element(i, x_pos) y_pos = get_output() - # plus delta to this element, run op and get the sum of the result tensor. + # plus delta to this element, run op and get the new value of the result tensor. x_neg = origin - delta tensor_to_check.set_float_element(i, x_neg) y_neg = get_output() @@ -85,15 +85,15 @@ def get_numeric_gradient(op, Each Operator Kernel has three kinds of Gradient: -- 1. Numeric Gradient -- 2. CPU Operator Gradient -- 3. GPU Operator Gradient(if supported) +1. Numerical gradient +2. CPU kernel gradient +3. GPU kernel gradient (if supported) -Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value. +The numerical gradient only relies on forward Operator. So we use the numerical gradient as the reference value. And the gradient checking is performed in the following three steps: -- 1. calculate the numeric gradient. -- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient. -- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU) +1. calculate the numerical gradient +2. calculate CPU kernel gradient with the backward Operator and compare it with the numerical gradient +3. calculate GPU kernel gradient with the backward Operator and compare it with the numeric gradient (if supported) #### Python Interface @@ -110,8 +110,8 @@ Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as :param forward_op: used to create backward_op :param input_vars: numpy value of input variable. The following computation will use these variables. - :param inputs_to_check: inputs var names that should check gradient. - :param output_name: output name that used to + :param inputs_to_check: the input variable with respect to which to compute the gradient. + :param output_name: The final output variable name. :param max_relative_error: The relative tolerance parameter. :param no_grad_set: used when create backward ops :param only_cpu: only compute and check gradient on cpu kernel. @@ -120,24 +120,24 @@ Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as ``` ### How to check if two numpy array is close enough? -if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative +if `abs_numerical_grad` is nearly zero, then use abs error for numerical_grad ```python -numeric_grad = ... +numerical_grad = ... operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor()) -abs_numeric_grad = numpy.abs(numeric_grad) -# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative +abs_numerical_grad = numpy.abs(numerical_grad) +# if abs_numerical_grad is nearly zero, then use abs error for numeric_grad, not relative # error. -abs_numeric_grad[abs_numeric_grad < 1e-3] = 1 +abs_numerical_grad[abs_numerical_grad < 1e-3] = 1 -diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad +diff_mat = numpy.abs(abs_numerical_grad - operator_grad) / abs_numerical_grad max_diff = numpy.max(diff_mat) ``` #### Notes: -1,The Input data for auto gradient checker should be reasonable to avoid numeric problem. +The Input data for auto gradient checker should be reasonable to avoid numerical stability problem. #### Refs: diff --git a/doc/design/block.md b/doc/design/block.md new file mode 100644 index 0000000000000000000000000000000000000000..be8800122035984df281692fc40009c397565046 --- /dev/null +++ b/doc/design/block.md @@ -0,0 +1,338 @@ +# Design Doc: Block and Scope + +## The Representation of Computation + +Both deep learning systems and programming languages help users describe computation procedures. These systems use various representations of computation: + +- Caffe, Torch, and Paddle: sequences of layers. +- TensorFlow, Caffe2, Mxnet: graphs of operators. +- PaddlePaddle: nested blocks, like C++ and Java programs. + +## Block in Programming Languages and Deep Learning + +In programming languages, a block is a pair of curly braces that includes local variables definitions and a sequence of instructions, or operators. + +Blocks work with control flow structures like `if`, `else`, and `for`, which have equivalents in deep learning: + +| programming languages | PaddlePaddle | +|-----------------------|-----------------------| +| for, while loop | RNN, WhileOp | +| if, if-else, switch | IfElseOp, SwitchOp | +| sequential execution | a sequence of layers | + +A key difference is that a C++ program describes a one pass computation, whereas a deep learning program describes both the forward and backward passes. + +## Stack Frames and the Scope Hierarchy + +The existence of the backward makes the execution of a block of traditional programs and PaddlePaddle different to each other: + +| programming languages | PaddlePaddle | +|-----------------------|-------------------------------| +| stack | scope hierarchy | +| stack frame | scope | +| push at entering block| push at entering block | +| pop at leaving block | destroy at minibatch completes| + +1. In traditional programs: + + - When the execution enters the left curly brace of a block, the runtime pushes a frame into the stack, where it realizes local variables. + - After the execution leaves the right curly brace, the runtime pops the frame. + - The maximum number of frames in the stack is the maximum depth of nested blocks. + +1. In PaddlePaddle + + - When the execution enters a block, PaddlePaddle adds a new scope, where it realizes variables. + - PaddlePaddle doesn't pop a scope after the execution of the block because variables therein are to be used by the backward pass. So it has a stack forest known as a *scope hierarchy*. + - The height of the highest tree is the maximum depth of nested blocks. + - After the process of a minibatch, PaddlePaddle destroys the scope hierarchy. + +## Use Blocks in C++ and PaddlePaddle Programs + +Let us consolidate the discussion by presenting some examples. + +### Blocks with `if-else` and `IfElseOp` + +The following C++ programs shows how blocks are used with the `if-else` structure: + +```c++ +int x = 10; +int y = 20; +int out; +bool cond = false; +if (cond) { + int z = x + y; + out = softmax(z); +} else { + int z = fc(x); + out = z; +} +``` + +An equivalent PaddlePaddle program from the design doc of the [IfElseOp operator](./if_else_op.md) is as follows: + +```python +import paddle as pd + +x = var(10) +y = var(20) +cond = var(false) +ie = pd.create_ifelseop(inputs=[x], output_num=1) +with ie.true_block(): + x = ie.inputs(true, 0) + z = operator.add(x, y) + ie.set_output(true, 0, operator.softmax(z)) +with ie.false_block(): + x = ie.inputs(false, 0) + z = layer.fc(x) + ie.set_output(true, 0, operator.softmax(z)) +out = b(cond) +``` + +In both examples, the left branch computes `softmax(x+y)` and the right branch computes `fc(x)`. + +A difference is that variables in the C++ program contain scalar values, whereas those in the PaddlePaddle programs are mini-batches of instances. The `ie.input(true, 0)` invocation returns instances in the 0-th input, `x`, that corresponds to true values in `cond` as the local variable `x`, where `ie.input(false, 0)` returns instances corresponding to false values. + +### Blocks with `for` and `RNNOp` + +The following RNN model from the [RNN design doc](./rnn.md) + +```python +x = sequence([10, 20, 30]) +m = var(0) +W = tensor() +U = tensor() + +rnn = create_rnn(inputs=[input]) +with rnn.stepnet() as net: + x = net.set_inputs(0) + h = net.add_memory(init=m) + fc_out = pd.matmul(W, x) + hidden_out = pd.matmul(U, h.pre(n=1)) + sum = pd.add_two(fc_out, hidden_out) + act = pd.sigmoid(sum) + h.update(act) # update memory with act + net.set_outputs(0, act, hidden_out) # two outputs + +o1, o2 = rnn() +print o1, o2 +``` + +has its equivalent C++ program as follows + +```c++ +int* x = {10, 20, 30}; +int m = 0; +int W = some_value(); +int U = some_other_value(); + +int mem[sizeof(x) / sizeof(x[0]) + 1]; +int o1[sizeof(x) / sizeof(x[0]) + 1]; +int o2[sizeof(x) / sizeof(x[0]) + 1]; +for (int i = 1; i <= sizeof(x)/sizeof(x[0]); ++i) { + int x = x[i-1]; + if (i == 1) mem[0] = m; + int fc_out = W * x; + int hidden_out = Y * mem[i-1]; + int sum = fc_out + hidden_out; + int act = sigmoid(sum); + mem[i] = act; + o1[i] = act; + o2[i] = hidden_out; +} + +print_array(o1); +print_array(o2); +``` + + +## Compilation and Execution + +Like TensorFlow programs, a PaddlePaddle program is written in Python. The first part describes a neural network as a protobuf message, and the rest part executes the message for training or inference. + +The generation of this protobuf message is like what a compiler generates a binary executable file. The execution of the message that the OS executes the binary file. + +## The "Binary Executable File Format" + +The definition of the protobuf message is as follows: + +```protobuf +message BlockDesc { + repeated VarDesc vars = 1; + repeated OpDesc ops = 2; +} +``` + +The step net in above RNN example would look like + +``` +BlockDesc { + vars = { + VarDesc {...} // x + VarDesc {...} // h + VarDesc {...} // fc_out + VarDesc {...} // hidden_out + VarDesc {...} // sum + VarDesc {...} // act + } + ops = { + OpDesc {...} // matmul + OpDesc {...} // add_two + OpDesc {...} // sigmoid + } +}; +``` + +Also, the RNN operator in above example is serialized into a protobuf message of type `OpDesc` and would look like: + +``` +OpDesc { + inputs = {0} // the index of x + outputs = {5, 3} // indices of act and hidden_out + attrs { + "memories" : {1} // the index of h + "step_net" : + } +}; +``` + +This `OpDesc` value is in the `ops` field of the `BlockDesc` value representing the global block. + + +## The Compilation of Blocks + +During the generation of the Protobuf message, the Block should store VarDesc (the Protobuf message which describes Variable) and OpDesc (the Protobuf message which describes Operator). + +VarDesc in a block should have its name scope to avoid local variables affect parent block's name scope. +Child block's name scopes should inherit the parent's so that OpDesc in child block can reference a VarDesc that stored in parent block. For example + +```python +a = pd.Varaible(shape=[20, 20]) +b = pd.fc(a, params=["fc.w", "fc.b"]) + +rnn = pd.create_rnn() +with rnn.stepnet() as net: + x = net.set_inputs(a) + # reuse fc's parameter + fc_without_b = pd.get_variable("fc.w") + net.set_outputs(fc_without_b) + +out = rnn() +``` +the method `pd.get_variable` can help retrieve a Variable by a name, a Variable may store in a parent block, but might be retrieved in a child block, so block should have a variable scope that supports inheritance. + +In compiler design, the symbol table is a data structure created and maintained by compilers to store information about the occurrence of various entities such as variable names, function names, classes, etc. + +To store the definition of variables and operators, we define a C++ class `SymbolTable`, like the one used in compilers. + +`SymbolTable` can do the following stuff: + +- store the definitions (some names and attributes) of variables and operators, +- to verify if a variable was declared, +- to make it possible to implement type checking (offer Protobuf message pointers to `InferShape` handlers). + + +```c++ +// Information in SymbolTable is enough to trace the dependency graph. So maybe +// the Eval() interface takes a SymbolTable is enough. +class SymbolTable { + public: + SymbolTable(SymbolTable* parent) : parent_(parent) {} + + OpDesc* NewOp(const string& name=""); + + // TODO determine whether name is generated by python or C++ + // currently assume that a unique name will be generated by C++ if the + // argument name left default. + VarDesc* NewVar(const string& name=""); + + // find a VarDesc by name, if recursive true, find parent's SymbolTable + // recursively. + // this interface is introduced to support InferShape, find protobuf messages + // of variables and operators, pass pointers into InferShape. + // operator + // + // NOTE maybe some C++ classes such as VarDescBuilder and OpDescBuilder should + // be proposed and embedded into pybind to enable python operate on C++ pointers. + VarDesc* FindVar(const string& name, bool recursive=true); + + OpDesc* FindOp(const string& name); + + BlockDesc Compile() const; + + private: + SymbolTable* parent_; + + map ops_; + map vars_; +}; +``` + +After all the description of variables and operators is added into SymbolTable, +the block has enough information to run. + +The `Block` class takes a `BlockDesc` as input, and provide `Run` and `InferShape` functions. + + +```c++ +namespace { + +class Block : OperatorBase { +public: + Block(const BlockDesc& desc) desc_(desc) {} + + void InferShape(const framework::Scope& scope) const override { + if (!symbols_ready_) { + CreateVariables(scope); + CreateOperators(); + } + // should run InferShape first. + for (auto& op : runtime_table_.ops()) { + op->InferShape(scope); + } + } + + void Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const override { + PADDLE_ENFORCE(symbols_ready_, "operators and variables should be created first."); + for (auto& op : runtime_table_.ops()) { + op->Run(scope, dev_ctx); + } + } + + void CreateVariables(const framework::Scope& scope); + void CreateOperators(); + + // some other necessary interfaces of NetOp are list below + // ... + +private: + BlockDesc desc_; + bool symbols_ready_{false}; +}; +``` + +## The Execution of Blocks + +Block inherits from OperatorBase, which has a Run method. +Block's Run method will run its operators sequentially. + +There is another important interface called `Eval`, which take some arguments called targets, and generate a minimal graph which takes targets as the end points and creates a new Block, +after `Run`, `Eval` will get the latest value and return the targets. + +The definition of Eval is as follows: + +```c++ +// clean a block description by targets using the corresponding dependency graph. +// return a new BlockDesc with minimal number of operators. +// NOTE not return a Block but the block's description so that this can be distributed +// to a cluster. +BlockDesc Prune(const BlockDesc& desc, vector targets); + +void Block::Eval(const vector& targets, + const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) { + BlockDesc min_desc = Prune(desc_, targets); + Block min_block(min_desc); + min_block.Run(scope, dev_ctx); +} +``` diff --git a/doc/design/functions_operators_layers.md b/doc/design/functions_operators_layers.md index d23ba56b5773a36d448a99e4abdebc1475ed789c..984b59f4c6971dfb6f46dfe342f2751f392c0e88 100644 --- a/doc/design/functions_operators_layers.md +++ b/doc/design/functions_operators_layers.md @@ -53,12 +53,12 @@ Let's explain using an example. Suppose that we are going to compose the FC usi ```python def operator.mul(X1, X2): O = Var() - paddle.cpp.create_operator("mul", input={X1, Y1], output=O) + paddle.cpp.create_operator("mul", input={X1, Y1}, output=O) return O def operator.add(X1, X2): O = Var() - paddle.cpp.create_operator("add", input={X1, X2], output=O) + paddle.cpp.create_operator("add", input={X1, X2}, output=O) return O ``` diff --git a/doc/design/graph.md b/doc/design/graph.md index 51b7f87638f8ddff752328a562fe0dd0fe56cfd1..7519a65df835a39fe14f6ef45530afff170191ff 100644 --- a/doc/design/graph.md +++ b/doc/design/graph.md @@ -56,7 +56,7 @@ For each parameter, like W and b created by `layer.fc`, marked as double circles ## Block and Graph -The word block and graph are interchangable in the desgin of PaddlePaddle. A [Block[(https://github.com/PaddlePaddle/Paddle/pull/3708) is a metaphore of the code and local variables in a pair of curly braces in programming languages, where operators are like statements or instructions. A graph of operators and variables is a representation of the block. +The word block and graph are interchangable in the desgin of PaddlePaddle. A [Block](https://github.com/PaddlePaddle/Paddle/pull/3708) is a metaphore of the code and local variables in a pair of curly braces in programming languages, where operators are like statements or instructions. A graph of operators and variables is a representation of the block. A Block keeps operators in an array `BlockDesc::ops` @@ -67,4 +67,4 @@ message BlockDesc { } ``` -in the order that there appear in user programs, like the Python program at the beginning of this article. We can imagine that in `ops`, we have some forward operators, followed by some gradient operators, and then some optimization operators. +in the order that they appear in user programs, like the Python program at the beginning of this article. We can imagine that in `ops`, we have some forward operators, followed by some gradient operators, and then some optimization operators. diff --git a/doc/design/if_else_op.md b/doc/design/if_else_op.md index 7370c2a24fa644a64e738f202bac9b9209642e08..954a19c0733358c235eae3cffe134c23dac94c95 100644 --- a/doc/design/if_else_op.md +++ b/doc/design/if_else_op.md @@ -1,22 +1,4 @@ -IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has M (M<=N) instances, each corresponds to a true element in `cond`. - -```python -import paddle as pd - -x = var() -y = var() -cond = var() - -b = pd.create_ifop(inputs=[x], output_num=1) -with b.true_block(): - x = b.inputs(0) - z = operator.add(x, y) - b.set_output(0, operator.softmax(z)) - -out = b(cond) -``` - -If we want the output still has N instances, we can use IfElseOp with a default value, whose minibatch size must be N: +IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has N instances. If cond[i] == True, input instance input[i] will go through true_block() and generate output[i]; otherwise it will produce output from false_bloack(). ```python import paddle as pd @@ -39,7 +21,7 @@ with b.false_block(): out = b(cond) ``` -If only true_block is set in an IfElseOp, we can have a default value for false as: +If only true_block is set in an IfElseOp, a special case is that we can have a default value for false as: ```python import paddle as pd diff --git a/doc/design/ops/images/2_level_rnn.dot b/doc/design/ops/images/2_level_rnn.dot new file mode 100644 index 0000000000000000000000000000000000000000..a498e882a3d85a33d44dbad7474fa2a340e33976 --- /dev/null +++ b/doc/design/ops/images/2_level_rnn.dot @@ -0,0 +1,56 @@ +digraph G { + + rnn [label="1-th level RNN" shape=box] + + subgraph cluster0 { + label = "time step 0" + + sent0 [label="sentence"] + sent1 [label="sentence"] + + rnn1 [label="2-th level RNN" shape=box] + + sent0 -> rnn1 + sent1 -> rnn1 + } + + subgraph cluster1 { + label = "time step 1" + + sent2 [label="sentence"] + sent3 [label="sentence"] + + rnn2 [label="2-th level RNN" shape=box] + + sent2 -> rnn2 + sent3 -> rnn2 + } + + subgraph cluster2 { + label = "time step 2" + + sent4 [label="sentence"] + sent5 [label="sentence"] + + rnn3 [label="2-th level RNN" shape=box] + + sent4 -> rnn3 + sent5 -> rnn3 + } + + + para0 [label="paragraph info 0"] + para1 [label="paragraph info 1"] + para2 [label="paragraph info 2"] + + rnn1 -> para0 + rnn2 -> para1 + rnn3 -> para2 + + para0 -> rnn + para1 -> rnn + para2 -> rnn + + chapter [label="chapter info"] + rnn -> chapter +} diff --git a/doc/design/ops/images/2_level_rnn.png b/doc/design/ops/images/2_level_rnn.png new file mode 100644 index 0000000000000000000000000000000000000000..0537a75beb175c0c284717421f7aa908da2a5038 Binary files /dev/null and b/doc/design/ops/images/2_level_rnn.png differ diff --git a/doc/design/ops/images/rnn.dot b/doc/design/ops/images/rnn.dot new file mode 100644 index 0000000000000000000000000000000000000000..c1141cd9c981bb3cbf50d8bf7a6ed210280d79a5 --- /dev/null +++ b/doc/design/ops/images/rnn.dot @@ -0,0 +1,87 @@ +digraph G { + label = "simple RNN implementation" + + ranksep=2; + + //graph [nodesep=1, ranksep=1]; + + node[nodesep=1] + + subgraph cluster0 { + label = "global scope" + rankdir = TB + W + boot_memory + input + output + } + + subgraph cluster1 { + label = "step-scope 0" + rankdir = TB + memory0[label="memory"] + prememory0[label="pre-memory"] + step_input0[label="step input"] + step_output0[label="step output"] + } + + subgraph cluster2 { + label = "step-scope 1" + rankdir = TB + memory1[label="memory"] + prememory1[label="pre-memory"] + step_input1[label="step input"] + step_output1[label="step output"] + } + + subgraph cluster3 { + label = "step-scope 2" + rankdir = TB + memory2[label="memory"] + prememory2[label="pre-memory"] + step_input2[label="step input"] + step_output2[label="step output"] + } + + stepnet [shape=box] + stepnet0 [shape=box, style=dashed] + stepnet1 [shape=box, style=dashed] + stepnet2 [shape=box, style=dashed] + + + edge[color=blue] + boot_memory -> prememory0 [label="init" color="blue"] + memory0 -> prememory1 [label="copy/reference" color="blue"] + memory1 -> prememory2 [label="copy/reference" color="blue"] + + edge[color=black] + W -> stepnet0[constraint=false, style=dashed] + W -> stepnet1[constraint=false, style=dashed] + W -> stepnet2[constraint=false, style=dashed] + + memory0 -> stepnet0[style=dashed] + prememory0 -> stepnet0 -> step_output0[style=dashed] + + memory1 -> stepnet1[style=dashed] + prememory1 -> stepnet1 -> step_output1[style=dashed] + + memory2 -> stepnet2[style=dashed] + prememory2 -> stepnet2 -> step_output2[style=dashed] + + input -> step_input0 + input -> step_input1 + input -> step_input2 + + step_input0 -> stepnet0 [style=dashed] + step_input1 -> stepnet1[style=dashed] + step_input2 -> stepnet2[style=dashed] + + step_output0 -> output + step_output1 -> output + step_output2 -> output + + stepnet0 -> stepnet[style=dashed] + stepnet1 -> stepnet[style=dashed] + stepnet2 -> stepnet[style=dashed] + +} diff --git a/doc/design/ops/images/rnn.jpg b/doc/design/ops/images/rnn.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9867e404cf959df0dce6ded5222b466c788fb840 Binary files /dev/null and b/doc/design/ops/images/rnn.jpg differ diff --git a/doc/design/ops/images/rnn.png b/doc/design/ops/images/rnn.png new file mode 100644 index 0000000000000000000000000000000000000000..e139e373fe8396782044cfd936fdde624f8c66fe Binary files /dev/null and b/doc/design/ops/images/rnn.png differ diff --git a/doc/design/ops/images/rnn_2level_data.dot b/doc/design/ops/images/rnn_2level_data.dot new file mode 100644 index 0000000000000000000000000000000000000000..1d85ae2617a915ad0ad8288d848b607cc37ad297 --- /dev/null +++ b/doc/design/ops/images/rnn_2level_data.dot @@ -0,0 +1,75 @@ +digraph G { + chapter [label="chapter"] + + subgraph cluster0 { + label = "paragraph 0" + + top_rnn0[label="top rnn step 0" shape=box] + + p0 [label="paragraph 0"] + p1 [label="paragraph 1"] + } + + subgraph cluster1{ + label = "paragraph 1" + + top_rnn1[label="top rnn step 1" shape=box] + + p2 [label="paragraph 0"] + p3 [label="paragraph 1"] + } + + subgraph cluster_p0 { + label = "sentence 0" + + low_rnn0 [label="low rnn step 0" shape=box] + s00 [label="sentence 0"] + s01 [label="sentence 1"] + + low_rnn0 -> s00 + low_rnn0 -> s01 + } + + subgraph cluster_p1 { + label = "sentence 1" + low_rnn1 [label="low rnn step 1" shape=box] + s10 [label="sentence 0"] + s11 [label="sentence 1"] + low_rnn1 -> s10 + low_rnn1 -> s11 + } + + subgraph cluster_p2 { + label = "sentence 1" + low_rnn2 [label="low rnn step 0" shape=box] + s20 [label="sentence 0"] + s21 [label="sentence 1"] + low_rnn2 -> s20 + low_rnn2 -> s21 + } + + subgraph cluster_p3 { + label = "sentence 1" + low_rnn3 [label="low rnn step 1" shape=box] + s30 [label="sentence 0"] + s31 [label="sentence 1"] + low_rnn3 -> s30 + low_rnn3 -> s31 + } + + + chapter -> top_rnn0 + chapter -> top_rnn1 + + top_rnn0 -> p0 + top_rnn0 -> p1 + top_rnn1 -> p2 + top_rnn1 -> p3 + + + p0 -> low_rnn0 + p1 -> low_rnn1 + p2 -> low_rnn2 + p3 -> low_rnn3 + +} diff --git a/doc/design/ops/images/rnn_2level_data.png b/doc/design/ops/images/rnn_2level_data.png new file mode 100644 index 0000000000000000000000000000000000000000..4be81b2430717a6a506342a09fc26899568574c6 Binary files /dev/null and b/doc/design/ops/images/rnn_2level_data.png differ diff --git a/doc/design/ops/rnn.md b/doc/design/ops/rnn.md new file mode 100644 index 0000000000000000000000000000000000000000..a78eea7d45e9e9553d153170aa31da55ec6e8289 --- /dev/null +++ b/doc/design/ops/rnn.md @@ -0,0 +1,153 @@ +# RNNOp design + +This document is about an RNN operator which requires that instances in a mini-batch have the same length. We will have a more flexible RNN operator. + +## RNN Algorithm Implementation + +

+ +

+ +The above diagram shows an RNN unrolled into a full network. + +There are several important concepts: + +- *step-net*: the sub-graph to run at each step, +- *memory*, $h_t$, the state of the current step, +- *ex-memory*, $h_{t-1}$, the state of the previous step, +- *initial memory value*, the ex-memory of the first step. + +### Step-scope + +There could be local variables defined in step-nets. PaddlePaddle runtime realizes these variables in *step-scopes* -- scopes created for each step. + +

+
+Figure 2 the RNN's data flow +

+ +Please be aware that all steps run the same step-net. Each step + +1. creates the step-scope, +2. realizes local variables, including step-outputs, in the step-scope, and +3. runs the step-net, which could use these variables. + +The RNN operator will compose its output from step outputs in step scopes. + +### Memory and Ex-memory + +Let's give more details about memory and ex-memory via a simply example: + +$$ +h_t = U h_{t-1} + W x_t +$$, + +where $h_t$ and $h_{t-1}$ are the memory and ex-memory of step $t$'s respectively. + +In the implementation, we can make an ex-memory variable either "refers to" the memory variable of the previous step, +or copy the value of the previous memory value to the current ex-memory variable. + +### Usage in Python + +For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md). + +We can define an RNN's step-net using Block: + +```python +import paddle as pd + +X = some_op() # x is some operator's output, and is a LoDTensor +a = some_op() + +# declare parameters +W = pd.Variable(shape=[20, 30]) +U = pd.Variable(shape=[20, 30]) + +rnn = pd.create_rnn_op(output_num=1) +with rnn.stepnet(): + x = rnn.add_input(X) + # declare a memory (rnn's step) + h = rnn.add_memory(init=a) + # h.pre_state() means previous memory of rnn + new_state = pd.add_two( pd.matmul(W, x) + pd.matmul(U, h.pre_state())) + # update current memory + h.update(new_state) + # indicate that h variables in all step scopes should be merged + rnn.add_outputs(h) + +out = rnn() +``` + +Python API functions in above example: + +- `rnn.add_input` indicates the parameter is a variable that will be segmented into step-inputs. +- `rnn.add_memory` creates a variable used as the memory. +- `rnn.add_outputs` mark the variables that will be concatenated across steps into the RNN output. + +### Nested RNN and LoDTensor + +An RNN whose step-net includes other RNN operators is known as an *nested RNN*. + +For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences. + +The following figure illustrates the feeding of text into the lower level, one sentence each step, and the feeding of step outputs to the top level. The final top level output is about the whole text. + +

+ +

+ +```python +import paddle as pd + +W = pd.Variable(shape=[20, 30]) +U = pd.Variable(shape=[20, 30]) + +W0 = pd.Variable(shape=[20, 30]) +U0 = pd.Variable(shape=[20, 30]) + +# a is output of some op +a = some_op() + +# chapter_data is a set of 128-dim word vectors +# the first level of LoD is sentence +# the second level of LoD is chapter +chapter_data = pd.Variable(shape=[None, 128], type=pd.lod_tensor, level=2) + +def lower_level_rnn(paragraph): + ''' + x: the input + ''' + rnn = pd.create_rnn_op(output_num=1) + with rnn.stepnet(): + sentence = rnn.add_input(paragraph, level=0) + h = rnn.add_memory(shape=[20, 30]) + h.update( + pd.matmul(W, sentence) + pd.matmul(U, h.pre_state())) + # get the last state as sentence's info + rnn.add_outputs(h) + return rnn + +top_level_rnn = pd.create_rnn_op(output_num=1) +with top_level_rnn.stepnet(): + paragraph_data = rnn.add_input(chapter_data, level=1) + low_rnn = lower_level_rnn(paragraph_data) + paragraph_out = low_rnn() + + h = rnn.add_memory(init=a) + h.update( + pd.matmul(W0, paragraph_data) + pd.matmul(U0, h.pre_state())) + top_level_rnn.add_outputs(h) + +# just output the last step +chapter_out = top_level_rnn(output_all_steps=False) +``` + +in above example, the construction of the `top_level_rnn` calls `lower_level_rnn`. The input is a LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences. + +By default, the `RNNOp` will concatenate the outputs from all the time steps, +if the `output_all_steps` set to False, it will only output the final time step. + + +

+ +

diff --git a/doc/design/parameters_in_cpp.md b/doc/design/parameters_in_cpp.md index b6f99bc7d9d6fafacb0a4bcff806b65d9aef98cc..a7ac3f17c44ca94a669a8f1e283b291bceb42317 100644 --- a/doc/design/parameters_in_cpp.md +++ b/doc/design/parameters_in_cpp.md @@ -1,19 +1,19 @@ # Design Doc: The C++ Class `Parameters` -`Parameters` is a concept we designed in Paddle V2 API. `Parameters` is a container of parameters, and make Paddle can shared parameter between topologies. We described usages of `Parameter` in [api.md](./api.md). +`Parameters` is a concept we designed in PaddlePaddle V2 API. `Parameters` is a container of parameters, which makes PaddlePaddle capable of sharing parameter between topologies. We described usages of `Parameter` in [api.md](./api.md). -We used Python to implement Parameters when designing V2 API before. There are several defects for current implementation: +We used Python to implement Parameters when designing V2 API before. There are several defects for the current implementation: * We just use `memcpy` to share Parameters between topologies, but this is very inefficient. -* We did not implement share Parameters while training. We just trigger `memcpy` when start training. +* We did not support sharing Parameters while training. We just trigger `memcpy` when start training. -It is necessary that we implement Parameters in CPP side. However, it could be a code refactoring for Paddle, because Paddle was designed for training only one topology before, i.e., each GradientMachine contains its Parameter as a data member. In current Paddle implementation, there are three concepts associated with `Parameters`: +It is necessary that we implement Parameters in CPP side. However, it could result a code refactoring for PaddlePaddle, because PaddlePaddle was designed for training only one topology before, i.e., each GradientMachine contains its Parameter as a data member. In current PaddlePaddle implementation, there are three concepts associated with `Parameters`: 1. `paddle::Parameter`. A `Parameters` is a container for `paddle::Parameter`. It is evident that we should use `paddle::Parameter` when developing `Parameters`. However, the `Parameter` class contains many functions and does not have a clear interface. It contains `create/store Parameter`, `serialize/deserialize`, `optimize(i.e SGD)`, `randomize/zero`. When we developing `Parameters`, we only use `create/store Parameter` functionality. -We should extract functionalities of Parameter into many classes to clean Paddle CPP implementation. +We should extract functionalities of Parameter into many classes to clean PaddlePaddle CPP implementation. 2. `paddle::GradientMachine` and its sub-classes, e.g., `paddle::MultiGradientMachine`, `paddle::NeuralNetwork`. We should pass `Parameters` to `paddle::GradientMachine` when `forward/backward` to avoid `memcpy` between topologies. @@ -24,7 +24,7 @@ Also, we should handle multi-GPU/CPU training, because `forward` and `backward` So `Parameters` should be used by `paddle::ParameterUpdater`, and `paddle::ParameterUpdater` should optimize `Parameters` (by SGD). -The step by step approach for implementation Parameters in Paddle C++ core is listed below. Each step should be a PR and could be merged into Paddle one by one. +The step by step approach for implementation Parameters in PaddlePaddle C++ core is listed below. Each step should be a PR and could be merged into PaddlePaddle one by one. 1. Clean `paddle::Parameter` interface. Extract the functionalities of `paddle::Parameter` to prepare for the implementation of Parameters. diff --git a/doc/design/program.md b/doc/design/program.md new file mode 100644 index 0000000000000000000000000000000000000000..fb8f86ac07af403c9fee015f2a3adbfaa3c6d631 --- /dev/null +++ b/doc/design/program.md @@ -0,0 +1,61 @@ +# Design Doc: ProgramDesc + +The basic structure of a PaddlePaddle program is some nested blocks, as a C++ or Java program. + +As described in [graph.md](./graph.md), the first five lines of the following PaddlePaddle program + +```python +x = layer.data("images") +l = layer.data("label") +y = layer.fc(x) +cost = layer.mse(y, l) +optimize(cost) +train(cost, reader=mnist.train()) +``` + +generates, or compiles, a PaddelPaddle program, which is represented by the following protobuf message: + +```protobuf +message ProgramDesc { + repeated BlockDesc blocks = 1; +} + +message BlockDesc { + required int32 parent = 1; + repeated VarDesc vars = 2; + repeated OpDesc ops = 3; +} + +message OpDesc { + AttrDesc attrs = 1; + ... +} + +message AttrDesc { + required AttrType type = 1; + + // index into ProgramDesc::blocks when type==BLOCK + optional int32 block = 2; + ... +} +``` + +When each of the first five lines runs, related Python function, e.g., `layer.fc`, calls C++ InferShape functions. This InferShape function needs to access the properties of VarDesc's accessed by the current OpDesc. These VarDesc's might not be defined in the current block, but in some ancestor blocks. This requires that we can trace the parent of a block. + +A nested block is often an attribute of an operator, most likely, an IfElseOp or a WhileOp. In above solution, all blocks are in `ProgramDesc::blocks`, this implicitly assigns a zero-based ID to each block -- the index of the block in `ProgramDesc::blocks`. So that `AttrDesc::block` could be an integer block ID. + +With this design, the InferShape function should take the following parameters: + +```c++ +void InferShape(int current_block, + int current_operator, + ProgramDesc* program // might change VarDesc values. + ) { + ... +} +``` + +where + +- `current_block` indices into `ProgramDesc::blocks`, +- `current_operator` indices into `BlockDesc::ops`. diff --git a/doc/design/python_api.md b/doc/design/python_api.md new file mode 100644 index 0000000000000000000000000000000000000000..5c68354274d577c29e054fdd1d3b17c7ea9b4cf9 --- /dev/null +++ b/doc/design/python_api.md @@ -0,0 +1,216 @@ +# Design Doc: Python API + +Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program. + +| Python classes | Protobuf messages | +| --- | --- | +| Program | ProgramDesc | +| Block | BlockDesc | +| Operator | OpDesc | +| Variable | VarDesc | + +Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages. + +## Core Concepts + +### Program + +A `ProgramDesc` describes a [DL program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md), which is composed of an array of `BlockDesc`s. A `BlockDesc` refers to its parent block by its index in the array. For example, operators in the step block of an RNN operator needs to be able to access variables in its ancessor blocks. + +Whenever we create a block, we need set its parent block to the current block, so the Python class `Program` needs to maintain a data member `current_block`. + +```python +class Program(objects): + def __init__(self): + self.proto = core.NewProgram() # a C++ ProgramDesc pointer. + self.blocks = vector() + self.blocks.append(Block(self, -1)) # the global block + self.current_block = 0 # initialized to the global block + + def global_block(): + return self.blocks[0] + + def current_block(): + return self.get_block(self.current_block) + + def rollback(): + self.current_block = self.current_block().parent_idx + + def create_block(): + new_block_idx = len(self.block) + self.blocks.append(Block(self, self.current_block)) + self.current_block = new_block_idx + return current_block() +``` + +`Program` is an accessor to the protobuf message `ProgramDesc`, which is created in C++ space, because the InferShape function is in C++, which manipulates `VarDesc` messages, which are in turn members of `BlockDesc`, which is a member of `ProgramDesc`. + +`Program` creates the first block as the global block in its constructor. All parameters and their initializer operators are in the global block. + +### Block + +A [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md) includes + +1. a map from variable names to an instance of the Python `Variable` class, and +1. a list of `Operator` instances. + +```python +class Block(objects): + def __init__(self, program, parent_idx): + self.proto = core.NewBlock(program.proto) + self.program = program + self.vars = map() + self.ops = vector() + self.parent_idx = parent_idx + + def create_var(self, ...): + return Variable(self, ...) + + def _create_global_var(self, ...): + program.global_block().create_var(...) + + def create_parameter(self, name, ...): + # Parameter is a subclass of variable. See Parameter section for details. + self.vars[name] = Parameter(self._create_global_var(...), ...) + return self.vars[name] + + def append_operator(self, ...): + self.ops.append(Operator(self, ...)) + + def prepend_operator(self, ...): # Parameter's ctor prepands initialize operators. + self.ops.prepend(Operator(self, ...)) +``` + +`create_parameter` is necessary because parameters are global variables, those defined in the global block, but can be created in some sub-blocks, e.g., an FC layer in the step block of an RNN operator. + +`prepand_operator` is necessary because the constructor of `Parameter` needs to create the initialize (or load) operator of the parameter, and would like to put it in the *preamble* of the global block. + +### Operator + +The `Operator` class fills in the `OpDesc` message and calls the C++ function `InferShape` to infer output shape from input shape. + +```python +class Operator(object): + def __init__(self, + block, # Block + type, # string + inputs, # dict + outputs,# dict + attrs # dict + ): + self.proto = core.NewOpDesc(block.proto, type, inputs, outputs, attrs) + core.infer_shape(self.proto, inputs, outputs) + + def type(self): + return self.proto.type() +``` + +`Operator` creates the `OpDesc` message in C++ space, so could it call the `InferShape` function, which is in C++. + +### Variable + +Operators take Variables as its inputs and outputs. + +```python +class Variable(object): + def __init__(self, + block=None, # Block + name=None, # string + shape, # tuple + dtype="float32", # string + lod_level=None # int + ): + if name is None: + name = unique_name_generator() + self.name = name + self.block = block + self.proto = core.NewVarDesc(block.proto, name, shape, lod_level) + self.writer = None +``` + +Please be aware of `self.writer`, that tracks operator who creates the variable. It possible that there are more than one operators who write a variable, but in Python space, each writes to a variable is represented by a Variable class. This is guaranteed by the fact that **`core.NewVarDesc` must NOT create a new `VarDesc` message if its name already exists in the specified block**. + +### Parameter + +A parameter is a global variable with an initializer (or load) operator. + +```python +class Parameter(Variable): + def __init__(self, + block=None, # Block + name=None, # string + shape, # tuple + dtype="float32", # string + lod_level=None # int + trainable, # bool + initialize_op_attrs, + optimize_op_attrs): + super(Parameter, self).__init__(block, name, shape, dtype, lod_level) + self.trainable = trainable + self.optimize_op_attrs = optimize_op_attrs + block.prepend(Operator(block, # Block + initialize_op_attrs['type'], # string + None, # no inputs + self, # output is the parameter + initialize_op_attrs) +``` + +When users create a parameter, s/he can call + +```python +program.create_parameter( + ..., + init_attr={ + type: "uniform_random", + min: -1.0, + max: 1.0, + }) +) +``` + +In above example, `init_attr.type` names an initialize operator. It can also name the load operator + +```python +init_attr={ + type: "load", + filename: "something.numpy", +} +``` + +`optimize_op_attrs` is not in the `VarDesc` message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator's `OpDesc`, and will be in the `OpDesc` message. + +## Layer Functions + +A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers. + +### Data Layer + +```python +def data_layer(name, type, column_name): + block = the_current_program.glolal_block() + var = block.create_global_var( + name=name, + shape=[None] + type.dims(), + dtype=type.dtype) + block.prepend_operator(block, + type="Feed", + inputs = None, + outputs = [var], + {column_name: column_name}) + return var +``` + +The input to the feed operator is a special variable in the global scope, which is the output of [Python readers](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md). + +### FC Layer + +```python +def fc_layer(input, size, ...): + block = program.current_block() + w = block.create_parameter(...) + b = block.create_parameter(...) + out = block.create_var() + op = block.append_operator("FC", X=input, W=w, b=b, out=out) + out.writer = op + return out +``` diff --git a/doc/design/reader/README.md b/doc/design/reader/README.md index f21f7af520df5171798326818ecb97c3bcd14a12..320dccec3ddc7bfe6042f4e65b2518ea7b1ad24a 100644 --- a/doc/design/reader/README.md +++ b/doc/design/reader/README.md @@ -52,7 +52,7 @@ Here are valid outputs: # a mini batch of three data items, each data item is a list (single column). [([1,1,1],), ([2,2,2],), -([3,3,3],), +([3,3,3],)] ``` Please note that each item inside the list must be a tuple, below is an invalid output: diff --git a/doc/design/refactor/distributed_architecture.md b/doc/design/refactor/distributed_architecture.md new file mode 100644 index 0000000000000000000000000000000000000000..ac7e98ccf1aadbb973a4801fde842375cf63448c --- /dev/null +++ b/doc/design/refactor/distributed_architecture.md @@ -0,0 +1,222 @@ +# Design Doc: Distributed Training Architecture + +## Abstract + +PaddlePaddle v0.10.0 uses the "trainer-parameter server" +architecture. We run multiple replicated instances of trainers (runs +the same code written by the user) and parameter servers for +distributed training. This architecture served us well, but has some +limitations: + +1. Need to write special code to handle tasks which should only be run + by a single trainer. E.g., initializing model and saving model. + +2. Model parallelism is hard: need to write if-else branches conditioned + on the trainer ID to partition model onto each trainer, and manually + write the inter-model-shard communication code. + +3. The user can not directly specify the parameter update rule: need + to modify the parameter server C++ code and compile a new + binary. This adds complication for researchers: A lot of extra + effort is required. Besides, the training job submission program + may not allow running arbitrary binaries. + +This design doc discusses PaddlePaddle's new distributed training +architecture that addresses the above limitations. + +## Analysis + +We will assume the user writes the trainer program by Python, the same +analysis holds if the trainer program is written in C++. + +### Limitation 1 + +If we look at the Python code that the user writes, there are two +kinds of functionalities: + +- The training logic such as load / save model and print log. +- The neural network definition such as the definition of the data + layer, the fully connected layer, the cost function and the + optimizer. + +When we training with PaddlePaddle v0.10.0 distributedly, multiple +replicated Python instances are running on different nodes: both the +training logic and the neural network computation is replicated. + +The tasks that should only run once all belong to the training logic, +if we only replicate the neural network computation, but do **not** +replicate the training logic, the limitation could be solved. + +### Limitation 2 + +Model parallelism means running a single model on multiple nodes by +partitioning the model onto different nodes and managing the +inter-model-shard communications. + +PaddlePaddle should be able to modify the nerual network computation +definition to support model parallelism automatically. However, the +computation is only specified in Python code, and PaddlePaddle can not +modify Python code. + +Just like compiler uses a intermediate representation (IR) so that +programmer does not need to manually optimize their code in most of +the cases - the compiler will optimize the IR: + + + +We can have our own IR too: PaddlePaddle can support model parallel by +converting the IR so the user no longer need to manually do it in +Python: + + + +The IR for PaddlePaddle after refactor is called `Block`, it specifies +the computation dependency graph and the variables used in the +computation. + +### Limitation 3 + +The user can not directly specify the parameter update rule for the +parameter server because the parameter server does not use the same +computation definition as the trainer. Instead, the update rule is +baked in the parameter server. The user can not specify the update +rule in the same way of specifying the trainer computation. + +This could be fixed by making the parameter server run the same +computation definition as the trainer. For a detailed explanation, +please +see +[Design Doc: Operation Graph Based Parameter Server](./dist_train.md) + +## Distributed Training Architecture + +The new distributed training architecture can address the above +limitations. Below is the illustration: + + + +The architecture includes major components: *PaddlePaddle Python*, +*PaddlePaddle converter* and *PaddlePaddle runtime*: + +### PaddlePaddle Python + +PaddlePaddle Python is the Python library that user's Python trainer +invoke to build the neural network topology, start training, etc. + +```Python +paddle.init() +input = paddle.op.recordIO("/home/data/mnist.recordio") # file stored on the cluster +img, label = input[0], input[1] +hidden = paddle.layer.fc(input=img, size=200, act=paddle.activation.Tanh()) +prediction = paddle.layer.fc(input=img, size=10, act=paddle.activation.Softmax()) +cost = paddle.layer.classification_cost(input=prediction, label=label) +optimizer = paddle.optimizer.SGD(cost, learning_rate=0.01) +session = paddle.session.NewRemote(num_trainer=3, num_ps=2, GPU_per_trainer=1) +for i in range(1000): + _, cost_val = session.eval(targets=[cost, optimizer]) + print cost_val +``` + +The code above is a typical Python trainer code, the neural network +topology is built using helper functions such as +`paddle.layer.fc`. The training is done by calling `session.eval` +iteratively. + +#### session.eval + +As shown in the graph, `session.eval` sends the IR and the evaluation +inputs/targets to the PaddlePaddle cluster for evaluation. The +targets can be any variable in the computation graph. When the target +is the `optimizer` variable, the neural network will be optimized +once. When the target is the `cost` variable, `session.eval` returns +the cost value. + +The Python `session` is a wrapper of the C++ `Session` class. For more +information about `Session`, please +see [Design Doc: Session](./session.md). + +### PaddlePaddle Converter + +PaddlePaddle converter automatically converts the IR in the request +(IR and evaluation inputs/targets) from PaddlePaddle Python to new +partitioned IRs and dispatch the new IRs and evaluation inputs/targets +to different PaddlePaddle runtimes. Below are the steps: + +1. Add `feed` OP that feeds the eval inputs, and `fetch` OP that + fetches the eval targets to the IR. + +1. Extract a new computation (sub)graph with `feed` and `fetch` OP as + the boundary. The runtime does not need to run the OP that is not + dependent by the `fetch` OP. + +1. Optimizes the computation graph. + +1. Place the OPs in the graph onto different devices on different + PaddlePaddle runtime according to a placement algorithm and device + constraint specified by the user. + +1. Partition the graph according to runtime boundaries and add `send` / + `recv` OP pair on the runtime boundaries. + +1. Dispatch the partitioned graph to different PaddlePaddle runtimes. + +1. PaddlePaddle runtimes with the `fetch` OP reports evaluation + results back to the converter, the convert reports the evaluation + results back to the PaddlePaddle Python. + +The output IRs will be cached to optimize the conversion latency. + + +#### Placement Algorithm + +Our first implementation will only support "trainer-parameter server" +placement: the parameters, initializers, and optimizers are placed on +the PaddlePaddle runtimes with the parameter server role. And +everything else will be placed on the PaddlePaddle runtimes with the +trainer role. This has the same functionality of our +"trainer-parameter server" architecture of PaddlePaddle v0.10.0, but +is more general and flexible. + +In the future, we will implement the general placement algorithm, +which makes placements according to the input IR, and a model of +device computation time and device communication time. Model +parallelism requires the general placement algorithm. + + +### PaddlePaddle Runtime + +The PaddlePaddle runtime owns multiple devices (e.g., CPUs, GPUs) and +runs the IR. The runtime does not need to do OP placement since it's +already done by the converter. + + +### Local Training Architecture + +The local training architecture will be the same as the distributed +training architecture, the differences are everything runs locally, +and there is just one PaddlePaddle runtime: + + + + +### Training Data + +In PaddlePaddle v0.10.0, training data is typically read +with [data reader](../reader/README.md) from Python. This approach is +no longer efficient when training distributedly since the Python +process no longer runs on the same node with the trainer processes, +the Python reader will need to read from the distributed filesystem +(assuming it has the access) and send to the trainers, doubling the +network traffic. + +When doing distributed training, the user can still use Python data +reader: the training data are sent with `session.eval`. However should +be used for debugging purpose only. The users are encouraged to use +the read data OPs. + + +## References: + +[1] [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf) + +[2] [TensorFlow: A System for Large-Scale Machine Learning](https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf) diff --git a/doc/design/ops/dist_train.md b/doc/design/refactor/parameter_server.md similarity index 100% rename from doc/design/ops/dist_train.md rename to doc/design/refactor/parameter_server.md diff --git a/doc/design/refactor/src/compiler.graffle b/doc/design/refactor/src/compiler.graffle new file mode 100644 index 0000000000000000000000000000000000000000..8cc678fea3c820103e7ce81f7a5d625d6c1d92de Binary files /dev/null and b/doc/design/refactor/src/compiler.graffle differ diff --git a/doc/design/refactor/src/compiler.png b/doc/design/refactor/src/compiler.png new file mode 100644 index 0000000000000000000000000000000000000000..65d34f841afce9756def07dd8ecb9ca44e658bfe Binary files /dev/null and b/doc/design/refactor/src/compiler.png differ diff --git a/doc/design/ops/src/dist-graph.graffle b/doc/design/refactor/src/dist-graph.graffle similarity index 100% rename from doc/design/ops/src/dist-graph.graffle rename to doc/design/refactor/src/dist-graph.graffle diff --git a/doc/design/ops/src/dist-graph.png b/doc/design/refactor/src/dist-graph.png similarity index 100% rename from doc/design/ops/src/dist-graph.png rename to doc/design/refactor/src/dist-graph.png diff --git a/doc/design/refactor/src/distributed_architecture.graffle b/doc/design/refactor/src/distributed_architecture.graffle new file mode 100644 index 0000000000000000000000000000000000000000..f8496e57326c38de7468eb452a7713291d57653c Binary files /dev/null and b/doc/design/refactor/src/distributed_architecture.graffle differ diff --git a/doc/design/refactor/src/distributed_architecture.png b/doc/design/refactor/src/distributed_architecture.png new file mode 100644 index 0000000000000000000000000000000000000000..410c4510c6aab301dec95e6427fe80ac24e105fe Binary files /dev/null and b/doc/design/refactor/src/distributed_architecture.png differ diff --git a/doc/design/ops/src/local-graph.graffle b/doc/design/refactor/src/local-graph.graffle similarity index 100% rename from doc/design/ops/src/local-graph.graffle rename to doc/design/refactor/src/local-graph.graffle diff --git a/doc/design/ops/src/local-graph.png b/doc/design/refactor/src/local-graph.png similarity index 100% rename from doc/design/ops/src/local-graph.png rename to doc/design/refactor/src/local-graph.png diff --git a/doc/design/refactor/src/local_architecture.graffle b/doc/design/refactor/src/local_architecture.graffle new file mode 100644 index 0000000000000000000000000000000000000000..cc7783c45381f25ded0b898649322c81418ad317 Binary files /dev/null and b/doc/design/refactor/src/local_architecture.graffle differ diff --git a/doc/design/refactor/src/local_architecture.png b/doc/design/refactor/src/local_architecture.png new file mode 100644 index 0000000000000000000000000000000000000000..4b999538b7825c805292ee28b5e3256d5543bd09 Binary files /dev/null and b/doc/design/refactor/src/local_architecture.png differ diff --git a/doc/design/refactor/src/paddle-compile.graffle b/doc/design/refactor/src/paddle-compile.graffle new file mode 100644 index 0000000000000000000000000000000000000000..a6348cc3dbcaca923c6e794681b2edb85cb9f8f6 Binary files /dev/null and b/doc/design/refactor/src/paddle-compile.graffle differ diff --git a/doc/design/refactor/src/paddle-compile.png b/doc/design/refactor/src/paddle-compile.png new file mode 100644 index 0000000000000000000000000000000000000000..e0f13d551ac41afaec627a57dea79356464bf0bf Binary files /dev/null and b/doc/design/refactor/src/paddle-compile.png differ diff --git a/doc/design/refactorization.md b/doc/design/refactorization.md new file mode 100644 index 0000000000000000000000000000000000000000..629422e7743af666b42fd69fbff442ce15bef596 --- /dev/null +++ b/doc/design/refactorization.md @@ -0,0 +1,253 @@ +# Design Doc: Refactorization Overview + +The goals of refactoring include: + +1. Making it easy for external contributors to write new elementary computation operations. +1. Making the codebase clean and readable. +1. Designing a new computation representation -- a computation graph of operators and variables. +1. Implementing auto-scalability and auto fault recoverable distributed computing with the help of computation graphs. + +## Computation Graphs + +1. PaddlePaddle represents the computation, training and inference of Deep Learning models, by computation graphs. + + 1. Please refer to [computation graphs](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/graph.md) for a concrete example. + +1. Users write Python programs to describe the graphs and run them (locally or remotely). + +1. A graph is composed of *variables* and *operators*. + +1. The description of graphs must be capable of being serialized/deserialized, so that: + + 1. It can to be sent to the cloud for distributed execution, and + 1. It can be sent to clients for mobile or enterprise deployment. + +1. The Python program does the following steps + + 1. *compilation*: run a Python program to generate a protobuf message representation of the graph and send it to + 1. the C++ library `libpaddle.so` for local execution, + 1. the master process of a distributed training job for training, or + 1. the server process of a Kubernetes serving job for distributed serving. + 1. *execution*: execute the graph by constructing instances of class [`Variable`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24) and [`OperatorBase`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L70), according to the protobuf message. + +## Description and Realization of Computation Graph + +At compile time, the Python program generates a protobuf message representation of the graph, or the description of the graph. + +At runtime, the C++ program realizes the graph and runs it. + +| | Representation (protobuf messages) | Realization (C++ class objects) | +|---|---|---| +|Data|[VarDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107)|[Variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24)| +|Operation|[OpDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35)|[Operator](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64)| +|Block|BlockDesc|Block| + +The word *graph* is interchangeable with *block* in this document. A graph represents computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(`{` and `}`). + +## Compilation and Execution + +1. Run an application Python program to describe the graph. In particular, the Python application program does the following: + + 1. Create `VarDesc` to represent local/intermediate variables, + 1. Create operators and set attributes, + 1. Validate attribute values, + 1. Infer the type and the shape of variables, + 1. Plan memory-reuse for variables, + 1. Generate the backward graph + 1. Optimize the computation graph. + 1. Potentially, split the graph for distributed training. + +1. The invocation of `train` or [`infer`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/inference.py#L108) methods in the application Python program does the following: + + 1. Create a new Scope instance in the [scope hierarchy](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/scope.md) for each run of a block, + 1. realize local variables defined in the BlockDesc message in the new scope, + 1. a scope is similar to the stack frame in programming languages, + + 1. Create an instance of class `Block`, in which, + 1. realize operators in the BlockDesc message, + + 1. Run the Block by calling + 1. `Block::Eval(vector* targets)` for forward and backward computations, or + 1. `Block::Eval(vector* targets)` for optimization. + + +## Intermediate Representation (IR) + +```text +Compile Time -> IR -> Runtime +``` + +### Benefits of IR + +- Optimization + ```text + Compile Time -> IR -> Optimized IR -> Runtime + ``` +- Automatically send partitioned IR to different nodes. + - Automatic Data Parallelism + ```text + Compile Time + |-> Single GPU IR + |-> [trainer-IR-0, trainer-IR-1, pserver-IR] + |-> Node-0 (runs trainer-IR-0) + |-> Node-1 (runs trainer-IR-1) + |-> Node-2 (runs pserver-IR) + ``` + - Automatic Model Parallelism (planned for future) + +--- + +# Operator/OpWithKernel/OpKernel + +![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot) + +--- + +# Operator +![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot) + +* `Operator` is the fundamental building block of the user interface. + * Operator stores input/output variable names, and attributes. + * The `InferShape` interface is used to infer the shape of the output variable shapes based on the shapes of the input variables. + * Use `Run` to compute the `output` variables from the `input` variables. + +--- + +# OpWithKernel/Kernel + +![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot) + +* `OpWithKernel` inherits `Operator`. +* `OpWithKernel` contains a Kernel map. + * `OpWithKernel::Run` get device's kernel, and invoke `OpKernel::Compute`. + * `OpKernelKey` is the map key. Only device place now, but may be data type later. + +--- + +# Why separate Kernel and Operator + +* Separate GPU and CPU code. + * Make Paddle capable of running without GPU. +* Make one operator (which is a user interface) and create many implementations. + * For example, same multiplication op can have different implementations kernels such as FP16 kernel, FP32 kernel, MKL, eigen kernel. +--- + +# Libraries for Kernel development + +* `Eigen::Tensor` contains basic math and element-wise functions. + * Note that `Eigen::Tensor` has broadcast implementation. + * Limit the number of `tensor.device(dev) = ` in your code. +* `thrust::transform` and `std::transform`. + * `thrust` has the same API as C++ standard library. Using `transform`, one can quickly implement customized element-wise kernels. + * `thrust` also has more complex APIs, like `scan`, `reduce`, `reduce_by_key`. +* Hand-writing `GPUKernel` and `CPU` code + * Do not write in header (`.h`) files. CPU Kernel should be in cpp source (`.cc`) and GPU kernels should be in cuda (`.cu`) files. (GCC cannot compile GPU code.) +--- +# Operator Registration + +## Why is registration necessary? +We need a method to build mappings between Op type names and Op classes. + +## How is registration implemented? +Maintaining a map, whose key is the type name and the value is the corresponding Op constructor. + +--- +# The Registry Map + +### `OpInfoMap` + +`op_type(string)` -> `OpInfo` + +`OpInfo`: + +- **`creator`**: The Op constructor. +- **`grad_op_type`**: The type of the gradient Op. +- **`proto`**: The Op's Protobuf, including inputs, outputs and required attributes. +- **`checker`**: Used to check attributes. + +--- +# Related Concepts + +### Op_Maker +It's constructor takes `proto` and `checker`. They are completed during Op_Maker's construction. ([ScaleOpMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)) + +### Register Macros +```cpp +REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, grad_op_class) +REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) +``` + +### USE Macros +Make sure the registration process is executed and linked. + +--- +# Registration Process +1. Write an Op class and its gradient Op class, if required. +2. Write an Op maker class. In the constructor of this class, describe the inputs, outputs and attributes of the operator. +3. Invoke the macro `REGISTER_OP`. This macro will + 1. Call maker class to complete the `proto` and the `checker` + 2. Using the completed `proto` and `checker`, it will add a new key-value pair to the `OpInfoMap` + +4. Invoke the `USE` macro in which the Op is used, to make sure that it is linked. + +--- +# Backward Module (1/2) +### Create Backward Operator +- Mapping from forward Op to backward Op +![backward](https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png) + +--- +# Backward Module (2/2) +### Build Backward Network +- **Input**: graph of forward operators +- **Output**: graph of backward operators +- **Corner cases in construction** + - Shared Variables => insert an `Add` operator to combine gradients + - No Gradient => insert a `fill_zero_grad` operator + - Recursive NetOp => call `Backward` recursively + - RNN Op => recursively call `Backward` on stepnet + + +--- +# Scope, Variable, Tensor + +* `Tensor` is an n-dimension array with type. + * Only dims and data pointers are stored in `Tensor`. + * All operations on `Tensor` are written in `Operator` or global functions. + * Variable length Tensor design [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) +* `Variable` instances are the inputs and the outputs of an operator. Not just `Tensor`. + * `step_scopes` in RNN is a variable and not a tensor. +* `Scope` is where variables are stores. + * map + * `Scope` has a hierarchical structure. The local scope can get variables from its parent scope. + +--- +# Block (in design) +## the difference between original RNNOp and Block +- As an operator is more intuitive than `RNNOp`, +- Offers a new interface `Eval(targets)` to deduce the minimal block to `Run`, +- Fits the compile-time/ runtime separation design paradigm. + - During the compilation, `SymbolTable` stores `VarDesc`s and `OpDesc`s and serialize to a `BlockDesc` + - When graph executes, a Block with `BlockDesc` is passed. It then creates `Op` and `Var` instances and then invokes `Run`. + +--- +# Milestone +- Take Paddle/books as the main line, the requirement of the models motivates framework refactoring, +- Model migration + - Framework development gives **priority support** to model migration, for example, + - the MNIST demo needs a Python interface, + - the RNN models require the framework to support `LoDTensor`. + - Determine some timelines, + - Frequently used Ops need to be migrated first, + - Different models can be migrated in parallel. +- Improve the framework at the same time +- Accept imperfection, concentrate on solving the specific problem at the right price. + +--- +# Control the migration quality +- Compare the performance of migrated models with old ones. +- Follow the google C++ style +- Build the automatic workflow of generating Python/C++ documentations. + - The documentation of layers and ops should be written inside the code. + - Take the documentation quality into account when submitting pull requests. + - Preview the documentations, read and improve them from a user's perspective. diff --git a/doc/design/register_grad_op.md b/doc/design/register_grad_op.md new file mode 100644 index 0000000000000000000000000000000000000000..12b04fb2713d8bb862c08ddb538ddf860bb2983c --- /dev/null +++ b/doc/design/register_grad_op.md @@ -0,0 +1,67 @@ +# Design Doc: Gradient Operators Registration + + +## The Problem Posed + +In our current operator registration mechanism, for each operator, the programmer should register a *gradient operator creator* function, which takes a C++ operator instance, and returns the corresponding gradient instance. + +However, as we decided to separate the *compilation* and *execution* of DL models, we need to reshape the creator to take a protobuf `OpDesc` message, and returns a corresponding message. + +More than that, the new registration mechanism need to support the fact that an operators' gradient computation might be a composition of operators. + +## Current Implementation + +OpInfos store in a association map which key is the operator type. The `grad_op_type` indicate associated gradient operator type. Operator can create gradient operator by `OpInfo::creator_` of gradient. The pseudo code is + +```cpp +struct OpInfo { + std::function creator_; + std::string grad_op_type_; + ... +}; + +map OpInfoMap; + +OperatorBase* CreateGradientOperator(const OperatorBase& op) { + return OpInfoMap.at(op.Type()).creator_(...); +} +``` + +## Proposed Solution + +The mapping relationship between an operator and its gradient operators is a function. The interface of that function is: + +```cpp +// (OpDesc) --> vector +using GradOpDescMaker = std::function(const OpDesc&)>; +``` + +The function take a `OpDesc` of the forward operator and return one or many gradient operator descriptions. + +The `GradOpDescMaker` will be registered in `OpInfo`, to replace `grad_op_type_` field. The `OpInfo` should be + +```cpp +struct OpInfo { + GradOpDescMaker grad_op_maker_; + ... +}; +``` + +The `grad_op_maker_ ` is `nullptr` if the operator does not have associated gradient operators. + +We should chagne register macros at the same time. In the current solution, there is no difference between forwarding operators and backward operators. So `REGISTER_OP` just register one operator. If the `REGISTER_OPERATOR ` contains `OpProtoAndCheckerMaker` and `GradOpDescMaker`, we just list them in the same macro. It can be done by a macro contains `__VA_ARGS__`. + +The user interface should be + +```cpp +vector MinusOpGradMaker(OpDesc) {...} +REGISTER_OPERATOR(minus, MinusOp, MinusOpProtoAndCheckerMaker, SumOpGradMaker); +// Developers can still manually implement gradient operator. +REGISTER_OPERATOR(minus_grad, MinusGradOp); +``` + +The interface of current `REGISTER_OP` macro could not be changed. In `REGISTER_OP`, it will invoke `REGISTER_OPERATOR` two times and generate GradOpDescMaker inside. + +```cpp +REGISTER_OP(minus, MinusOp, MinusOpProtoAndCheckerMaker, minus_grad, MinusGradOp); +``` diff --git a/doc/design/releasing_process.md b/doc/design/releasing_process.md index 0c10e782808ca6456347ec54cb5e921162731ede..62ff8f3229bbbb5bc82e4da29259baffc30c2c87 100644 --- a/doc/design/releasing_process.md +++ b/doc/design/releasing_process.md @@ -1,8 +1,8 @@ -# Paddle发行规范 +# PaddlePaddle发行规范 -Paddle使用git-flow branching model做分支管理,使用[Semantic Versioning](http://semver.org/)标准表示Paddle版本号。 +PaddlePaddle使用git-flow branching model做分支管理,使用[Semantic Versioning](http://semver.org/)标准表示PaddlePaddle版本号。 -Paddle每次发新的版本,遵循以下流程: +PaddlePaddle每次发新的版本,遵循以下流程: 1. 从`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0` 2. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。 @@ -27,14 +27,14 @@ Paddle每次发新的版本,遵循以下流程: 需要注意的是: -* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试Paddle的行为。 +* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试PaddlePaddle的行为。 * 在`release/版本号`分支存在的时候,如果有bugfix的行为,需要将bugfix的分支同时merge到`master`, `develop`和`release/版本号`这三个分支。 -# Paddle 分支规范 +# PaddlePaddle 分支规范 -Paddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 +PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 -* Paddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中: +* PaddlePaddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中: * `master`分支为稳定(stable branch)版本分支。每一个`master`分支的版本都是经过单元测试和回归测试的版本。 * `develop`分支为开发(develop branch)版本分支。每一个`develop`分支的版本都经过单元测试,但并没有经过回归测试。 * `release/版本号`分支为每一次Release时建立的临时分支。在这个阶段的代码正在经历回归测试。 @@ -42,18 +42,18 @@ Paddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branch * 其他用户的fork版本库并不需要严格遵守[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,但所有fork的版本库的所有分支都相当于特性分支。 * 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支 * 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。 - * 当功能分支开发完毕后,向Paddle的主版本库提交`Pull Reuqest`,进而进行代码评审。 + * 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。 * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。 * BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master`、`develop`与可能有的`release/版本号`分支,同时提起`Pull Request`。 -# Paddle回归测试列表 +# PaddlePaddle回归测试列表 -本列表说明Paddle发版之前需要测试的功能点。 +本列表说明PaddlePaddle发版之前需要测试的功能点。 -## Paddle Book中所有章节 +## PaddlePaddle Book中所有章节 -Paddle每次发版本首先要保证Paddle Book中所有章节功能的正确性。功能的正确性包括验证Paddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。 +PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。 | | 新手入门章节 | 识别数字 | 图像分类 | 词向量 | 情感分析 | 语意角色标注 | 机器翻译 | 个性化推荐 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | diff --git a/doc/design/scope.md b/doc/design/scope.md index c9e0be716b606f6c7bf0373e0c6e632647e07a6f..b1f9bb4378eb5ec6926f1e53f7c1f4fd5674064c 100644 --- a/doc/design/scope.md +++ b/doc/design/scope.md @@ -17,7 +17,7 @@ Scope is an association of a name to variable. All variables belong to `Scope`. 1. Scope only contains a map of a name to variable. - All parameters, data, states in a Net should be variables and stored inside a scope. Each op should get inputs and outputs to do computation from a scope, such as data buffer, state(momentum) etc. + All parameters, data, states in a Net should be variables and stored inside a scope. Each op should get inputs and outputs to do computation from a scope, such as data buffer, state (momentum) etc. 1. Variable can only be created by Scope and a variable can only be got from Scope. User cannot create or get a variable outside a scope. This is a constraints of our framework, and will keep our framework simple and clear. @@ -32,7 +32,7 @@ Scope is an association of a name to variable. All variables belong to `Scope`. 1. Scope should destruct all Variables inside it when itself is destructed. User can never store `Variable` pointer somewhere else. - Because Variable can only be got from Scope. When destroying Scope, we also need to destroy all the Variables in it. If user store `Variable` pointer to private data member or some global variable, the pointer will be a invalid pointer when associated `Scope` is destroyed. + Because Variable can only be got from Scope. When destroying Scope, we also need to destroy all the Variables in it. If user store `Variable` pointer to private data member or some global variable, the pointer will be an invalid pointer when associated `Scope` is destroyed. ```cpp class Scope { @@ -50,7 +50,7 @@ class Scope { Just like [scope](https://en.wikipedia.org/wiki/Scope_(computer_science)) in programming languages, `Scope` in the neural network can also be a local scope. There are two attributes about local scope. -1. We can create local variables in a local scope. When that local scope are destroyed, all local variables should also be destroyed. +1. We can create local variables in a local scope. When that local scope is destroyed, all local variables should also be destroyed. 2. Variables in a parent scope can be retrieved from local scopes of that parent scope, i.e., when user get a variable from a scope, it will try to search this variable in current scope. If there is no such variable in the local scope, `scope` will keep searching from its parent, until the variable is found or there is no parent. ```cpp @@ -121,4 +121,4 @@ Also, as the parent scope is a `shared_ptr`, we can only `Create()` a scope shar ## Orthogonal interface -`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `NewVar` will return a `Error` when there is a name conflict locally. Combine `FindVar` and `NewVar`, we can implement `NewVar` easily. +`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `NewVar` will return an `Error` when there is a name conflict locally. Combine `FindVar` and `NewVar`, we can implement `NewVar` easily. diff --git a/doc/design/simple_op_design.md b/doc/design/simple_op_design.md index fded4a68612396a262121a5a886a8ae573dfa662..c7aeed7f9b4637e1c29d530f37b42d12500af82f 100644 --- a/doc/design/simple_op_design.md +++ b/doc/design/simple_op_design.md @@ -6,9 +6,9 @@ The Interaction between Python and C++ can be simplified as two steps: 1. C++ tells Python how many Ops there are, and what parameter do users need to offer to initialize a new Op. Python then builds API for each Op at compile time. -2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ fo finish Op construction task. +2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ for finishing the Op construction task. -### Message form C++ to Python +### Message from C++ to Python We define a Protobuf message class `OpProto` to hold message needed in the first step. What should an `OpProto` contain? This question is equivalent to “What message do we need to offer, to build a Python API which is legal and user oriented and can use to describe a whole Op.” @@ -193,7 +193,7 @@ def fc_layer(input, size, with_bias, activation): elif: # ... return act_output; -``` +``` ### Low Leval API diff --git a/doc/design/tensor_array.md b/doc/design/tensor_array.md new file mode 100644 index 0000000000000000000000000000000000000000..a0419ec002159893b035fae1300fce489e68936a --- /dev/null +++ b/doc/design/tensor_array.md @@ -0,0 +1,73 @@ +# Design for TensorArray +TensorArray as a new concept is borrowed from TensorFlow, +it is meant to be used with dynamic iteration primitives such as `while_loop` and `map_fn`. + +This concept can be used to support our new design of dynamic operations, and help to refactor some existing variant-sentence-related layers, +such as `RecurrentGradientMachine`. + +In [our design for dynamic RNN](https://github.com/PaddlePaddle/Paddle/pull/4401), +`TensorArray` is used to segment inputs and store states in all time steps. +By providing some methods similar to a C++ array, +the definition of some state-based dynamic models such as RNN could be more natural and highly flexible. + +## Dynamic-Related Methods +Some basic methods should be proposed as follows: + +### stack() +Pack the values in a `TensorArray` into a tensor with rank one higher than each tensor in `values`. +### unstack(axis=0) +Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors. +### concat() +Return the values in the `TensorArray` as a concatenated Tensor. +### write(index, value, data_shared=true) +Write value into index of the TensorArray. +### read(index) +Read the value at location `index` in the `TensorArray`. +### size() +Return the number of values. + +## LoDTensor-related Supports +The `RecurrentGradientMachine` in Paddle serves as a flexible RNN layer; it takes variant length sequences as input, +because each step of RNN could only take a tensor-represented batch of data as input, +some preprocess should be taken on the inputs such as sorting the sentences by their length in descending order and cut each word and pack to new batches. + +Such cut-like operations can be embedded into `TensorArray` as general methods called `unpack` and `pack`. + +With these two methods, a variant-sentence-RNN can be implemented like + +```c++ +// input is the varient-length data +LodTensor sentence_input(xxx); +TensorArray ta; +Tensor indice_map; +Tensor boot_state = xxx; // to initialize rnn's first state +TensorArray::unpack(input, 1/*level*/, true/*sort_by_length*/, &ta, &indice_map); +TessorArray step_outputs; +TensorArray states; + +for (int step = 0; step = ta.size(); step++) { + auto state = states.read(step); + // rnnstep is a function which acts like a step of RNN + auto step_input = ta.read(step); + auto step_output = rnnstep(step_input, state); + step_outputs.write(step_output, true/*data_shared*/); +} + +// rnn_output is the final output of an rnn +LoDTensor rnn_output = ta.pack(ta, indice_map); +``` +the code above shows that by embedding the LoDTensor-related preprocess operations into `TensorArray`, +the implementation of a RNN that supports varient-length sentences is far more concise than `RecurrentGradientMachine` because the latter mixes all the codes together, hard to read and extend. + + +some details are as follows. + +### unpack(level, sort_by_length) +Split LodTensor in some `level` and generate batches, if set `sort_by_length`, will sort by length. + +Returns: + +- a new `TensorArray`, whose values are LodTensors and represents batches of data. +- an int32 Tensor, which stores the map from the new batch's indices to original LoDTensor +### pack(level, indices_map) +Recover the original LoD-arranged LoDTensor with the values in a `TensorArray` and `level` and `indices_map`. diff --git a/doc/design/var_desc.md b/doc/design/var_desc.md index 86a95c10d5729704f86c285c9fe92db0cf2158be..bfbbdd0578ebc69ea4b49ade9b041573a9e9ad55 100644 --- a/doc/design/var_desc.md +++ b/doc/design/var_desc.md @@ -1,7 +1,7 @@ ## Background PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime. -PaddlePaddle use proto message to describe compile time graph for +PaddlePaddle use proto message to describe compile time graph because 1. Computation graph should be able to be saved to a file. 1. In distributed training, the graph will be serialized and send to multiple workers. diff --git a/doc/faq/build_and_install/index_cn.rst b/doc/faq/build_and_install/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..f1677e216f31d79b53ac29a0afbf6fbb886a0dcd --- /dev/null +++ b/doc/faq/build_and_install/index_cn.rst @@ -0,0 +1,111 @@ +################### +编译安装与单元测试 +################### + +.. contents:: + +1. 运行Docker GPU镜像出现 "CUDA driver version is insufficient" +---------------------------------------------------------------- + +用户在使用PaddlePaddle GPU的Docker镜像的时候,常常出现 `Cuda Error: CUDA driver version is insufficient for CUDA runtime version`, 原因在于没有把机器上CUDA相关的驱动和库映射到容器内部。 +具体的解决方法是: + +.. code-block:: bash + + $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" + $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') + $ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu + +更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 `_ 。 + + +2. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致 +---------------------------------------------------------------- + +这是目前CMake寻找Python的逻辑存在缺陷,如果系统安装了多个Python版本,CMake找到的Python库和Python解释器版本可能有不一致现象,导致编译PaddlePaddle失败。正确的解决方法是, +用户强制指定特定的Python版本,具体操作如下: + + .. code-block:: bash + + cmake .. -DPYTHON_EXECUTABLE= -DPYTHON_LIBRARY= -DPYTHON_INCLUDE_DIR= + +用户需要指定本机上Python的路径:````, ````, ```` + +3. CMake源码编译,Paddle版本号为0.0.0 +-------------------------------------- + +如果运行 :code:`paddle version`, 出现 :code:`PaddlePaddle 0.0.0`;或者运行 :code:`cmake ..`,出现 + +.. code-block:: bash + + CMake Warning at cmake/version.cmake:20 (message): + Cannot add paddle version from git tag + +那么用户需要拉取所有的远程分支到本机,命令为 :code:`git fetch upstream`,然后重新cmake即可。 + +4. paddlepaddle\*.whl is not a supported wheel on this platform. +------------------------------------------------------------------------ + +出现这个问题的主要原因是,没有找到和当前系统匹配的paddlepaddle安装包。最新的paddlepaddle python安装包支持Linux x86_64和MacOS 10.12操作系统,并安装了python 2.7和pip 9.0.1。 + +更新 :code:`pip` 包的方法是\: + +.. code-block:: bash + + pip install --upgrade pip + +如果还不行,可以执行 :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` 获取当前系统支持的python包的后缀, +并对比是否和正在安装的后缀一致。 + +如果系统支持的是 :code:`linux_x86_64` 而安装包是 :code:`manylinux1_x86_64` ,需要升级pip版本到最新; +如果系统支持 :code:`manylinux1_x86_64` 而安装包(本地)是 :code:`linux_x86_64` ,可以重命名这个whl包为 :code:`manylinux1_x86_64` 再安装。 + +5. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2 +------------------------------------------------------------------------------------------ +先查看一下是否曾经安装过paddle v1版本,有的话需要先卸载: + +pip uninstall py_paddle paddle + +然后安装paddle的python环境, 在build目录下执行 + +pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl + +6. 遇到“非法指令”或者是“illegal instruction” +-------------------------------------------- + +PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二进制发行版可能会导致这种错误,请选择正确的版本。 + +7. python相关的单元测试都过不了 +-------------------------------- + +如果出现以下python相关的单元测试都过不了的情况: + +.. code-block:: bash + + 24 - test_PyDataProvider (Failed) + 26 - test_RecurrentGradientMachine (Failed) + 27 - test_NetworkCompare (Failed) + 28 - test_PyDataProvider2 (Failed) + 32 - test_Prediction (Failed) + 33 - test_Compare (Failed) + 34 - test_Trainer (Failed) + 35 - test_TrainerOnePass (Failed) + 36 - test_CompareTwoNets (Failed) + 37 - test_CompareTwoOpts (Failed) + 38 - test_CompareSparse (Failed) + 39 - test_recurrent_machine_generation (Failed) + 40 - test_PyDataProviderWrapper (Failed) + 41 - test_config_parser (Failed) + 42 - test_swig_api (Failed) + 43 - layers_test (Failed) + +并且查询PaddlePaddle单元测试的日志,提示: + +.. code-block:: bash + + paddle package is already in your PYTHONPATH. But unittest need a clean environment. + Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'. + +解决办法是: + +* 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包,使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面,单元测试会引用site-packages里面的python包,而不是源码目录里 :code:`/python` 目录下的python包。同时,即便设置 :code:`PYTHONPATH` 到 :code:`/python` 也没用,因为python的搜索路径是优先已经安装的python包。 diff --git a/doc/faq/cluster/index_cn.rst b/doc/faq/cluster/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..e59c1e1a54a0c876d1e6e89f88030de59fb9fc1a --- /dev/null +++ b/doc/faq/cluster/index_cn.rst @@ -0,0 +1,17 @@ +############### +集群训练与预测 +############### + +.. contents:: + +1. 集群多节点训练,日志中保存均为网络通信类错误 +------------------------------------------------ + +集群多节点训练,日志报错为网络通信类错误,比如 :code:`Connection reset by peer` 等。 +此类报错通常是由于某一个节点的错误导致这个节点的训练进程退出,从而引发其他节点无法连接导致,可以参考下面的步骤排查: + +* 从 :code:`train.log` , :code:`server.log` 找到最早报错的地方,查看是否是其他错误引发的报错(比如FPE,内存不足,磁盘空间不足等)。 + +* 如果发现最早的报错就是网络通信的问题,很有可能是非独占方式执行导致的端口冲突,可以联系OP,看当前MPI集群是否支持resource=full参数提交,如果支持增加此参数提交,并更换job 端口。 + +* 如果当前MPI集群并不支持任务独占模式,可以联系OP是否可以更换集群或升级当前集群。 diff --git a/doc/faq/index_cn.rst b/doc/faq/index_cn.rst index 138efb566e43fa71952f057829c2afbca96cadc9..9929767cac212237b3e2c3a547ba9a3c9d5f0979 100644 --- a/doc/faq/index_cn.rst +++ b/doc/faq/index_cn.rst @@ -1,323 +1,11 @@ -#################### FAQ -#################### +==== -.. contents:: +.. toctree:: + :maxdepth: 1 -1. 如何减少内存占用 ---------------------------------- - -神经网络的训练本身是一个非常消耗内存和显存的工作,经常会消耗数10GB的内存和数GB的显存。 -PaddlePaddle的内存占用主要分为如下几个方面\: - -* DataProvider缓冲池内存(只针对内存) -* 神经元激活内存(针对内存和显存) -* 参数内存 (针对内存和显存) -* 其他内存杂项 - -其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,暂不考虑在内。 - -减少DataProvider缓冲池内存 -++++++++++++++++++++++++++ - -PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即 - -.. graphviz:: - - digraph { - rankdir=LR; - 数据文件 -> 内存池 -> PaddlePaddle训练 - } - -所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这 -个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的, -那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为 - -.. literalinclude:: src/reduce_min_pool_size.py - -这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 :ref:`api_pydataprovider2` 。 - -神经元激活内存 -++++++++++++++ - -神经网络在训练的时候,会对每一个激活暂存一些数据,如神经元激活值等。 -在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系, -一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含 -的时间步信息成正比。 - -所以做法可以有两种: - -* 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。 -* 减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200, - 但是突然有一个10000长的序列,就很容易导致内存超限,特别是在LSTM等RNN中。 - -参数内存 -++++++++ - -PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。 -例如使用 :code:`adadelta` 算法,则需要使用等于权重参数规模大约5倍的内存。举例,如果参数保存下来的模型目录 -文件为 :code:`100M`, 那么该优化算法至少需要 :code:`500M` 的内存。 - -可以考虑使用一些优化算法,例如 :code:`momentum`。 - -2. 如何加速PaddlePaddle的训练速度 ---------------------------------- - -加速PaddlePaddle训练可以考虑从以下几个方面\: - -* 减少数据载入的耗时 -* 加速训练速度 -* 利用分布式训练驾驭更多的计算资源 - -减少数据载入的耗时 -++++++++++++++++++ - -使用\ :code:`pydataprovider`\ 时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。 -:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。 - -.. literalinclude:: src/reduce_min_pool_size.py - -同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。 - - -加速训练速度 -++++++++++++ - -PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`sparse_binary_vector` 、 :code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True` - -这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\: - -使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\: - -.. literalinclude:: src/word2vec_dataprovider.py - -这个任务的配置为\: - -.. literalinclude:: src/word2vec_config.py - - -利用更多的计算资源 -++++++++++++++++++ - -利用更多的计算资源可以分为一下几个方式来进行\: - -* 单机CPU训练 - - * 使用多线程训练。设置命令行参数 :code:`trainer_count`。 - -* 单机GPU训练 - - * 使用显卡训练。设置命令行参数 :code:`use_gpu`。 - * 使用多块显卡训练。设置命令行参数 :code:`use_gpu` 和 :code:`trainer_count` 。 - -* 多机训练 - - * 请参考 :ref:`cluster_train` 。 - - -3. 遇到“非法指令”或者是“illegal instruction” --------------------------------------------- - -PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二进制发行版可能会导致这种错误,请选择正确的版本。 - -4. 如何选择SGD算法的学习率 --------------------------- - -在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。 - -通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。 - -如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。 - - -5. 如何初始化参数 ------------------ - -默认情况下,PaddlePaddle使用均值0,标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式\: - -* 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)` -* 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)` - -比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。 - -.. code-block:: python - - hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0), - bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0)) - -上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]` 的均匀分布。 - -6. 如何共享参数 ---------------- - -PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是使得要共享的参数使用同样的 :code:`ParamAttr` 对象。 - -简单的全连接网络,参数共享的配置示例为\: - -.. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py - -这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。 - -7. \*-cp27mu-linux_x86_64.whl is not a supported wheel on this platform. ------------------------------------------------------------------------- - -出现这个问题的主要原因是,系统编译wheel包的时候,使用的 :code:`wheel` 包是最新的, -而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。 -更新 :code:`pip` 包的方法是\: - -.. code-block:: bash - - pip install --upgrade pip - -8. python相关的单元测试都过不了 --------------------------------- - -如果出现以下python相关的单元测试都过不了的情况: - -.. code-block:: bash - - 24 - test_PyDataProvider (Failed) - 26 - test_RecurrentGradientMachine (Failed) - 27 - test_NetworkCompare (Failed) - 28 - test_PyDataProvider2 (Failed) - 32 - test_Prediction (Failed) - 33 - test_Compare (Failed) - 34 - test_Trainer (Failed) - 35 - test_TrainerOnePass (Failed) - 36 - test_CompareTwoNets (Failed) - 37 - test_CompareTwoOpts (Failed) - 38 - test_CompareSparse (Failed) - 39 - test_recurrent_machine_generation (Failed) - 40 - test_PyDataProviderWrapper (Failed) - 41 - test_config_parser (Failed) - 42 - test_swig_api (Failed) - 43 - layers_test (Failed) - -并且查询PaddlePaddle单元测试的日志,提示: - -.. code-block:: bash - - paddle package is already in your PYTHONPATH. But unittest need a clean environment. - Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'. - -解决办法是: - -* 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包,使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面,单元测试会引用site-packages里面的python包,而不是源码目录里 :code:`/python` 目录下的python包。同时,即便设置 :code:`PYTHONPATH` 到 :code:`/python` 也没用,因为python的搜索路径是优先已经安装的python包。 - - -9. 运行Docker GPU镜像出现 "CUDA driver version is insufficient" ----------------------------------------------------------------- - -用户在使用PaddlePaddle GPU的Docker镜像的时候,常常出现 `Cuda Error: CUDA driver version is insufficient for CUDA runtime version`, 原因在于没有把机器上CUDA相关的驱动和库映射到容器内部。 -具体的解决方法是: - -.. code-block:: bash - - $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" - $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') - $ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu - -更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 `_ 。 - - -10. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致 ----------------------------------------------------------------- - -这是目前CMake寻找Python的逻辑存在缺陷,如果系统安装了多个Python版本,CMake找到的Python库和Python解释器版本可能有不一致现象,导致编译PaddlePaddle失败。正确的解决方法是, -用户强制指定特定的Python版本,具体操作如下: - - .. code-block:: bash - - cmake .. -DPYTHON_EXECUTABLE= -DPYTHON_LIBRARY= -DPYTHON_INCLUDE_DIR= - -用户需要指定本机上Python的路径:````, ````, ```` - -11. CMake源码编译,Paddle版本号为0.0.0 --------------------------------------- - -如果运行 :code:`paddle version`, 出现 :code:`PaddlePaddle 0.0.0`;或者运行 :code:`cmake ..`,出现 - -.. code-block:: bash - - CMake Warning at cmake/version.cmake:20 (message): - Cannot add paddle version from git tag - -那么用户需要拉取所有的远程分支到本机,命令为 :code:`git fetch upstream`,然后重新cmake即可。 - -12. A protocol message was rejected because it was too big ----------------------------------------------------------- - -如果在训练NLP相关模型时,出现以下错误: - -.. code-block:: bash - - [libprotobuf ERROR google/protobuf/io/coded_stream.cc:171] A protocol message was rejected because it was too big (more than 67108864 bytes). To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h. - F1205 14:59:50.295174 14703 TrainerConfigHelper.cpp:59] Check failed: m->conf.ParseFromString(configProtoStr) - -可能的原因是:传给dataprovider的某一个args过大,一般是由于直接传递大字典导致的。错误的define_py_data_sources2类似: - -.. code-block:: python - - src_dict = dict() - for line_count, line in enumerate(open(src_dict_path, "r")): - src_dict[line.strip()] = line_count - - define_py_data_sources2( - train_list, - test_list, - module="dataprovider", - obj="process", - args={"src_dict": src_dict}) - -解决方案是:将字典的地址作为args传给dataprovider,然后在dataprovider里面根据该地址加载字典。即define_py_data_sources2应改为: - -.. code-block:: python - - define_py_data_sources2( - train_list, - test_list, - module="dataprovider", - obj="process", - args={"src_dict_path": src_dict_path}) - -完整源码可参考 `seqToseq `_ 示例。 - -13. 如何指定GPU设备 -------------------- - -例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU: - -* 方式1:通过 `CUDA_VISIBLE_DEVICES `_ 环境变量来指定特定的GPU。 - -.. code-block:: bash - - env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2 - -* 方式2:通过命令行参数 ``--gpu_id`` 指定。 - -.. code-block:: bash - - paddle train --use_gpu=true --trainer_count=2 --gpu_id=2 - - -14. 训练过程中出现 :code:`Floating point exception`, 训练因此退出怎么办? ------------------------------------------------------------------------- - -Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异常(即训练过程中出现NaN或者Inf),立刻退出。浮点异常通常的原因是浮点数溢出、除零等问题。 -主要原因包括两个方面: - -* 训练过程中参数或者训练过程中的梯度尺度过大,导致参数累加,乘除等时候,导致了浮点数溢出。 -* 模型一直不收敛,发散到了一个数值特别大的地方。 -* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。 - -主要的解决办法是减小学习律或者对数据进行归一化处理。 - -15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2 ------------------------------------------------------------------------- -先查看一下是否曾经安装过paddle v1版本,有的话需要先卸载: - -pip uninstall py_paddle paddle - -然后安装paddle的python环境, 在build目录下执行 - -pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl + build_and_install/index_cn.rst + model/index_cn.rst + parameter/index_cn.rst + local/index_cn.rst + cluster/index_cn.rst diff --git a/doc/faq/local/index_cn.rst b/doc/faq/local/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..75c4ba028e497e29e9030a86514348726d9c0a80 --- /dev/null +++ b/doc/faq/local/index_cn.rst @@ -0,0 +1,213 @@ +############### +本地训练与预测 +############### + +.. contents:: + +1. 如何减少内存占用 +------------------- + +神经网络的训练本身是一个非常消耗内存和显存的工作,经常会消耗数10GB的内存和数GB的显存。 +PaddlePaddle的内存占用主要分为如下几个方面\: + +* DataProvider缓冲池内存(只针对内存) +* 神经元激活内存(针对内存和显存) +* 参数内存 (针对内存和显存) +* 其他内存杂项 + +其中,其他内存杂项是指PaddlePaddle本身所用的一些内存,包括字符串分配,临时变量等等,暂不考虑在内。 + +减少DataProvider缓冲池内存 +++++++++++++++++++++++++++ + +PyDataProvider使用的是异步加载,同时在内存里直接随即选取数据来做Shuffle。即 + +.. graphviz:: + + digraph { + rankdir=LR; + 数据文件 -> 内存池 -> PaddlePaddle训练 + } + +所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这 +个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的, +那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为 + +.. literalinclude:: src/reduce_min_pool_size.py + +这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 :ref:`api_pydataprovider2` 。 + +神经元激活内存 +++++++++++++++ + +神经网络在训练的时候,会对每一个激活暂存一些数据,如神经元激活值等。 +在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系, +一是batch size,另一个是每条序列(Sequence)长度。所以,其实也是和每个mini-batch中包含 +的时间步信息成正比。 + +所以做法可以有两种: + +* 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数,减小batch size可能会对训练结果产生影响。 +* 减小序列的长度,或者直接扔掉非常长的序列。比如,一个数据集大部分序列长度是100-200, + 但是突然有一个10000长的序列,就很容易导致内存超限,特别是在LSTM等RNN中。 + +参数内存 +++++++++ + +PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。 +例如使用 :code:`adadelta` 算法,则需要使用等于权重参数规模大约5倍的内存。举例,如果参数保存下来的模型目录 +文件为 :code:`100M`, 那么该优化算法至少需要 :code:`500M` 的内存。 + +可以考虑使用一些优化算法,例如 :code:`momentum`。 + +2. 如何加速训练速度 +------------------- + +加速PaddlePaddle训练可以考虑从以下几个方面\: + +* 减少数据载入的耗时 +* 加速训练速度 +* 利用分布式训练驾驭更多的计算资源 + +减少数据载入的耗时 +++++++++++++++++++ + +使用\ :code:`pydataprovider`\ 时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。 +:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。 + +.. literalinclude:: src/reduce_min_pool_size.py + +同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。 + + +加速训练速度 +++++++++++++ + +PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`sparse_binary_vector` 、 :code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时,与这个训练数据交互的Layer,需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True` + +这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\: + +使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\: + +.. literalinclude:: src/word2vec_dataprovider.py + +这个任务的配置为\: + +.. literalinclude:: src/word2vec_config.py + + +利用更多的计算资源 +++++++++++++++++++ + +利用更多的计算资源可以分为一下几个方式来进行\: + +* 单机CPU训练 + + * 使用多线程训练。设置命令行参数 :code:`trainer_count`。 + +* 单机GPU训练 + + * 使用显卡训练。设置命令行参数 :code:`use_gpu`。 + * 使用多块显卡训练。设置命令行参数 :code:`use_gpu` 和 :code:`trainer_count` 。 + +* 多机训练 + + * 请参考 :ref:`cluster_train` 。 + +3. 如何指定GPU设备 +------------------ + +例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU: + +* 方式1:通过 `CUDA_VISIBLE_DEVICES `_ 环境变量来指定特定的GPU。 + +.. code-block:: bash + + env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2 + +* 方式2:通过命令行参数 ``--gpu_id`` 指定。 + +.. code-block:: bash + + paddle train --use_gpu=true --trainer_count=2 --gpu_id=2 + + +4. 训练过程中出现 :code:`Floating point exception`, 训练因此退出怎么办? +------------------------------------------------------------------------ + +Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异常(即训练过程中出现NaN或者Inf),立刻退出。浮点异常通常的原因是浮点数溢出、除零等问题。 +主要原因包括两个方面: + +* 训练过程中参数或者训练过程中的梯度尺度过大,导致参数累加,乘除等时候,导致了浮点数溢出。 +* 模型一直不收敛,发散到了一个数值特别大的地方。 +* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。 + +这里有两种有效的解决方法: + +1. 设置 :code:`gradient_clipping_threshold` 参数,示例代码如下: + +.. code-block:: python + +optimizer = paddle.optimizer.RMSProp( + learning_rate=1e-3, + gradient_clipping_threshold=10.0, + regularization=paddle.optimizer.L2Regularization(rate=8e-4)) + +具体可以参考 `nmt_without_attention `_ 示例。 + +2. 设置 :code:`error_clipping_threshold` 参数,示例代码如下: + +.. code-block:: python + +decoder_inputs = paddle.layer.fc( + act=paddle.activation.Linear(), + size=decoder_size * 3, + bias_attr=False, + input=[context, current_word], + layer_attr=paddle.attr.ExtraLayerAttribute( + error_clipping_threshold=100.0)) + +完整代码可以参考示例 `machine translation `_ 。 + +两种方法的区别: + +1. 两者都是对梯度的截断,但截断时机不同,前者在 :code:`optimzier` 更新网络参数时应用;后者在激活函数反向计算时被调用; +2. 截断对象不同:前者截断可学习参数的梯度,后者截断回传给前层的梯度; + +除此之外,还可以通过减小学习律或者对数据进行归一化处理来解决这类问题。 + +5. 如何调用 infer 接口输出多个layer的预测结果 +----------------------------------------------- + +* 将需要输出的层作为 :code:`paddle.inference.Inference()` 接口的 :code:`output_layer` 参数输入,代码如下: + +.. code-block:: python + + inferer = paddle.inference.Inference(output_layer=[layer1, layer2], parameters=parameters) + +* 指定要输出的字段进行输出。以输出 :code:`value` 字段为例,代码如下: + +.. code-block:: python + + out = inferer.infer(input=data_batch, field=["value"]) + +需要注意的是: + +* 如果指定了2个layer作为输出层,实际上需要的输出结果是两个矩阵; +* 假设第一个layer的输出A是一个 N1 * M1 的矩阵,第二个 Layer 的输出B是一个 N2 * M2 的矩阵; +* paddle.v2 默认会将A和B 横向拼接,当N1 和 N2 大小不一样时,会报如下的错误: + +.. code-block:: python + + ValueError: all the input array dimensions except for the concatenation axis must match exactly + +多个层的输出矩阵的高度不一致导致拼接失败,这种情况常常发生在: + +* 同时输出序列层和非序列层; +* 多个输出层处理多个不同长度的序列; + +此时可以在调用infer接口时通过设置 :code:`flatten_result=False` , 跳过“拼接”步骤,来解决上面的问题。这时,infer接口的返回值是一个python list: + +* list 中元素的个数等于网络中输出层的个数; +* list 中每个元素是一个layer的输出结果矩阵,类型是numpy的ndarray; +* 每一个layer输出矩阵的高度,在非序列输入时:等于样本数;序列输入时等于:输入序列中元素的总数;宽度等于配置中layer的size; diff --git a/doc/faq/src/reduce_min_pool_size.py b/doc/faq/local/src/reduce_min_pool_size.py similarity index 100% rename from doc/faq/src/reduce_min_pool_size.py rename to doc/faq/local/src/reduce_min_pool_size.py diff --git a/doc/faq/src/word2vec_config.py b/doc/faq/local/src/word2vec_config.py similarity index 100% rename from doc/faq/src/word2vec_config.py rename to doc/faq/local/src/word2vec_config.py diff --git a/doc/faq/src/word2vec_dataprovider.py b/doc/faq/local/src/word2vec_dataprovider.py similarity index 100% rename from doc/faq/src/word2vec_dataprovider.py rename to doc/faq/local/src/word2vec_dataprovider.py diff --git a/doc/faq/model/index_cn.rst b/doc/faq/model/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..b47bbe05bdb39d1ade9434a7e54bf6ca88a91cc9 --- /dev/null +++ b/doc/faq/model/index_cn.rst @@ -0,0 +1,69 @@ +######### +模型配置 +######### + +.. contents:: + +1. 出现 :code:`Duplicated layer name` 错误怎么办 +-------------------------------------------------- + +出现该错误的原因一般是用户对不同layer的参数 :code:`name` 设置了相同的取值。遇到该错误时,先找出参数 :code:`name` 取值相同的layer,然后将这些layer的参数 :code:`name` 设置为不同的值。 + +2. :code:`paddle.layer.memory` 的参数 :code:`name` 如何使用 +------------------------------------------------------------- + +* :code:`paddle.layer.memory` 用于获取特定layer上一时间步的输出,该layer是通过参数 :code:`name` 指定,即,:code:`paddle.layer.memory` 会关联参数 :code:`name` 取值相同的layer,并将该layer上一时间步的输出作为自身当前时间步的输出。 + +* PaddlePaddle的所有layer都有唯一的name,用户通过参数 :code:`name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。而 :code:`paddle.layer.memory` 不是真正的layer,其name由参数 :code:`memory_name` 设定,当用户没有显式设定时,PaddlePaddle会自动设定。:code:`paddle.layer.memory` 的参数 :code:`name` 用于指定其要关联的layer,需要用户显式设定。 + +3. 两种使用 drop_out 的方法有何区别 +------------------------------------ + +* 在PaddlePaddle中使用dropout有两种方式 + + * 在相应layer的 :code:`layer_atter` 设置 :code:`drop_rate`,以 :code:`paddle.layer.fc` 为例,代码如下: + + .. code-block:: python + + fc = paddle.layer.fc(input=input, layer_attr=paddle.attr.ExtraLayerAttribute(drop_rate=0.5)) + + * 使用 :code:`paddle.layer.dropout`,以 :code:`paddle.layer.fc` 为例,代码如下: + + .. code-block:: python + + fc = paddle.layer.fc(input=input) + drop_fc = paddle.layer.dropout(input=fc, dropout_rate=0.5) + +* :code:`paddle.layer.dropout` 实际上使用了 :code:`paddle.layer.add_to`,并在该layer里采用第一种方式设置 :code:`drop_rate` 来使用dropout的。这种方式对内存消耗较大。 + +* PaddlePaddle在激活函数里实现dropout,而不是在layer里实现。 + +* :code:`paddle.layer.lstmemory`、:code:`paddle.layer.grumemory`、:code:`paddle.layer.recurrent` 不是通过一般的方式来实现对输出的激活,所以不能采用第一种方式在这几个layer里设置 :code:`drop_rate` 来使用dropout。若要对这几个layer使用dropout,可采用第二种方式,即使用 :code:`paddle.layer.dropout`。 + +4. 不同的 recurrent layer 的区别 +---------------------------------- +以LSTM为例,在PaddlePaddle中包含以下 recurrent layer: + +* :code:`paddle.layer.lstmemory` +* :code:`paddle.networks.simple_lstm` +* :code:`paddle.networks.lstmemory_group` +* :code:`paddle.networks.bidirectional_lstm` + +按照具体实现方式可以归纳为2类: + +1. 由 recurrent_group 实现的 recurrent layer: + + * 用户在使用这一类recurrent layer时,可以访问由recurrent unit在一个时间步内计算得到的中间值(例如:hidden states, memory cells等); + * 上述的 :code:`paddle.networks.lstmemory_group` 是这一类的 recurrent layer ; + +2. 将recurrent layer作为一个整体来实现: + + * 用户在使用这一类recurrent layer,只能访问它们的输出值; + * 上述的 :code:`paddle.networks.lstmemory_group` 、 :code:`paddle.networks.simple_lstm` 和 :code:`paddle.networks.bidirectional_lstm` 属于这一类的实现; + +将recurrent layer作为一个整体来实现, 能够针对CPU和GPU的计算做更多优化, 所以相比于recurrent group的实现方式, 第二类 recurrent layer 计算效率更高。 在实际应用中,如果用户不需要访问LSTM的中间变量,而只需要获得recurrent layer计算的输出,我们建议使用第二类实现。 + +此外,关于LSTM, PaddlePaddle中还包含 :code:`paddle.networks.lstmemory_unit` 这一计算单元: + + * 不同于上述介绍的recurrent layer , :code:`paddle.networks.lstmemory_unit` 定义了LSTM单元在一个时间步内的计算过程,它并不是一个完整的recurrent layer,也不能接收序列数据作为输入; + * :code:`paddle.networks.lstmemory_unit` 只能在recurrent_group中作为step function使用; diff --git a/doc/faq/parameter/index_cn.rst b/doc/faq/parameter/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..c721b623183cc7d8d17e2c9fb1635ea07b8970cc --- /dev/null +++ b/doc/faq/parameter/index_cn.rst @@ -0,0 +1,201 @@ +######### +参数设置 +######### + +.. contents:: + +1. 如何选择SGD算法的学习率 +-------------------------- + +在采用sgd/async_sgd进行训练时,一个重要的问题是选择正确的learning_rate。如果learning_rate太大,那么训练有可能不收敛,如果learning_rate太小,那么收敛可能很慢,导致训练时间过长。 + +通常做法是从一个比较大的learning_rate开始试,如果不收敛,那减少学习率10倍继续试验,直到训练收敛为止。那么如何判断训练不收敛呢?可以估计出如果模型采用不变的输出最小的cost0是多少。 + +如果训练过程的的cost明显高于这个常数输出的cost,那么我们可以判断为训练不收敛。举一个例子,假如我们是三分类问题,采用multi-class-cross-entropy作为cost,数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass(或者更早)后,cost还大于这个数,那么可以认为训练不收敛,应该降低学习率。 + +2. 如何设置学习率退火(learning rate annealing) +------------------------------------------------ + +在相应的优化算法里设置learning_rate_schedule及相关参数,以使用Adam算法为例,代码如下: + +.. code-block:: python + + optimizer = paddle.optimizer.Adam( + learning_rate=1e-3, + learning_rate_decay_a=0.5, + learning_rate_decay_b=0.75, + learning_rate_schedule="poly",) + +PaddlePaddle目前支持8种learning_rate_schedule,这8种learning_rate_schedule及其对应学习率计算方式如下: + +* "constant" + + lr = learning_rate + +* "poly" + + lr = learning_rate * pow(1 + learning_rate_decay_a * num_samples_processed, -learning_rate_decay_b) + + 其中,num_samples_processed为已训练样本数,下同。 + +* "caffe_poly" + + lr = learning_rate * pow(1.0 - num_samples_processed / learning_rate_decay_a, learning_rate_decay_b) + +* "exp" + + lr = learning_rate * pow(learning_rate_decay_a, num_samples_processed / learning_rate_decay_b) + +* "discexp" + + lr = learning_rate * pow(learning_rate_decay_a, floor(num_samples_processed / learning_rate_decay_b)) + +* "linear" + + lr = max(learning_rate - learning_rate_decay_a * num_samples_processed, learning_rate_decay_b) + +* "manual" + + 这是一种按已训练样本数分段取值的学习率退火方法。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下: + + .. code-block:: python + + optimizer = paddle.optimizer.Adam( + learning_rate=1e-3, + learning_rate_schedule="manual", + learning_rate_args="1000:1.0,2000:0.9,3000:0.8",) + + 在该示例中,当已训练样本数小于等于1000时,学习率为 :code:`1e-3 * 1.0`;当已训练样本数大于1000小于等于2000时,学习率为 :code:`1e-3 * 0.9`;当已训练样本数大于2000时,学习率为 :code:`1e-3 * 0.8`。 + +* "pass_manual" + + 这是一种按已训练pass数分段取值的学习率退火方法。使用该learning_rate_schedule时,用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例,代码如下: + + .. code-block:: python + + optimizer = paddle.optimizer.Adam( + learning_rate=1e-3, + learning_rate_schedule="manual", + learning_rate_args="1:1.0,2:0.9,3:0.8",) + + 在该示例中,当已训练pass数小于等于1时,学习率为 :code:`1e-3 * 1.0`;当已训练pass数大于1小于等于2时,学习率为 :code:`1e-3 * 0.9`;当已训练pass数大于2时,学习率为 :code:`1e-3 * 0.8`。 + +3. 如何初始化参数 +----------------- + +默认情况下,PaddlePaddle使用均值0,标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式,PaddlePaddle目前提供两种参数初始化的方式\: + +* 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)` +* 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)` + +比如设置一个全连接层的参数初始化方式和bias初始化方式,可以使用如下代码。 + +.. code-block:: python + + hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0), + bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0)) + +上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]` 的均匀分布。 + +4. 如何共享参数 +--------------- + +PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字的参数,会共享参数。设置参数的名字,可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是使得要共享的参数使用同样的 :code:`ParamAttr` 对象。 + +简单的全连接网络,参数共享的配置示例为\: + +.. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py + +这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。 + +5. 如何加载预训练参数 +------------------------ + +* 对加载预训练参数的层,设置其参数属性 :code:`is_static=True`,使该层的参数在训练过程中保持不变。以embedding层为例,代码如下: + +.. code-block:: python + + emb_para = paddle.attr.Param(name='emb', is_static=True) + paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para) + + +* 从模型文件将预训练参数载入 :code:`numpy.array`,在创建parameters后,使用 :code:`parameters.set()` 加载预训练参数。PaddlePaddle保存的模型参数文件前16字节为头信息,用户将参数载入 :code:`numpy.array` 时须从第17字节开始。以embedding层为例,代码如下: + +.. code-block:: python + + def load_parameter(file_name, h, w): + with open(file_name, 'rb') as f: + f.read(16) # skip header. + return np.fromfile(f, dtype=np.float32).reshape(h, w) + + parameters = paddle.parameters.create(my_cost) + parameters.set('emb', load_parameter(emb_param_file, 30000, 256)) + +6. 存储的参数格式是什么,如何和明文进行相互转化 +-------------------------------------------------- + +PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数两部分组成。头信息中,1~4字节表示PaddlePaddle版本信息,请直接填充0;5~8字节表示每个参数占用的字节数,当保存的网络参数为float类型时为4,double类型时为8;9~16字节表示保存的参数总个数。 + +将PaddlePaddle保存的模型参数还原回明文时,可以使用相应数据类型的 :code:`numpy.array` 加载具体网络参数,此时可以跳过PaddlePaddle模型参数文件的头信息。若在PaddlePaddle编译时,未指定按照double精度编译,默认情况下按照float精度计算,保存的参数也是float类型。这时在使用 :code:`numpy.array` 时,一般设置 :code:`dtype=float32` 。示例如下: + +.. code-block:: python + + def read_parameter(fname, width): + s = open(fname).read() + # skip header + vec = np.fromstring(s[16:], dtype=np.float32) + # width is the size of the corresponding layer + np.savetxt(fname + ".csv", vec.reshape(width, -1), + fmt="%.6f", delimiter=",") + + +将明文参数转化为PaddlePaddle可加载的模型参数时,首先构造头信息,再写入网络参数。下面的代码将随机生成的矩阵转化为可以被PaddlePaddle加载的模型参数。 + +.. code-block:: python + + def gen_rand_param(param_file, width, height, need_trans): + np.random.seed() + header = struct.pack("iil", 0, 4, height * width) + param = np.float32(np.random.rand(height, width)) + with open(param_file, "w") as fparam: + fparam.write(header + param.tostring()) + +7. A protocol message was rejected because it was too big +------------------------------------------------------------ + +如果在训练NLP相关模型时,出现以下错误: + +.. code-block:: bash + + [libprotobuf ERROR google/protobuf/io/coded_stream.cc:171] A protocol message was rejected because it was too big (more than 67108864 bytes). To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h. + F1205 14:59:50.295174 14703 TrainerConfigHelper.cpp:59] Check failed: m->conf.ParseFromString(configProtoStr) + +可能的原因是:传给dataprovider的某一个args过大,一般是由于直接传递大字典导致的。错误的define_py_data_sources2类似: + +.. code-block:: python + + src_dict = dict() + for line_count, line in enumerate(open(src_dict_path, "r")): + src_dict[line.strip()] = line_count + + define_py_data_sources2( + train_list, + test_list, + module="dataprovider", + obj="process", + args={"src_dict": src_dict}) + +解决方案是:将字典的地址作为args传给dataprovider,然后在dataprovider里面根据该地址加载字典。即define_py_data_sources2应改为: + +.. code-block:: python + + define_py_data_sources2( + train_list, + test_list, + module="dataprovider", + obj="process", + args={"src_dict_path": src_dict_path}) + +完整源码可参考 `seqToseq `_ 示例。 + + diff --git a/doc/getstarted/build_and_install/docker_install_cn.rst b/doc/getstarted/build_and_install/docker_install_cn.rst index 84e33177740ca1652efc09c8081c2519b4366906..30b144d849bec367cd0197b6082889e011193a9a 100644 --- a/doc/getstarted/build_and_install/docker_install_cn.rst +++ b/doc/getstarted/build_and_install/docker_install_cn.rst @@ -20,7 +20,7 @@ Docker使用入门 docker pull paddlepaddle/paddle:0.10.0 - 来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用ocker.paddlepaddle.org/paddle下载。 + 来下载Docker镜像,paddlepaddle/paddle是从官方镜像源Dockerhub.com下载的,推荐国内用户使用docker.paddlepaddle.org/paddle下载。 - *容器*: 如果说一个Docker镜像就是一个程序,那容器就是这个程序运行时产生的“进程”。 实际上,一个容器就是一个操作系统的进程,但是是运行在独立的进程空间,文件系统以及网络之上。 diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md index e3892849abe21fc207d2fcbe4adc65184ba771f4..c823d7e9fcd63dd7719ac1403952b03c2d2f03c0 100644 --- a/doc/howto/dev/new_op_cn.md +++ b/doc/howto/dev/new_op_cn.md @@ -34,7 +34,7 @@ Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU 注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,GPU实现在`.cu`文件中 -实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。 +实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。** 下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。 @@ -54,9 +54,9 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of mul op"); - AddInput("Y", "The second input of mul op"); - AddOutput("Out", "The output of mul op"); + AddInput("X", "(Tensor), 2D tensor of size (M x K)"); + AddInput("Y", "(Tensor), 2D tensor of size (K x N)"); + AddOutput("Out", "(Tensor), 2D tensor of size (M x N)"); AddComment(R"DOC( Two Element Mul Operator. The equation is: Out = X * Y @@ -72,7 +72,7 @@ The equation is: Out = X * Y 构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加Op的注释。这些函数会将对应内容添加到`OpProto`中。 -上面的代码在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,并解释了各自含义,命名请遵守命名规范。 +上面的代码在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,并解释了各自含义,命名请遵守[命名规范](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md)。 再以[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)为例: @@ -206,7 +206,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, - `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`。 - `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。 - - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。 + - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulGradKernel`类。 - 在 `.cu`文件中注册GPU Kernel。 @@ -224,45 +224,15 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, ### 5. 编译 -- 简单**无特殊依赖**的OP无需修改CMakeList.txt文件。[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt) 会自动将 `paddle/operators` 目录下新增的 `*_op.cc` 文件加入编译。 -- 较为复杂、**有额外依赖** 的operator仍需要修改[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)。如,`mul_op` 依赖 `math_function`,需要在`CMakeLists.txt`中添加如下内容: +运行下面命令可以进行编译: - ``` - op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) + - ``` - -- 运行下面命令可以进行编译: - - ``` - make mul_op - ``` +``` +make mul_op +``` ## 绑定Python -- 绑定Python - - 在 [`paddle/pybind/pybind.cc -`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc) 使用`USE_OP`告知编译器需要链接的Op,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。 - - ``` - USE_OP(mul); - ``` - 如果只实现了CPU版本,则使用`USE_CPU_ONLY_OP`: - - ``` - USE_CPU_ONLY_OP(gather); - ``` - - 如果OP不带Kernel,则使用`USE_NO_KENREL_OP`: - - ``` - USE_NO_KENREL_OP(recurrent); - ``` - - - - 生成库 - - `paddle/operators` 目录下新增的 `*_op.cc` 文件会被自动添加链接到生成的lib库中。 +系统会对新增的op自动绑定Python,并链接到生成的lib库中。 ## 实现单元测试 @@ -315,41 +285,27 @@ class TestMulGradOp(GradientChecker): 'Y': np.random.random((84, 100)).astype("float32") } - def test_cpu_gpu_compare(self): - self.compare_grad(self.op, self.inputs) - - def test_normal(self): + def test_check_grad_normal(self): # mul op will enlarge the relative error - self.check_grad( - self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.5) + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) - def test_ignore_x(self): + def test_check_grad_ingore_x(self): self.check_grad( - self.op, - self.inputs, ["Y"], - "Out", - max_relative_error=0.5, - no_grad_set={"X"}) + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) - def test_ignore_y(self): + def test_check_grad_ingore_y(self): self.check_grad( - self.op, - self.inputs, ["X"], - "Out", - max_relative_error=0.5, - no_grad_set={"Y"}) + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) ``` 下面解释代码中一些关键的地方: - 调用`create_op("mul")`创建反向Op对应的前向Op。 -- 调用`compare_grad`函数对比CPU、GPU计算结果。 -- `test_normal`中调用`check_grad`使用数值法检测梯度正确性和稳定性。 - - 第一个参数`self.op` : 前向Op。 - - 第二个参数`self.inputs` : 输入词典,词典的Key和`ProtoMaker`定义保持一致。 - - 第三个参数`["X", "Y"]` : 指定对输入变量`X`、`Y`做梯度检测。 - - 第四个参数`"Out"` : 指定前向网络最终的输出目标变量`Out` -- `test_ignore_x`和`test_ignore_y`分支用来测试只需要计算一个输入梯度的情况。 +- `test_check_grad_normal`中调用`check_grad`使用数值法检测梯度正确性和稳定性。 + - 第一个参数`["X", "Y"]` : 指定对输入变量`X`、`Y`做梯度检测。 + - 第二个参数`"Out"` : 指定前向网络最终的输出目标变量`Out`。 + - 第三个参数`max_relative_error`:指定检测梯度时能容忍的最大错误值。 +- `test_check_grad_ingore_x`和`test_check_grad_ingore_y`分支用来测试只需要计算一个输入梯度的情况。 ### 编译和执行单元测试 @@ -367,3 +323,10 @@ make test ARGS="-R test_mul_op -V" ```bash ctest -R test_mul_op ``` + +## 注意事项 + +- 为每个Op创建单独的`*_op.h`(如有)、`*_op.cc`和`*_op.cu`(如有)。不允许一个文件中包含多个Op,这将会导致编译出错。 +- 注册Op时的类型名,需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OP(B, ...)`等,这将会导致单元测试出错。 +- 如果Op没有实现GPU Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。 +- 如果多个Op依赖一些共用的函数,可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。 diff --git a/doc/howto/dev/new_op_en.md b/doc/howto/dev/new_op_en.md new file mode 100644 index 0000000000000000000000000000000000000000..1e88e1f5b4df710f1b69f0305d8d8a2921c4249a --- /dev/null +++ b/doc/howto/dev/new_op_en.md @@ -0,0 +1,342 @@ +# How to write a new operator + + - [Background](#background) + - [Implementing C++ Types](#implementing-c++-types) + - [Defining ProtoMaker](#defining-protoMaker) + - [Defining Operator](#defining-operator) + - [Registering Operator](#registering-operator) + - [Compilation](#compilation) + - [Python Binding](#python-binding) + - [Unit Tests](#unit-tests) + - [Testing Forward Operators](#testing-forward-operators) + - [Testing Backward Operators](#testing-backward-operators) + - [Compiling and Running](#compiling-and-running) + - [Remarks](#remarks) +## Background + +Here are the base types needed. For details, please refer to the design docs. + +- `framework::OperatorBase`: Operator (Op)base class. +- `framework::OpKernel`: Base class for Op computation. +- `framework::OperatorWithKernel`: Inherited from OperatorBase, describing an operator with computation. +- `class OpProtoAndCheckerMaker`: Describes an Operator's input, output, attributes and description, mainly used to interface with Python API. + +An operator can be differentiated by whether in has kernel methods. An operator with kernel inherits from `OperatorWithKernel` while the ones without inherit from `OperatorBase`. This tutorial focuses on implementing operators with kernels. In short, an operator includes the following information: + + + Information | Where is it defined +-------------- | :---------------------- +OpProtoMake definition | `.cc`files, Backward Op does not need an OpProtoMake interface. +Op definition | `.cc` files +Kernel implementation | The kernel methods shared between CPU and GPU are defined in `.h` files. CPU-specific kernels live in `.cc` files, while GPU-specific kernels are implemented in `.cu`files. +Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the GPU implementation. + + +New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions. ** + + +Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc), as an example to introduce the writing of an Operator with Kernel. + + +## Implementing C++ Types + + +### 1. Defining Class ProtoMaker + +Matrix Multiplication can be written as $Out = X * Y$, meaning that the operation consists of two inputs and pne output. + +First, define `ProtoMaker` to describe the Operator's input, output, and additional comments: + +```cpp +class MulOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "(Tensor), 2D tensor of size (M x K)"); + AddInput("Y", "(Tensor), 2D tensor of size (K x N)"); + AddOutput("Out", "(Tensor), 2D tensor of size (M x N)"); + AddComment(R"DOC( +Two Element Mul Operator. +The equation is: Out = X * Y +)DOC"); + } +}; +``` + +[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)is inherited from`framework::OpProtoAndCheckerMaker`, consisting of 2 variables in the constructor: + + - `framework::OpProto` stores Operator input and variable attribute, used for generating Python API interfaces. + - `framework::OpAttrChecker` is used to validate variable attributes. + +The constructor utilizes `AddInput`, `AddOutput`, and `AddComment`, so that the corresponding information will be added to `OpProto`. + +The code above adds two inputs `X` and `Y` to `MulOp`, an output `Out`, and their corresponding descriptions, in accordance to Paddle's [naming convention](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md). + + +An additional example [`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37) is implemented as follows: + +```cpp +template +class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input tensor of scale operator.").NotInGradient(); + AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); + AddComment(R"DOC(Scale operator +The equation is: Out = scale*X +)DOC"); + AddAttr("scale", "scale of scale operator.").SetDefault(1.0); + } +}; +``` + +There are two changes in this example: + +- `AddInput("X","...").NotInGradient()` expresses that input `X` is not involved in `ScaleOp`'s corresponding computation. If an input to an operator is not participating in back-propagation, please explicitly set `.NotInGradient()`. + +- `AddAttr("scale", "...").SetDefault(1.0);` adds `scale`constant as an attribute, and sets the default value to 1.0. + + +### 2. Defining Operator + +The following code defines the interface for MulOp: + +```cpp +class MulOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto dim0 = ctx.Input("X")->dims(); + auto dim1 = ctx.Input("Y")->dims(); + PADDLE_ENFORCE_EQ(dim0.size(), 2, + "input X(%s) should be a tensor with 2 dims, a matrix", + ctx.op_.Input("X")); + PADDLE_ENFORCE_EQ(dim1.size(), 2, + "input Y(%s) should be a tensor with 2 dims, a matrix", + ctx.op_.Input("Y")); + PADDLE_ENFORCE_EQ( + dim0[1], dim1[0], + "First matrix's width must be equal with second matrix's height."); + ctx.Output("Out")->Resize({dim0[0], dim1[1]}); + } +}; +``` + +[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22) is inherited from `OperatorWithKernel`. Its `public` member + +```cpp +using framework::OperatorWithKernel::OperatorWithKernel; +``` + +expresses an operator constructor using base class `OperatorWithKernel`, alternatively written as + +```cpp +MulOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} +``` + +`InferShape` interface needs to be re-written.`InferShape` is a constant method and cannot modify Op's member variables, its constant member `const framework::InferShapeContext &ctx` can be used to extract input, output, and attributes. It functions to + + - 1). validate and error out early: it checks input data dimensions and types. + - 2). configures the tensor shape in the output. + +Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, which also include the registration methods introduced later. + +### 3. Defining OpKernel + +`MulKernel` inherits `framework::OpKernel`, which includes the following templates: + +- `typename Place` denotes device type. When different devices, namely the CPU and the GPU, share the same kernel, this template needs to be added. If they don't share kernels, this must not be added. An example of a non-sharing kernel is [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). + +- `typename T` denotes data type, such as `float` or `double`. + +`MulKernel` types need to rewrite the interface for `Compute`. +- `Compute` takes one input variable `const framework::ExecutionContext& context`. +- Compared with `InferShapeContext`, `ExecutionContext` includes device types, and can similarly extract input, output, and attribute variables. +- `Compute` implements the computation logics of an `OpKernel`. + +`MulKernel`'s implementation of `Compute` is as follows: + + ```cpp + template + class MulKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* X = context.Input("X"); + auto* Y = context.Input("Y"); + auto* Z = context.Output("Out"); + Z->mutable_data(context.GetPlace()); + auto* device_context = + const_cast(context.device_context_); + math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); + } + }; + ``` + +Note that **different devices (CPU, GPU)share an Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions that support both devices.** + +`MulOp`'s CPU and GPU share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). + +To ease the writing of `OpKernel` compute, and for reusing code cross-device, [`Eigen-unsupported Tensor`](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md?fileviewer=file-view-default) module is used to implement `Compute` interface. To learn about how the Eigen library is used in PaddlePaddle, please see [usage document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md). + + +This concludes the forward implementation of an operator. Next its operation and kernel need to be registered in a `.cc` file. + +The definition of its corresponding backward operator, if applicable, is similar to that of an forward operator. **Note that a backward operator does not include a `ProtoMaker`**. + +### 4. Registering Operator + +- In `.cc` files, register forward and backward operator classes and the CPU kernel. + + ```cpp + namespace ops = paddle::operators; + REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); + REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); + REGISTER_OP_CPU_KERNEL(mul_grad, + ops::MulGradKernel); + ``` + + In that code block, + + - `REGISTER_OP` registers the `ops::MulOp` class, type named `mul`, its type `ProtoMaker` is `ops::MulOpMaker`, registering `ops::MulOpGrad` as `mul_grad`. + - `REGISTER_OP_WITHOUT_GRADIENT` registers an operator without gradient. + - `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`. + + +- Registering GPU Kernel in `.cu` files + - Note that if GPU Kernel is implemented using the `Eigen unsupported` module, then on top of `.cu`, a macro definition `#define EIGEN_USE_GPU` is needed, such as + + ```cpp + // if use Eigen unsupported module before include head files + #define EIGEN_USE_GPU + + namespace ops = paddle::operators; + REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); + REGISTER_OP_GPU_KERNEL(mul_grad, + ops::MulGradKernel); + ``` + +### 5. Compilation + +Run the following commands to compile. + +``` +make mul_op +``` + +## Python Binding + +The system will automatically bind to Python and link it to a generated library. + +## Unit Tests + +Unit tests for an operator include + +1. comparing a forward operator's implementations on different devices, + +2. comparing a backward operator's implementation on different devices, and + +3. a scaling test for the backward operator. + +Here, we introduce the [unit tests for `MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py). + +### Testing Forward Operators + +A forward operator unit test inherits `unittest.TestCase` and defines metaclass `__metaclass__ = OpTestMeta`. More concrete tests are performed in `OpTestMeta`. Testing a forward operator requires the following: + +1. Defining input, output and relevant attributes in `setUp` method. + +2. Generating random input data. + +3. Implementing the same computation logic in a Python script: + + ```python + import unittest + import numpy as np + from gradient_checker import GradientChecker, create_op + from op_test_util import OpTestMeta + + class TestMulOp(unittest.TestCase): + __metaclass__ = OpTestMeta + + def setUp(self): + self.type = "mul" + self.inputs = { + 'X': np.random.random((32, 84)).astype("float32"), + 'Y': np.random.random((84, 100)).astype("float32") + } + self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} + ``` +Get its output, and compare it with the forward operator's own output. + +The code above first loads required packages. In addition, we have + +- `self.type = "mul" ` defines the type that is identical to what the operator's registered type. +- `self.inputs` defines input, with type `numpy.array` and initializes it. +- `self.outputs` defines output and completes the same operator computation in the Python script, and returns its result from the Python script. + +### Testing Backward Operators + +A backward operator unit test inherits `GradientChecker`, which inherits `unittest.TestCase`. As a result, **a backward operator unit test needs to be have the prefix `test_`**. + +```python +class TestMulGradOp(GradientChecker): + def setUp(self): + self.op = create_op("mul") + self.inputs = { + 'X': np.random.random((32, 84)).astype("float32"), + 'Y': np.random.random((84, 100)).astype("float32") + } + + def test_check_grad_normal(self): + # mul op will enlarge the relative error + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) +``` + +Some key points in the code above include: + +- `create_op("mul")` creates the backward operator's corresponding forward operator. +- `test_normal` calls `check_grad` to validate scaling tests' correctness and stability through numeric methods. + - The first variable `["X", "Y"]` appoints `X` and `Y` to be scale tested. + - The second variable `"Out"` points to the network's final output target `Out`. + - The third variable `max_relative_error` points to the maximum relative tolerance error during scaling tests. +- `test_check_grad_ingore_x` and `test_check_grad_ingore_y`branches test the cases where there is only one scaling input. + +### Compiling and Running + + +Any new unit testing file of the format `test_*.py` added to the director `python/paddle/v2/framework/tests` is automatically added to the project to compile. + +Note that **unlike the compile test for Ops, running unit tests requires compiling the entire project** and requires compiling with flag `WITH_TESTING` on i.e. `cmake paddle_dir -DWITH_TESTING=ON`. + +After successfully compiling the project, run the following command to run unit tests: + +```bash +make test ARGS="-R test_mul_op -V" +``` + +Or, + +```bash +ctest -R test_mul_op +``` + +## Remarks + +- Every `*_op.h` (if applicable), `*_op.cc`, and `*_op.cu` (if applicable) must be created for a unique Op. Compiling will fail if multiple operators are included per file. +- The type with which an operator is registered needs to be identical to the Op's name. Registering `REGISTER_OP(B, ...)` in `A_op.cc` will cause unit testing failures. +- If the operator does not implement a GPU kernel, please refrain from creating an empty `*_op.cu` file, or else unit tests will fail. +- If multiple operators rely on some shared methods, a file NOT named `*_op.*` can be created to store them, such as `gather.h`. diff --git a/doc/howto/dev/use_eigen_en.md b/doc/howto/dev/use_eigen_en.md new file mode 100644 index 0000000000000000000000000000000000000000..e169106e12f5d62696f1f0e7163562793b32c18c --- /dev/null +++ b/doc/howto/dev/use_eigen_en.md @@ -0,0 +1,146 @@ +## How to use Eigen in Paddle + +Essentially, a neural network is a compute graph. T data needed for the computation is stored in `Tensor`s and its computation procedure is described by `Operator`s. An `Operator` calls the `Compute` interface in its corresponding `OpKernel` and operates on the `Tensor`. + + +### Eigen Tensor Module + +The Eigen Tensor module supports powerful element-wise computation. In addition, a piece of code written using it can be run on both the CPU and the GPU. + +Note that Eigen Tensor is still being actively developed, so its tests are not completely covered and its documentation may be sparse. + +For details on Eigen Tensor module, please see [doc 1](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md) and [doc 2](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md). + + +### paddle::framework::Tensor + +Paddle Tensor's is defined in the framework directory with the following interface: + +```cpp +class Tensor { + public: + /*! Return a pointer to mutable memory block. */ + template + inline T* data(); + + /** + * @brief Return a pointer to mutable memory block. + * @note If not exist, then allocation. + */ + template + inline T* mutable_data(platform::Place place); + + /** + * @brief Return a pointer to mutable memory block. + * + * @param[in] dims The dimensions of the memory block. + * @param[in] place The place of the memory block. + * + * @note If not exist, then allocation. + */ + template + inline T* mutable_data(DDim dims, platform::Place place); + + /*! Resize the dimensions of the memory block. */ + inline Tensor& Resize(const DDim& dims); + + /*! Return the dimensions of the memory block. */ + inline const DDim& dims() const; + + private: + /*! holds the memory block if allocated. */ + std::shared_ptr holder_; + + /*! points to dimensions of memory block. */ + DDim dim_; +}; +``` + +`Placeholder` is used to delay memory allocation; that is, we can first define a tensor, using `Resize` to configure its shape, and then call `mutuable_data` to allocate the actual memory. + +```cpp +paddle::framework::Tensor t; +paddle::platform::CPUPlace place; +// set size first +t.Resize({2, 3}); +// allocate memory on CPU later +t.mutable_data(place); +``` + +### paddle::framework::Tensor Usage +`AddOp` demonstrates Tensor's usage. + +- InferShape + +When computing a neural network's compute graph, first call every `Operator`'s `InferShape` method, and use `Resize` to configure the size of the output tensor. + +```cpp +void InferShape(const framework::InferShapeContext &ctx) const override { + PADDLE_ENFORCE_EQ(ctx.Input("X")->dims(), + ctx.Input("Y")->dims(), + "Two input of Add Op's dimension must be same."); + ctx.Output("Out")->Resize(ctx.Input("X")->dims()); +} +``` + + +- Run + +```cpp +void Compute(const framework::ExecutionContext& context) const override { + auto* input0 = context.Input("X"); + auto* input1 = context.Input("Y"); + auto* output = context.Output("Out"); + + output->mutable_data(context.GetPlace()); + + auto x = EigenVector::Flatten(*input0); + auto y = EigenVector::Flatten(*input1); + auto z = EigenVector::Flatten(*output); + + auto place = context.GetEigenDevice(); + + z.device(place) = x + y; +} +``` + + +### paddle::framework::Tensor到EigenTensor的转换 + +As shown above, in actual computation, we need to transform the input and output `Tensor`s into formats Eigen supports. We show some functions in [eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen.h) to implement the transformation from `paddle::framework::Tensor`to `EigenTensor/EigenMatrix/EigenVector/EigenScalar`. + +Using EigenTensor as an example: + +```cpp +Tensor t; +float* p = t.mutable_data(make_ddim({1, 2, 3}), platform::CPUPlace()); +for (int i = 0; i < 1 * 2 * 3; i++) { + p[i] = static_cast(i); +} + +EigenTensor::Type et = EigenTensor::From(t); +``` + +`From` is an interfacing method provided by the EigenTensor template, which implements the transformation from a `paddle::framework::Tensor` object to an EigenTensor. Since `rank` is a template parameter, it needs to be explicitly specified at the time of the transformation. + +In Eigen, tensors with different ranks are different types, with `Vector` bring a rank-1 instance. Note that `EigenVector::From` uses a transformation from an 1-dimensional Paddle tensor to a 1-dimensional Eigen tensor while `EigenVector::Flatten` reshapes a paddle tensor and flattens it into a 1-dimensional Eigen tensor. Both resulting tensors are still typed EigenVector. + +For more transformations, see the [unit tests](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc) in the `eigen_test.cc` file. + + + +### Implementing Computation + +While computing, the device interface is needed from the EigenTensors on the left hand side of the assignments. Note that the computation between EigenTensors only changes the data originally inthe Tensor and does not change all the shape information associated with the Tensor. + +```cpp +auto x = EigenVector::Flatten(*input0); +auto y = EigenVector::Flatten(*input1); +auto z = EigenVector::Flatten(*output); +auto place = context.GetEigenDevice(); +z.device(place) = x + y; +``` + +In this code segment, input0/input1/output can be Tensors of arbitrary dimension. We are calling Flatten from EigenVector, transforming a tensor of any dimension into a 1-dimensional EigenVector. After completing computation, input0/input1/output will retain the same shape information, and they can be resized using the `Resize` interface. + +Because the Eigen Tensor module is under-documented, please refer to `OpKernel`'s computation code in TensorFlow's [kernel module documentation](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/kernels). diff --git a/doc/survey/cluster_bootstrapping_tools.md b/doc/survey/cluster_bootstrapping_tools.md new file mode 100644 index 0000000000000000000000000000000000000000..1cd9962700bb49866f1ed6987abc28b27888a23f --- /dev/null +++ b/doc/survey/cluster_bootstrapping_tools.md @@ -0,0 +1,71 @@ +# Cluster bootstrapping tool survey +## Abstract +In order to bring up a cluster from bare metal machine to a fully functional kubernetes cluster for Paddlepaddle to run, we need to utilize some tools. Here we are going to compare [Sextant](https://github.com/k8sp/sextant) and [Tectonic installer](https://github.com/coreos/tectonic-installer) + +## Basic assumptions +Here are some basic assumptions before we move on to details +1. You are an administrator of a bare metal machine cluster, which means: + * you have full control to each of the machines. + * you have full control to the network which machines are connected to. +2. Machines can be booted from network with PEX or iPXE +3. You understand the [general procedure to bring up a cluster](#appendix-general-procedure-to-bring-up-a-cluster) + +if your cluster is able to mark above items with checkmarks, then keep reading. + +## Comparing Sextant and Tectonic installer +### Sextant +Sextant is an end2end solution to bring up a bare metal cluster to a fully functional k8s cluster, it integrates DHCP, name service, PEX, cloud-config-service, docker registry services altogether. + +#### Pros +1. End2End: basically all admin need to do is to config the cluster.yaml and power on the cluster. +2. Offline cluster configuration: Sextant has 2 phases during working with it, config time and deploy time. when admin is configuring, it requires admin's machine has internet connectivity, which will download some images, etc. But in deploy time, it's completely OK to go offline since all dependencies are ready during config time. +3. docker registry integrated. +4. GPU machine took care of. + +### Cons +1. k8s API server is not deployed with high availability in considering by default. +2. No grouping support. +3. No API interface, a one-off service. + + +### Tectonic installer +First of all, Tectonic is not free, it requires coreos.com account as a step of installation, and free user can only create less than 10 nodes. + +Tectonic is a suite of software which wraps around k8s and providing more utility regarding dev ops, ie, +Tectonic installer as it's named, it installs Tectonic to a bare metal cluster which means it's not totally an equivalent of Sextant. At the "booting a cluster" part, it mostly utilizes [Matchbox](https://github.com/coreos/matchbox), which is a general cluster bootstrapper. + +Matchbox's Approach is similar to Sexstant. + +### Pros +1. supports grouping machines. +2. supports running provisioning service in rtk. (not a big deal though). +3. supports http/gRPC API interface. +4. supports multi-template. + +### Cons +1. Not an e2e solution to bring up a cluster, need a lot of extra work and other software. +2. [Not fully supporting](https://github.com/coreos/matchbox/issues/550) centOS deployment yet. + +## Conclusion +Sextant is a better solution overall for paddle cloud deploying to a bare metal cluster. It would be great if Sextant can also 1) deploy k8s api server with high availability by default; 2) not designed as a one-off service. + + + +## Appendix: General procedure to bring up a cluster +It's physically impossible for a cluster admin to manually install OS and applications into cluster nodes one by one, here is what an admin would do in cloud industry: +1. setup a bootstrap machine with static IP in the cluster, which has following services: + * DHCP: assigns ip address for rest of the nodes. + * name service: to map node name to a IP + * PXE related services: the booting related info will be delivered to newly booted machines as their IP is assigned via DHCP service, PXE service will provide further booting and installing info and image with TFTP and http protocol. + * cluster config service: this is for providing cluster node with OS config via http + * optional docker registry: a built-in docker registry makes the whole cluster independent from connecting internet, and speeds up software distribution. +2. New node powers on, it will + * broadcast the request for an IP address + * DHCP server assigns the IP address, and deliver the PXE booting related info to the node. + * cluster node will request config files with booting info delivered with DHCP via the TFTP service, and in most of the cases, the config file will point to a http service for the booting image. + * Since PXE is configured with initrd, it will utilize the cloud config service and do further installations like coreOS or K8s installations. + * then restart the node. + +For further understanding, following 2 links from Matchbox are some good readings: +* [Machine lifecycle](https://github.com/coreos/matchbox/blob/master/Documentation/machine-lifecycle.md) +* [PXE booting](https://github.com/coreos/matchbox/blob/master/Documentation/network-booting.md) diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index ec866b2907d4623e8a94a249bc9af624071ade97..b435de80a224571d16efdee168541aa301c3f73a 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -19,7 +19,7 @@ if(Boost_FOUND) endif() if(WITH_C_API) - add_subdirectory(capi) + add_subdirectory(capi) endif() if(WITH_SWIG_PY) diff --git a/paddle/capi/CMakeLists.txt b/paddle/capi/CMakeLists.txt index 3af111eb5738c3f2f399ff4e5c06c8d2ecd8973e..b9bbe58951c643f1b1649858880fbd2ba3a2a7b7 100644 --- a/paddle/capi/CMakeLists.txt +++ b/paddle/capi/CMakeLists.txt @@ -28,53 +28,47 @@ add_style_check_target(paddle_capi ${CAPI_SOURCES} ${CAPI_HEADER} add_dependencies(paddle_capi paddle_proto) - # combine all paddle static libraries together, into libpaddle_capi_whole.a # user should use PaddleCAPI as -lpaddle_capi_whole -set(capi_whole_library libpaddle_capi_whole.a) -add_custom_target(paddle_capi_whole ALL - COMMAND mkdir -p o_files/capi && cd o_files/capi/ && ar -x $ - COMMAND mkdir -p o_files/utils && cd o_files/utils/ && ar -x $ - COMMAND mkdir -p o_files/parameter && cd o_files/parameter/ && ar -x $ - COMMAND mkdir -p o_files/math && cd o_files/math/ && ar -x $ - COMMAND mkdir -p o_files/cuda && cd o_files/cuda/ && ar -x $ - COMMAND mkdir -p o_files/function && cd o_files/function/ && ar -x $ - COMMAND mkdir -p o_files/gserver && cd o_files/gserver/ && ar -x $ - COMMAND mkdir -p o_files/proto && cd o_files/proto/ && ar -x $ - COMMAND mkdir -p o_files/network && cd o_files/network/ && ar -x $ - COMMAND mkdir -p o_files/pserver && cd o_files/pserver/ && ar -x $ - COMMAND ar crs ${capi_whole_library} `find ./o_files -name '*.o'` - COMMAND rm -rf o_files - WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} - DEPENDS paddle_capi paddle_utils paddle_parameter paddle_math - paddle_cuda paddle_function paddle_gserver - paddle_proto paddle_pserver paddle_network - ) -set_target_properties(paddle_capi_whole - PROPERTIES IMPORTED_LOCATION ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}) +set(PADDLE_CAPI_INFER_LIBS + paddle_utils + paddle_parameter + paddle_math + paddle_cuda + paddle_function + paddle_gserver + paddle_proto + paddle_pserver + paddle_network) + +cc_library(paddle_capi_whole DEPS paddle_capi ${PADDLE_CAPI_INFER_LIBS}) -set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map") -# TODO: merge mkl into paddle_capi_shared -add_library(paddle_capi_shared SHARED ${CAPI_SOURCES}) -set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}") -target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR}) -link_paddle_exe(paddle_capi_shared) +# No shared library for iOS +if(NOT IOS) + set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map") + # TODO: merge mkl into paddle_capi_shared + add_library(paddle_capi_shared SHARED ${CAPI_SOURCES}) + set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}") + target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR}) + link_paddle_exe(paddle_capi_shared) +endif() # install library & headers. install(FILES ${CAPI_HEADERS} DESTINATION include/paddle) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/config.h DESTINATION include/paddle) if(ANDROID) + install(TARGETS paddle_capi_whole paddle_capi_shared + ARCHIVE DESTINATION lib/${ANDROID_ABI} + LIBRARY DESTINATION lib/${ANDROID_ABI}) execute_process( COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1 + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR} OUTPUT_VARIABLE GIT_COMMITS_LIST RESULT_VARIABLE GIT_COMMITS_LIST_RESULT ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) if(${GIT_COMMITS_LIST_RESULT}) set(GIT_COMMITS_LIST "No commits.") endif() - install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} - DESTINATION lib/${ANDROID_ABI}) - install(TARGETS paddle_capi_shared DESTINATION lib/${ANDROID_ABI}) install(CODE "FILE(WRITE ${CMAKE_INSTALL_PREFIX}/lib/${ANDROID_ABI}/BUILD.txt \"Compiler:\n\" \"\\t${CMAKE_C_COMPILER}\\n\" @@ -88,8 +82,10 @@ if(ANDROID) )" ) else(ANDROID) - install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library} DESTINATION lib) - install(TARGETS paddle_capi_shared DESTINATION lib) + install(TARGETS paddle_capi_whole ARCHIVE DESTINATION lib) + if(NOT IOS) + install(TARGETS paddle_capi_shared DESTINATION lib) + endif() endif(ANDROID) # this variable used for unittest diff --git a/paddle/cuda/include/hl_cuda_cudnn.h b/paddle/cuda/include/hl_cuda_cudnn.h index 3f68c62de6d9b3aaadc9180d86159089dc728ea9..b44b071bd1b3b6e9e5539d5dc0c2b155c524fd57 100644 --- a/paddle/cuda/include/hl_cuda_cudnn.h +++ b/paddle/cuda/include/hl_cuda_cudnn.h @@ -22,10 +22,10 @@ limitations under the License. */ */ typedef enum { HL_POOLING_MAX = 0, - // average includes padded values - HL_POOLING_AVERAGE = 1, // average does not include padded values - HL_POOLING_AVERAGE_EXCLUDE_PADDING = 2, + HL_POOLING_AVERAGE = 1, + // average includes padded values + HL_POOLING_AVERAGE_INCLUDE_PADDING = 2, HL_POOLING_END } hl_pooling_mode_t; diff --git a/paddle/cuda/include/hl_tensor_ops.h b/paddle/cuda/include/hl_tensor_ops.h index 93d38b7d2299d994cde0934213668a525bffa80c..b2bf334dab9799153fe1d4fe2c74cce9d57168b9 100644 --- a/paddle/cuda/include/hl_tensor_ops.h +++ b/paddle/cuda/include/hl_tensor_ops.h @@ -461,7 +461,7 @@ class add { public: INLINE float32x4_t operator()(const float32x4_t a, const float32x4_t b) const { - return vmulq_f32(a, b); + return vaddq_f32(a, b); } }; diff --git a/paddle/cuda/src/hl_cuda_cnn.cu b/paddle/cuda/src/hl_cuda_cnn.cu index 9ba3d142617537c0160f6dccb86ddca43ada15a5..58674febdc4a094c95ff03701e4586c32729847d 100644 --- a/paddle/cuda/src/hl_cuda_cnn.cu +++ b/paddle/cuda/src/hl_cuda_cnn.cu @@ -211,13 +211,11 @@ __global__ void KeAvgPoolForward(const int nthreads, int hstart = ph * strideH - padH; int wstart = pw * strideW - padW; - int hend = min(hstart + sizeY, height + padH); - int wend = min(wstart + sizeX, width + padW); - int pool_size = (hend - hstart) * (wend - wstart); + int hend = min(hstart + sizeY, height); + int wend = min(wstart + sizeX, width); hstart = max(hstart, 0); wstart = max(wstart, 0); - hend = min(hend, height); - wend = min(wend, width); + int pool_size = (hend - hstart) * (wend - wstart); real aveval = 0; inputData += (frameNum * channels + c) * height * width; @@ -299,12 +297,14 @@ __global__ void KeAvgPoolBackward(const int nthreads, outGrad += (frameNum * outStride + offsetC * pooledH * pooledW); for (int ph = phstart; ph < phend; ++ph) { + int hstart = ph * strideH - padH; + int hend = min(hstart + sizeY, height); + hstart = max(hstart, 0); for (int pw = pwstart; pw < pwend; ++pw) { // figure out the pooling size - int hstart = ph * strideH - padH; int wstart = pw * strideW - padW; - int hend = min(hstart + sizeY, height + padH); - int wend = min(wstart + sizeX, width + padW); + int wend = min(wstart + sizeX, width); + wstart = max(wstart, 0); int poolsize = (hend - hstart) * (wend - wstart); gradient += outGrad[ph * pooledW + pw] / poolsize; } @@ -600,16 +600,13 @@ __global__ void KeAvgPool3DForward(const int nthreads, int dstart = pd * strideD - padD; int hstart = ph * strideH - padH; int wstart = pw * strideW - padW; - int dend = min(dstart + sizeZ, depth + padD); - int hend = min(hstart + sizeY, height + padH); - int wend = min(wstart + sizeX, width + padW); - int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); + int dend = min(dstart + sizeZ, depth); + int hend = min(hstart + sizeY, height); + int wend = min(wstart + sizeX, width); dstart = max(dstart, 0); hstart = max(hstart, 0); wstart = max(wstart, 0); - dend = min(dend, depth); - hend = min(hend, height); - wend = min(wend, width); + int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); real aveval = 0; inputData += (frameNum * channels + c) * depth * height * width; @@ -712,15 +709,18 @@ __global__ void KeAvgPool3DBackward(const int nthreads, outGrad += (frameNum * channels + offsetC) * pooledD * pooledH * pooledW; for (int pd = pdstart; pd < pdend; ++pd) { + int dstart = pd * strideD - padD; + int dend = min(dstart + sizeZ, depth); + dstart = max(dstart, 0); for (int ph = phstart; ph < phend; ++ph) { + int hstart = ph * strideH - padH; + int hend = min(hstart + sizeY, height); + hstart = max(hstart, 0); for (int pw = pwstart; pw < pwend; ++pw) { // figure out the pooling size - int dstart = pd * strideD - padD; - int hstart = ph * strideH - padH; int wstart = pw * strideW - padW; - int dend = min(dstart + sizeZ, depth + padD); - int hend = min(hstart + sizeY, height + padH); - int wend = min(wstart + sizeX, width + padW); + int wend = min(wstart + sizeX, width); + wstart = max(wstart, 0); int poolsize = (dend - dstart) * (hend - hstart) * (wend - wstart); gradient += outGrad[(pd * pooledH + ph) * pooledW + pw] / poolsize; } diff --git a/paddle/cuda/src/hl_cuda_cudnn.cc b/paddle/cuda/src/hl_cuda_cudnn.cc index f38ef692558b908ed65d2c84821bbb7c3b439742..b8caf48f9c06094e85765f7aa5a3f4195d0ca931 100644 --- a/paddle/cuda/src/hl_cuda_cudnn.cc +++ b/paddle/cuda/src/hl_cuda_cudnn.cc @@ -432,11 +432,11 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc, cudnn_mode = CUDNN_POOLING_MAX; break; case HL_POOLING_AVERAGE: - cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING; - break; - case HL_POOLING_AVERAGE_EXCLUDE_PADDING: cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING; break; + case HL_POOLING_AVERAGE_INCLUDE_PADDING: + cudnn_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING; + break; default: LOG(FATAL) << "parameter mode error"; } diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 3371962c635c3731f00a6af2a6e287ece33397cd..5d394132b7f3ddd36cebeb45f5602f13d9acdf35 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -19,14 +19,17 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope) proto_library(framework_proto SRCS framework.proto) cc_library(attribute SRCS attribute.cc DEPS framework_proto) -cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) +cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute) +cc_library(op_proto_maker SRCS op_proto_maker.cc DEPS framework_proto attribute) +cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) +cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto proto_desc) cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) -cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator) -cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder) +cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator proto_desc) +cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder op_proto_maker op_info) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) -cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op) +cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry sum_op) py_proto_compile(framework_py_proto SRCS framework.proto) # Generate an empty __init__.py to make framework_py_proto as a valid python module. @@ -40,3 +43,6 @@ add_custom_command(TARGET framework_py_proto POST_BUILD cc_library(backward SRCS backward.cc DEPS net_op) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context) + +cc_library(tensor_array SRCS tensor_array.cc DEPS lod_tensor) +cc_test(tensor_array_test SRCS tensor_array_test.cc DEPS tensor_array place) diff --git a/paddle/framework/attribute.cc b/paddle/framework/attribute.cc index 27132eaa0b3b0666fc042faf052dac2e169ba9e7..d6a2975aaa419406aef7b228e78381dbce78890d 100644 --- a/paddle/framework/attribute.cc +++ b/paddle/framework/attribute.cc @@ -19,74 +19,62 @@ limitations under the License. */ namespace paddle { namespace framework { -template <> -AttrType AttrTypeID() { - return INT; -} -template <> -AttrType AttrTypeID() { - return FLOAT; -} -template <> -AttrType AttrTypeID() { - return STRING; -} -template <> -AttrType AttrTypeID>() { - return INTS; -} -template <> -AttrType AttrTypeID>() { - return FLOATS; -} -template <> -AttrType AttrTypeID>() { - return STRINGS; -} -template <> -AttrType AttrTypeID>>() { - return INT_PAIRS; +static ProgramDesc* g_program_desc = nullptr; + +ProgramDesc& GetProgramDesc() { + if (g_program_desc == nullptr) { + g_program_desc = new ProgramDesc(); + auto root_block = g_program_desc->mutable_blocks()->Add(); + root_block->set_idx(0); + root_block->set_parent_idx(-1); + } + return *g_program_desc; } Attribute GetAttrValue(const OpDesc::Attr& attr_desc) { switch (attr_desc.type()) { - case paddle::framework::AttrType::INT: { + case framework::AttrType::BOOLEAN: { + return attr_desc.b(); + } + case framework::AttrType::INT: { return attr_desc.i(); } - case paddle::framework::AttrType::FLOAT: { + case framework::AttrType::FLOAT: { return attr_desc.f(); } - case paddle::framework::AttrType::STRING: { + case framework::AttrType::STRING: { return attr_desc.s(); } - case paddle::framework::AttrType::INTS: { + case framework::AttrType::BOOLEANS: { + std::vector val(attr_desc.bools_size()); + for (int i = 0; i < attr_desc.bools_size(); ++i) { + val[i] = attr_desc.bools(i); + } + return val; + } + case framework::AttrType::INTS: { std::vector val(attr_desc.ints_size()); for (int i = 0; i < attr_desc.ints_size(); ++i) { val[i] = attr_desc.ints(i); } return val; } - case paddle::framework::AttrType::FLOATS: { + case framework::AttrType::FLOATS: { std::vector val(attr_desc.floats_size()); for (int i = 0; i < attr_desc.floats_size(); ++i) { val[i] = attr_desc.floats(i); } return val; } - case paddle::framework::AttrType::STRINGS: { + case framework::AttrType::STRINGS: { std::vector val(attr_desc.strings_size()); for (int i = 0; i < attr_desc.strings_size(); ++i) { val[i] = attr_desc.strings(i); } return val; } - case paddle::framework::AttrType::INT_PAIRS: { - std::vector> val(attr_desc.int_pairs_size()); - for (int i = 0; i < attr_desc.int_pairs_size(); ++i) { - val[i].first = attr_desc.int_pairs(i).first(); - val[i].second = attr_desc.int_pairs(i).second(); - } - return val; + case framework::AttrType::BLOCK: { + return GetProgramDesc().mutable_blocks(attr_desc.block_idx()); } } PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !"); diff --git a/paddle/framework/attribute.h b/paddle/framework/attribute.h index 2b788a76cafe198abb9aed8ba842e37cc6ff73a6..d13530e3408a54c7ecab87c3bd9e6288e342f9af 100644 --- a/paddle/framework/attribute.h +++ b/paddle/framework/attribute.h @@ -21,24 +21,37 @@ limitations under the License. */ #include #include "paddle/framework/framework.pb.h" +#include "paddle/framework/type_defs.h" #include "paddle/platform/enforce.h" -#include "paddle/platform/variant.h" namespace paddle { namespace framework { -typedef boost::variant, - std::vector, std::vector, - std::vector>> - Attribute; - -typedef std::unordered_map AttributeMap; +ProgramDesc& GetProgramDesc(); template -AttrType AttrTypeID(); +inline AttrType AttrTypeID() { + Attribute tmp = T(); + return static_cast(tmp.which() - 1); +} Attribute GetAttrValue(const OpDesc::Attr& attr_desc); +class AttrReader { + public: + explicit AttrReader(const AttributeMap& attrs) : attrs_(attrs) {} + + template + inline const T& Get(const std::string& name) const { + PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap", + name); + return boost::get(attrs_.at(name)); + } + + private: + const AttributeMap& attrs_; +}; + // check whether a value(attribute) fit a certain limit template class GreaterThanChecker { diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index c5d46622156c56acb98fb77e7db5ee7bca8c937a..0ec18de5b8a0e7cebdb91c30d2b45596b02dfa51 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -166,9 +166,8 @@ static std::unique_ptr BackwardRecursive( // If part of input gradient of that operator is not calculated, fill // zero variables to that input gradient. - net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", - {{"Src", {prefix}}}, - {{"Dst", {grad_input}}}, {})); + net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}}, + {{"Y", {grad_input}}}, {})); } return false; }); diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md index 0a6d762bc8be5201ac196b4bc6107c06d07a31d7..ac60be572419b62f4beb644ff192d413c35e19bb 100644 --- a/paddle/framework/backward.md +++ b/paddle/framework/backward.md @@ -2,7 +2,7 @@ ## Motivation -In Neural Network, many model is solved by the the backpropagation algorithm(known as BP) at present. Technically it caculates the gradient of the loss function, then distributed back through the networks. Follows the chain rule, so we need a module chains the gradient operators/expressions together with to construct the backward pass. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass. +In Neural Network, most models are solved by the backpropagation algorithm(known as **BP**) at present. Technically, BP calculates the gradient of the loss function, then propagates it back through the networks following the chain rule. Hence we need a module that chains the gradient operators/expressions together to construct the backward pass. Every forward network needs a backward network to construct the full computation graph. The operator/expression's backward pass will be generated with respect to the forward pass. ## Implementation @@ -24,9 +24,9 @@ A backward network is built up with several backward operators. Backward operato | **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients | | **Operator::outputs_** | Outputs | InputGradients | - In most cases, there is a one-to-one correspondence between the forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced. + In most cases, there is a one-to-one relation between the forward and backward operators. These relations are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and to make operators pluggable, the registry mechanism is introduced. -For example, we have got a `mul_op`, and we can register its information and corresponding backward operator by the following macro: +For example, we have `mul_op`, and we can register its information and corresponding backward operator by the following macro: ```cpp REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad); @@ -48,7 +48,7 @@ The function `BuildGradOp` will sequentially execute following processes: 1. Get the `type_` of given forward operator, and then get the corresponding backward operator's type by looking up the `OpInfoMap`. -2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing. +2. Build two maps named `inputs` and `outputs` to temporarily store backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing. 3. Add forward inputs' gradient variables into map `output`, adding forward outputs' gradient variables into map `input`. @@ -56,11 +56,11 @@ The function `BuildGradOp` will sequentially execute following processes: ### Backward Network Building -A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and append them together one by one. There is some corner case need to process specially. +A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and appending them together one by one. There are some corner cases that need special processing. 1. Op - When the input forward network is an Op, return its gradient Operator Immediately. If all of its outputs are in no gradient set, then return a special `NOP`. + When the input forward network is an Op, return its gradient Operator immediately. If all of its outputs are in no gradient set, then return a special `NOP`. 2. NetOp @@ -68,33 +68,33 @@ A backward network is a series of backward operators. The main idea of building 3. RnnOp - RnnOp is a nested stepnet operator. Backward module need to recusively call `Backward` for every stepnet. + RnnOp is a nested stepnet operator. Backward module needs to recusively call `Backward` for every stepnet. 4. Sharing Variables - **sharing variables**. As illustrated in the pictures, two operator's share the same variable name of W@GRAD, which will overwrite their sharing input variable. + As illustrated in the figure 1 and figure 2, two operators share the same variable name **W@GRAD**, which will overwrite their shared input variable.


-​ pic 1. Sharing variables in operators. +​ Figure 1. Sharing variables in operators.

-​ Sharing variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator to replace the overwrite links. +​ Sharing variable between operators or same input variable used in multiple operators can lead to duplicate gradient variables. As illustrated in figure 2, we need to rename the gradient names recursively and add a generic add operator to prevent overwriting.


-​ pic 2. Replace sharing variable's gradient with `Add` operator. +​ Figure 2. Replace sharing variable's gradient with `Add` operator.

-​ Because our framework finds variables accord to their names, we need to rename the output links. We add a suffix of number to represent its position in clockwise. +​ Because the framework finds variables according to their names, we need to rename the output links. We add an integer suffix to represent its position in the clockwise direction. -5. Part of Gradient is Zero. +5. Part of the Gradient is Zero. - In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implement, we insert a special `fillZeroLike` operator. + In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implementation, we insert a special `fillZeroLike` operator. Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it. diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index ad8003420dc14538d0dae9a1cb19d6459b154576..6932f5b989a3e21ebc44ec4fec9f5223f2547d7a 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -127,8 +127,8 @@ class FillZeroOpMaker : public OpProtoAndCheckerMaker { public: FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("Src", "x"); - AddOutput("Dst", "out"); + AddInput("X", "x"); + AddOutput("Y", "out"); AddComment(""); } }; @@ -325,10 +325,10 @@ TEST(Backward, op_part_of_output_are_not_need) { auto &fill_zero = *net->ops_[0]; ASSERT_EQ("fill_zeros_like", fill_zero.Type()); - ASSERT_EQ(1UL, fill_zero.Inputs("Src").size()); - ASSERT_EQ("Z", fill_zero.Input("Src")); - ASSERT_EQ(1UL, fill_zero.Outputs("Dst").size()); - ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Dst")); + ASSERT_EQ(1UL, fill_zero.Inputs("X").size()); + ASSERT_EQ("Z", fill_zero.Input("X")); + ASSERT_EQ(1UL, fill_zero.Outputs("Y").size()); + ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Y")); auto &d_many_out = *net->ops_[1]; ASSERT_EQ("many_output_op_grad", d_many_out.Type()); diff --git a/paddle/framework/block_desc.cc b/paddle/framework/block_desc.cc new file mode 100644 index 0000000000000000000000000000000000000000..9570aedfdda332b797a8f348e0f6cf81bb2aee2f --- /dev/null +++ b/paddle/framework/block_desc.cc @@ -0,0 +1,89 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/block_desc.h" +#include "paddle/framework/program_desc.h" + +namespace paddle { +namespace framework { + +VarDescBind *BlockDescBind::NewVar(const std::string &name) { + need_update_ = true; + auto it = vars_.find(name); + PADDLE_ENFORCE(it == vars_.end(), "Duplicated variable %s", name); + auto var = new VarDescBind(name); + vars_[name].reset(var); + return var; +} + +VarDescBind *BlockDescBind::Var(const std::string &name) const { + auto it = vars_.find(name); + PADDLE_ENFORCE(it != vars_.end(), + "Can not find variable %s in current block.", name); + return it->second.get(); +} + +std::vector BlockDescBind::AllVars() const { + std::vector res; + for (const auto &p : vars_) { + res.push_back(p.second.get()); + } + return res; +} + +OpDescBind *BlockDescBind::AppendOp() { + need_update_ = true; + ops_.emplace_back(new OpDescBind()); + return ops_.back().get(); +} + +OpDescBind *BlockDescBind::PrependOp() { + need_update_ = true; + ops_.emplace_front(new OpDescBind()); + return ops_.front().get(); +} + +std::vector BlockDescBind::AllOps() const { + std::vector res; + for (const auto &op : ops_) { + res.push_back(op.get()); + } + return res; +} + +void BlockDescBind::Sync() { + if (need_update_) { + auto &op_field = *this->desc_->mutable_ops(); + op_field.Clear(); + op_field.Reserve(static_cast(ops_.size())); + for (auto &op_desc : ops_) { + op_field.AddAllocated(op_desc->Proto()); + } + need_update_ = false; + } +} + +BlockDescBind *BlockDescBind::ParentBlock() const { + if (this->desc_->parent_idx() == -1) { + return nullptr; + } + return prog_->Block(static_cast(this->desc_->parent_idx())); +} + +void OpDescBind::SetBlockAttr(const std::string &name, BlockDescBind &block) { + BlockDesc *desc = block.RawPtr(); + this->attrs_[name] = desc; +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/block_desc.h b/paddle/framework/block_desc.h new file mode 100644 index 0000000000000000000000000000000000000000..1a1135bab44cd27bb7d784c3b486188aa40635e4 --- /dev/null +++ b/paddle/framework/block_desc.h @@ -0,0 +1,71 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include +#include "paddle/framework/op_desc.h" +#include "paddle/framework/var_desc.h" + +namespace paddle { +namespace framework { + +class ProgramDescBind; + +// Each Protobuf Message, we provide a XXXBind class. In that class, we optimize +// read/write speed. Only when we want the protobuf message, the local changes +// will be synchronized (by `Sync` method). + +class BlockDescBind { + public: + BlockDescBind(ProgramDescBind *prog, BlockDesc *desc) + : prog_(prog), desc_(desc), need_update_(false) {} + + BlockDescBind(const BlockDescBind &o) = delete; + BlockDescBind &operator=(const BlockDescBind &o) = delete; + + int32_t ID() const { return desc_->idx(); } + + int32_t Parent() const { return desc_->parent_idx(); } + + VarDescBind *NewVar(const std::string &name_bytes); + + VarDescBind *Var(const std::string &name_bytes) const; + + std::vector AllVars() const; + + BlockDescBind *ParentBlock() const; + + OpDescBind *AppendOp(); + + OpDescBind *PrependOp(); + + std::vector AllOps() const; + + void Sync(); + + BlockDesc *RawPtr() { return desc_; } + + private: + ProgramDescBind *prog_; // not_own + BlockDesc *desc_; // not_own + bool need_update_; + + std::deque> ops_; + std::unordered_map> vars_; +}; +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_type.h b/paddle/framework/data_type.h new file mode 100644 index 0000000000000000000000000000000000000000..55e3931f870d62dcaddc6c067f66999c59e2a262 --- /dev/null +++ b/paddle/framework/data_type.h @@ -0,0 +1,36 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include "paddle/framework/framework.pb.h" + +namespace paddle { +namespace framework { + +inline DataType ToDataType(std::type_index type) { + if (typeid(float).hash_code() == type.hash_code()) { + return DataType::FP32; + } else if (typeid(double).hash_code() == type.hash_code()) { + return DataType::FP64; + } else if (typeid(int).hash_code() == type.hash_code()) { + return DataType::INT32; + } else { + PADDLE_THROW("Not supported"); + return static_cast(-1); + } +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/ddim.cc b/paddle/framework/ddim.cc index fc3d508553c0e966978b28d58127bdbff10d45f1..a3357867530c110df16a5f3ec8c799735206cc71 100644 --- a/paddle/framework/ddim.cc +++ b/paddle/framework/ddim.cc @@ -292,5 +292,13 @@ DDim flatten_to_2d(const DDim& src, int num_col_dims) { DDim flatten_to_1d(const DDim& src) { return make_ddim({product(src)}); } +DDim stride(const DDim& ddim) { + std::vector strides(ddim.size()); + strides[ddim.size() - 1] = 1; + for (int i = ddim.size() - 2; i >= 0; --i) { + strides[i] = strides[i + 1] * ddim[i + 1]; + } + return framework::make_ddim(strides); +} } // namespace framework } // namespace paddle diff --git a/paddle/framework/ddim.h b/paddle/framework/ddim.h index ca29e7e8c7776de6adf3e3b0e8f11f0d4d8487c3..4a871bb0a91ed4050847509cc3f24218bcd57142 100644 --- a/paddle/framework/ddim.h +++ b/paddle/framework/ddim.h @@ -121,6 +121,7 @@ DDim flatten_to_2d(const DDim& src, int num_col_dims); DDim flatten_to_1d(const DDim& src); +DDim stride(const DDim& ddim); } // namespace framework } // namespace paddle diff --git a/paddle/framework/details/op_registry.h b/paddle/framework/details/op_registry.h new file mode 100644 index 0000000000000000000000000000000000000000..d2516ccc1eec21682276c2fddf049984453404d4 --- /dev/null +++ b/paddle/framework/details/op_registry.h @@ -0,0 +1,105 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/op_info.h" +#include "paddle/framework/op_proto_maker.h" +#include "paddle/framework/operator.h" + +namespace paddle { +namespace framework { +namespace details { + +enum OpInfoFillType { + kOperator = 0, + kOpProtoAndCheckerMaker = 1, + kGradOpDescMaker = 2 +}; + +template +struct OpInfoFillTypeID { + static constexpr OpInfoFillType ID() { + return std::is_base_of::value + ? kOperator + : (std::is_base_of::value + ? kOpProtoAndCheckerMaker + : (std::is_base_of::value + ? kGradOpDescMaker + : static_cast(-1))); + } +}; + +template ::ID()> +struct OpInfoFiller; + +template +class OperatorRegistrarRecursive; + +template +class OperatorRegistrarRecursive { + public: + using T = typename std::tuple_element>::type; + OperatorRegistrarRecursive(const char* op_type, OpInfo* info) { + OpInfoFiller fill; + fill(op_type, info); + constexpr auto size = sizeof...(ARGS); + OperatorRegistrarRecursive reg(op_type, + info); + (void)(reg); + } +}; + +template +class OperatorRegistrarRecursive { + public: + OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {} +}; + +template +struct OpInfoFiller { + void operator()(const char* op_type, OpInfo* info) const { + info->creator_ = [](const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, + const AttributeMap& attrs) { + return new T(type, inputs, outputs, attrs); + }; + } +}; + +template +struct OpInfoFiller { + void operator()(const char* op_type, OpInfo* info) const { + info->proto_ = new OpProto; + info->checker_ = new OpAttrChecker(); + auto maker = T(info->proto_, info->checker_); + maker.Validate(); + info->proto_->set_type(op_type); + PADDLE_ENFORCE( + info->proto_->IsInitialized(), + "Fail to initialize %s's OpProto, because %s is not initialized", + op_type, info->proto_->InitializationErrorString()); + } +}; + +template +struct OpInfoFiller { + void operator()(const char* op_type, OpInfo* info) const { + info->grad_op_maker_ = new T(); + } +}; +} // namespace details + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index dfcb5fb6210a08f35193b83e3b5f7cee92f618d7..951c7afbc14e2d9119169c1351d38ff0b67bdc5b 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -22,14 +22,11 @@ enum AttrType { INTS = 3; FLOATS = 4; STRINGS = 5; - INT_PAIRS = 6; + BOOLEAN = 6; + BOOLEANS = 7; + BLOCK = 8; } -message IntPair { - required int32 first = 1; - required int32 second = 2; -}; - // OpDesc describes an instance of a C++ framework::OperatorBase // derived class type. message OpDesc { @@ -43,7 +40,9 @@ message OpDesc { repeated int32 ints = 6; repeated float floats = 7; repeated string strings = 8; - repeated IntPair int_pairs = 9; + optional bool b = 10; + repeated bool bools = 11; + optional int32 block_idx = 12; }; message Var { @@ -100,7 +99,7 @@ enum DataType { message LoDTensorDesc { required DataType data_type = 1; - repeated int32 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480] + repeated int64 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480] optional int32 lod_level = 3 [ default = 0 ]; } @@ -108,3 +107,12 @@ message VarDesc { required string name = 1; optional LoDTensorDesc lod_tensor = 2; } + +message BlockDesc { + required int32 idx = 1; + required int32 parent_idx = 2; + repeated VarDesc vars = 3; + repeated OpDesc ops = 4; +} + +message ProgramDesc { repeated BlockDesc blocks = 1; } diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc index b02a599a800668b22e7fe39a10fa6dc132e305bd..3661ce41beba1328d1b1cdd9f0f913e693af9cff 100644 --- a/paddle/framework/grad_op_builder.cc +++ b/paddle/framework/grad_op_builder.cc @@ -54,5 +54,44 @@ OperatorBase* BuildGradOp(const OperatorBase* op) { return grad_info.Creator()(info.grad_op_type_, inputs, outputs, op->Attrs()); } +static void TransOpDescArg(const OpDescBind* src_op, const OpArgType& src_type, + bool is_grad, OpDescBind* dst_op, + const OpArgType& dst_type) { + PADDLE_ENFORCE(dst_op != nullptr, + "Protobuf desc of gradient op must be initialized first."); + const auto& proto = OpInfoMap::Instance().Get(src_op->Type()).Proto(); + const auto& src_arg_list = + src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); + for (const auto& arg : src_arg_list) { + if (arg.not_in_gradient() && !is_grad) continue; + const std::string src_name = arg.name(); + std::vector vars = src_type == OpArgType::IN + ? src_op->Input(src_name) + : src_op->Output(src_name); + if (is_grad) { + for (std::string& var : vars) { + var = GradVarName(var); + } + } + std::string dst_name = is_grad ? GradVarName(src_name) : src_name; + dst_type == OpArgType::IN ? dst_op->SetInput(dst_name, vars) + : dst_op->SetOutput(dst_name, vars); + } +} + +void CompleteGradOpDesc(const OpDescBind* forw_op, OpDescBind* grad_op) { + auto& info = OpInfoMap::Instance().Get(forw_op->Type()); + PADDLE_ENFORCE(info.HasGradientOp()); + + grad_op->SetType(info.grad_op_type_); + + TransOpDescArg(forw_op, OpArgType::IN, false, grad_op, OpArgType::IN); + TransOpDescArg(forw_op, OpArgType::OUT, false, grad_op, OpArgType::IN); + TransOpDescArg(forw_op, OpArgType::OUT, true, grad_op, OpArgType::IN); + TransOpDescArg(forw_op, OpArgType::IN, true, grad_op, OpArgType::OUT); + + grad_op->SetAttrMap(forw_op->GetAttrMap()); +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/grad_op_builder.h b/paddle/framework/grad_op_builder.h index 998f8ebbb5f2f4fb8b7e938b5916afd0f8a7930d..b601406061f9f8f24302251c2144b07b6e65717f 100644 --- a/paddle/framework/grad_op_builder.h +++ b/paddle/framework/grad_op_builder.h @@ -14,6 +14,7 @@ limitations under the License. */ #pragma once +#include "paddle/framework/op_desc.h" #include "paddle/framework/operator.h" namespace paddle { @@ -21,5 +22,7 @@ namespace framework { OperatorBase* BuildGradOp(const OperatorBase* op); +void CompleteGradOpDesc(const OpDescBind* forw_op, OpDescBind* grad_op); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/grad_op_builder_test.cc b/paddle/framework/grad_op_builder_test.cc index 9e3ca563c6765637f8471d142d32cec447f0b977..55c5fa420e2441260999ba15cf86484f9fd6e890 100644 --- a/paddle/framework/grad_op_builder_test.cc +++ b/paddle/framework/grad_op_builder_test.cc @@ -3,7 +3,7 @@ #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" -USE_OP(add); +USE_OP(sum); namespace paddle { namespace framework { @@ -41,17 +41,24 @@ namespace f = paddle::framework; TEST(GradOpBuilder, AddTwo) { std::shared_ptr add_op(f::OpRegistry::CreateOp( - "add", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {})); + "sum", {{"X", {"x", "y"}}}, {{"Out", {"out"}}}, {})); std::shared_ptr grad_add_op = f::OpRegistry::CreateGradOp(*add_op); - EXPECT_EQ(grad_add_op->Inputs().size(), 4UL); - EXPECT_EQ(grad_add_op->Outputs().size(), 2UL); - EXPECT_EQ(grad_add_op->Input("X"), "x"); - EXPECT_EQ(grad_add_op->Input("Y"), "y"); - EXPECT_EQ(grad_add_op->Input("Out"), "out"); + + EXPECT_EQ(grad_add_op->Inputs().size(), 1UL); + EXPECT_EQ(grad_add_op->Outputs().size(), 1UL); EXPECT_EQ(grad_add_op->Input(f::GradVarName("Out")), f::GradVarName("out")); - EXPECT_EQ(grad_add_op->Output(f::GradVarName("X")), f::GradVarName("x")); - EXPECT_EQ(grad_add_op->Output(f::GradVarName("Y")), f::GradVarName("y")); + auto &outputs = grad_add_op->Outputs(f::GradVarName("X")); + EXPECT_EQ(2UL, outputs.size()); + auto in_output = [&outputs](const std::string &name) { + for (auto &output_name : outputs) { + if (output_name == name) return true; + } + return false; + }; + + EXPECT_TRUE(in_output(f::GradVarName("x"))); + EXPECT_TRUE(in_output(f::GradVarName("y"))); } REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker, mult_io_grad, f::NOP); @@ -120,3 +127,82 @@ TEST(GradOpBuilder, IOIgnoredInGradient) { std::vector( {f::GradVarName("in3_1"), f::GradVarName("in3_2")})); } + +TEST(GradOpDescBuilder, MutiInOut) { + f::OpDescBind *forw_op = new f::OpDescBind(); + forw_op->SetType("mult_io"); + forw_op->SetInput("In1", {"in1"}); + forw_op->SetInput("In2_mult", {"in2_1", "in2_2", "in2_3"}); + forw_op->SetInput("In3", {"in3"}); + forw_op->SetOutput("Out1", {"out1"}); + forw_op->SetOutput("Out2_mult", {"out2_1", "out2_2"}); + + f::OpDescBind *grad_op = new f::OpDescBind(); + f::CompleteGradOpDesc(forw_op, grad_op); + + EXPECT_EQ(grad_op->Type(), "mult_io_grad"); + ASSERT_EQ(grad_op->InputNames().size(), 3UL + 2UL + 2UL); + EXPECT_EQ(grad_op->Input("In1"), std::vector({"in1"})); + EXPECT_EQ(grad_op->Input("In2_mult"), + std::vector({"in2_1", "in2_2", "in2_3"})); + EXPECT_EQ(grad_op->Input("In3"), std::vector({"in3"})); + EXPECT_EQ(grad_op->Input("Out1"), std::vector({"out1"})); + EXPECT_EQ(grad_op->Input("Out2_mult"), + std::vector({"out2_1", "out2_2"})); + EXPECT_EQ(grad_op->Input(f::GradVarName("Out1")), + std::vector({f::GradVarName("out1")})); + EXPECT_EQ(grad_op->Input(f::GradVarName("Out2_mult")), + std::vector( + {f::GradVarName("out2_1"), f::GradVarName("out2_2")})); + + ASSERT_EQ(grad_op->OutputNames().size(), 3UL); + EXPECT_EQ(grad_op->Output(f::GradVarName("In1")), + std::vector({f::GradVarName("in1")})); + EXPECT_EQ(grad_op->Output(f::GradVarName("In2_mult")), + std::vector({f::GradVarName("in2_1"), + f::GradVarName("in2_2"), + f::GradVarName("in2_3")})); + EXPECT_EQ(grad_op->Output(f::GradVarName("In3")), + std::vector({f::GradVarName("in3")})); + delete forw_op; + delete grad_op; +} + +TEST(GradOpDescBuilder, IOIgnoredInGradient) { + f::OpDescBind *forw_op = new f::OpDescBind(); + forw_op->SetType("io_ignored"); + forw_op->SetInput("In1", {"in1"}); + forw_op->SetInput("In2_mult", {"in2_1", "in2_2"}); + forw_op->SetInput("In3_mult", {"in3_1", "in3_2"}); + forw_op->SetOutput("Out1_mult", {"out1_1", "out1_2"}); + forw_op->SetOutput("Out2", {"out2"}); + + f::OpDescBind *grad_op = new f::OpDescBind(); + f::CompleteGradOpDesc(forw_op, grad_op); + + EXPECT_EQ(grad_op->Type(), "io_ignored_grad"); + // 'In2' and 'Out2' are ignored in gradient calculating + ASSERT_EQ(grad_op->InputNames().size(), 2UL + 1UL + 2UL); + EXPECT_EQ(grad_op->Input("In1"), std::vector({"in1"})); + EXPECT_EQ(grad_op->Input("In3_mult"), + std::vector({"in3_1", "in3_2"})); + EXPECT_EQ(grad_op->Input("Out1_mult"), + std::vector({"out1_1", "out1_2"})); + EXPECT_EQ(grad_op->Input(f::GradVarName("Out1_mult")), + std::vector( + {f::GradVarName("out1_1"), f::GradVarName("out1_2")})); + EXPECT_EQ(grad_op->Input(f::GradVarName("Out2")), + std::vector({f::GradVarName("out2")})); + + ASSERT_EQ(grad_op->OutputNames().size(), 3UL); + EXPECT_EQ(grad_op->Output(f::GradVarName("In1")), + std::vector({f::GradVarName("in1")})); + EXPECT_EQ(grad_op->Output(f::GradVarName("In2_mult")), + std::vector( + {f::GradVarName("in2_1"), f::GradVarName("in2_2")})); + EXPECT_EQ(grad_op->Output(f::GradVarName("In3_mult")), + std::vector( + {f::GradVarName("in3_1"), f::GradVarName("in3_2")})); + delete forw_op; + delete grad_op; +} \ No newline at end of file diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index 908a1f2fd0abe0aa4016c72dbcbc18dcc144232c..5b7badf89c1714331bae9fc8cf94c8da2c66dbad 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -72,20 +72,32 @@ bool operator==(const LoD& a, const LoD& b) { return true; } -void LoDTensor::SliceLevels(size_t level_begin, size_t level_end) { +size_t LoDTensor::NumElements(size_t level, size_t idx) const { + PADDLE_ENFORCE_LT(level, NumLevels()); + PADDLE_ENFORCE_LT(idx, NumElements(level)); + // the last level of LoD, just return number of records in Tensor + if (level == NumLevels() - 1) { + return lod_[level][idx + 1] - lod_[level][idx]; + } + // high level of LoD, and there is another lower level, return number of + // lower-level elements + auto tmp = SliceInLevel(lod_, level, idx, idx + 1); + PADDLE_ENFORCE_GE(tmp.size(), 2); + // there is a 0 as a placeholder stored in LoD, so the number of elements + // equals lod.size() - 1 + return tmp[1].size() - 1; +} + +void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) { auto new_lod = framework::SliceLevels(lod_, level_begin, level_end); lod_ = new_lod; } -void LoDTensor::SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) { - PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, - NumLevels()); - PADDLE_ENFORCE(elem_begin < NumElements(level), - "element begin [%d] out of range [%d]", elem_begin, - NumElements(level)); - PADDLE_ENFORCE(elem_end < NumElements(level) + 1, - "element end [%d] out of range [%d]", elem_end, - NumElements(level)); +void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin, + size_t elem_end) { + PADDLE_ENFORCE_LT(level, NumLevels()); + PADDLE_ENFORCE_LT(elem_begin, NumElements(level)); + PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1); auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end); lod_ = new_lod; diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 568f4e89819c8345d8908634f6fa56f09483a763..49786a4a6635f1b39356dbf9633c4e7da443f04e 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -38,6 +38,18 @@ using Vector = thrust::host_vector< T, thrust::system::cuda::experimental::pinned_allocator>; #endif +/* + * 3-level LoD stores + * + * 0 10 20 + * 0 5 10 15 20 + * 0 2 5 7 10 12 15 20 + * + * - in a level, each element indicates offset in the underlying Tensor + * - the first element should be 0 and that indicates that this sequence start + * from 0 + * - each sequence's begin and end(no-inclusive) is level[id, id+1] + */ using LoD = std::vector>; LoD SliceLevels(const LoD& in, size_t level_begin, size_t level_end); @@ -51,28 +63,22 @@ bool operator==(const LoD& a, const LoD& b); * LoDTensor (Level of details Tensor) * see https://en.wikipedia.org/wiki/Level_of_details for reference. */ -class LoDTensor { +class LoDTensor : public Tensor { public: LoDTensor() {} - LoDTensor(const LoD& lod, Tensor* t) : lod_(lod), tensor_(t) {} - - void set_lod(const LoD& lod) { lod_ = lod; } - void set_tensor(Tensor* tensor) { tensor_ = tensor; } + explicit LoDTensor(const LoD& lod) : lod_(lod) {} - Tensor& tensor() { return *tensor_; } + void set_lod(const LoD& lod) { lod_ = lod; } - LoD lod() { return lod_; } + LoD lod() const { return lod_; } /* * Get a element from LoD. */ size_t lod_element(size_t level, size_t elem) const { - PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, - NumLevels()); - PADDLE_ENFORCE(elem < NumElements(level), - "element begin [%d] out of range [%d]", elem, - NumElements(level)); + PADDLE_ENFORCE_LT(level, NumLevels()); + PADDLE_ENFORCE_LT(elem, NumElements(level)); return (lod_)[level][elem]; } @@ -85,26 +91,36 @@ class LoDTensor { * Number of elements in a level. */ size_t NumElements(size_t level = 0) const { - PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, - NumLevels()); + PADDLE_ENFORCE_LT(level, NumLevels()); // the last offset is the end of last element return (lod_)[level].size() - 1; } /* - * Slice of levels[level_begin:level_end] + * Number of lower-level elements. + * For example, a 2-level lod-tensor + * + * 0-th level | | + * 1-th level || ||| + * + * NumElements(0, 0) get 2 + * NumElements(0, 1) get 3 + */ + size_t NumElements(size_t level, size_t idx) const; + + /* + * Shrink levels[level_begin:level_end] */ - void SliceLevels(size_t level_begin, size_t level_end); + void ShrinkLevels(size_t level_begin, size_t level_end); /* - * Slice of elements of a level, [elem_begin: elem_end] + * Shrink elements of a level, [elem_begin: elem_end] * @note: low performance in slice lod_. */ - void SliceInLevel(size_t level, size_t elem_begin, size_t elem_end); + void ShrinkInLevel(size_t level, size_t elem_begin, size_t elem_end); private: LoD lod_; - Tensor* tensor_; // not owned }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/lod_tensor.md b/paddle/framework/lod_tensor.md index 769b61f175a2f462258c1242d027c04c0abd12a9..07bbdf9416c432052b3222757a61ac4bfd70fe14 100644 --- a/paddle/framework/lod_tensor.md +++ b/paddle/framework/lod_tensor.md @@ -4,13 +4,13 @@ PaddlePaddle's RNN doesn't require that all instances have the same length. To ## Challenge of Variable-length Inputs -People usually represent a mini-batch by a Tensor. For example, a mini-batch of 32 images, each of size 32x32, is a 10x32x32 Tensor. So a transformation, T, of all images can be a matrix multiplication of the 32x32xO-dimensional tensor T and the 10x32x32 Tensor. +People usually represent a mini-batch by a Tensor. For example, a mini-batch of 10 images, each of size 32x32, is a 10x32x32 Tensor. So a transformation, T, of all images can be a matrix multiplication of the 10xOx32-dimensional tensor T and the 10x32x32 Tensor. Another example is that each mini-batch contains 32 sentences, where each word is a D-dimensional one-hot vector. If all sentences have the same length L, we can represent this mini-batch by a 32xLxD tensor. However, in most cases, sentences have variable lengths, and we will need an index data structure to record these variable lengths. ## LoD as a Solution -### Mini-Batch of variable-length sentenses +### Mini-Batch of variable-length sentences Let's imagine a mini-batch of 3 variable lengths sentences, containing 3, 1, and 2 words respectively. We can represent it by a (3+1+2)xD tensor plus some index information: @@ -51,17 +51,17 @@ The many 1's on the second level seem duplicated. For this particular case of 2 In summary, as long as that the essential elements (words or images) have the same size, we can represent mini-batches by a LoD Tensor: - The underlying tensor has size LxD1xD2x..., where D1xD2... is the size of the essential elements, and -- the first dimension size L has an additon property -- a LoD index as a nested vector: +- The first dimension size L has an additonal property -- a LoD index as a nested vector: ```c++ - typedef std::vector > LoD; + typedef std::vector> LoD; ``` -- The LoD index can is not necessary when there are only two levels and all elements of the second level have length 1. +- The LoD index is not necessary when there are only two levels and all elements of the second level have length 1. ## Slicing of LoD Tensor -Consider that we have a network with three levels of RNN: the top level one handles articles, the second level one handles sentences, and the basic level one handles words. This network requires that mini-batches represented by 4 level LoD Tensor, for example, +Consider that we have a network with three levels of RNN: the top level one handles articles, the second level one handles sentences, and the basic level one handles words. This network requires that mini-batches represented by 3 level LoD Tensor, for example, ``` 3 @@ -90,8 +90,9 @@ and the <1,2>-slice of above example is Let's go on slicing this slice. Its <1,1>-slice is ``` -3 -||| +1 +1 +| ``` ### The Slicing Algorithm @@ -99,7 +100,7 @@ Let's go on slicing this slice. Its <1,1>-slice is The algorithm, with over-simplified data structure, is defined as ```c++ -typedef vector > LoD; +typedef std::vector> LoD; struct LoDTensor { LoD lod_; @@ -128,7 +129,7 @@ Suppose that we want to retrieve the <1,2>-slice we will need to find out the starting position of this slice by summing over all leaf nodes in `LoD` to the left of the slice, i.e., 3 + 2 + 4 + 1 = 10. -To avoid the traversal of the LoD tree at slcing time, we can do it at the construction time -- instead of saving the lengths of the next level in the LoD tree, we can save the starting offset of the next level. For example, above LoD Tensor can be transformed into +To avoid the traversal of the LoD tree at slicing time, we can do it at the construction time -- instead of saving the lengths of the next level in the LoD tree, we can save the starting offset of the next level. For example, above LoD Tensor can be transformed into ``` 0 diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc index 1da8553134f377f7a4fbe8008d12fe8d4a0e47f4..44f09f584fb752d7003baa804979f3bb5cd9d651 100644 --- a/paddle/framework/lod_tensor_test.cc +++ b/paddle/framework/lod_tensor_test.cc @@ -36,69 +36,70 @@ class LoDTensorTester : public ::testing::Test { ASSERT_EQ(lod.size(), 3UL); - tensor.Resize({20 /*batch size*/, 128 /*dim*/}); + lod_tensor_.Resize({20 /*batch size*/, 128 /*dim*/}); // malloc memory - tensor.mutable_data(place); + lod_tensor_.mutable_data(place); - lod_tensor.set_lod(lod); - lod_tensor.set_tensor(&tensor); + lod_tensor_.set_lod(lod); } protected: platform::CPUPlace place; - Tensor tensor; - LoDTensor lod_tensor; + LoDTensor lod_tensor_; }; -TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor.NumLevels(), 3UL); } +TEST_F(LoDTensorTester, NumLevels) { ASSERT_EQ(lod_tensor_.NumLevels(), 3UL); } TEST_F(LoDTensorTester, NumElements) { - ASSERT_EQ(lod_tensor.NumElements(0), 2UL); - ASSERT_EQ(lod_tensor.NumElements(1), 4UL); - ASSERT_EQ(lod_tensor.NumElements(2), 8UL); + ASSERT_EQ(lod_tensor_.NumElements(0), 2UL); + ASSERT_EQ(lod_tensor_.NumElements(1), 4UL); + ASSERT_EQ(lod_tensor_.NumElements(2), 8UL); } -TEST_F(LoDTensorTester, SliceLevels) { +TEST_F(LoDTensorTester, NumElements2) { + ASSERT_EQ(lod_tensor_.NumElements(0, 0), 2UL); + ASSERT_EQ(lod_tensor_.NumElements(0, 1), 2UL); + ASSERT_EQ(lod_tensor_.NumElements(1, 1), 2UL); +} + +TEST_F(LoDTensorTester, ShrinkLevels) { // slice 1 level for (size_t level = 0; level < 3UL; ++level) { - LoDTensor new_lod_tensor = lod_tensor; - new_lod_tensor.SliceLevels(level, level + 1); + LoDTensor new_lod_tensor = lod_tensor_; + new_lod_tensor.ShrinkLevels(level, level + 1); ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level)); - ASSERT_EQ(new_lod_tensor.tensor().data(), - lod_tensor.tensor().data()); + ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level)); + ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); } - // slice 2 level + // shrink 2 level for (size_t level = 0; level < 2UL; ++level) { - LoDTensor new_lod_tensor = lod_tensor; - new_lod_tensor.SliceLevels(level, level + 2); + LoDTensor new_lod_tensor = lod_tensor_; + new_lod_tensor.ShrinkLevels(level, level + 2); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level)); - ASSERT_EQ(new_lod_tensor.NumElements(1), lod_tensor.NumElements(level + 1)); - ASSERT_EQ(new_lod_tensor.tensor().data(), - lod_tensor.tensor().data()); + ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level)); + ASSERT_EQ(new_lod_tensor.NumElements(1), + lod_tensor_.NumElements(level + 1)); + ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); } } -TEST_F(LoDTensorTester, SliceInLevel) { +TEST_F(LoDTensorTester, ShrinkInLevel) { size_t level = 0; - LoDTensor new_lod_tensor = lod_tensor; - new_lod_tensor.SliceInLevel(level, 0, 2); + LoDTensor new_lod_tensor = lod_tensor_; + new_lod_tensor.ShrinkInLevel(level, 0, 2); EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL); EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL); EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL); EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL); - ASSERT_EQ(new_lod_tensor.tensor().data(), - lod_tensor.tensor().data()); + ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); level = 1; - new_lod_tensor = lod_tensor; - new_lod_tensor.SliceInLevel(level, 0, 2); + new_lod_tensor = lod_tensor_; + new_lod_tensor.ShrinkInLevel(level, 0, 2); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); - ASSERT_EQ(new_lod_tensor.tensor().data(), - lod_tensor.tensor().data()); + ASSERT_EQ(new_lod_tensor.data(), lod_tensor_.data()); } } // namespace framework diff --git a/paddle/framework/lod_tensor_test.cu b/paddle/framework/lod_tensor_test.cu index 1079a36a2e7b24f6f8a5bcbb296355567305a765..647d07536dd070bc37137fc01f683ec07ba7d6f4 100644 --- a/paddle/framework/lod_tensor_test.cu +++ b/paddle/framework/lod_tensor_test.cu @@ -26,20 +26,18 @@ __global__ void test(size_t* a, int size) { } TEST(LoDTensor, LoDInGPU) { - paddle::framework::Tensor tensor; paddle::framework::LoDTensor lod_tensor; paddle::platform::GPUPlace place(0); paddle::framework::LoD src_lod; src_lod.push_back(std::vector{0, 2, 4, 6, 8, 10, 12, 14}); - tensor.Resize({14, 16}); - tensor.mutable_data(place); + lod_tensor.Resize({14, 16}); + lod_tensor.mutable_data(place); lod_tensor.set_lod(src_lod); - lod_tensor.set_tensor(&tensor); - CHECK_EQ(lod_tensor.lod_element(0, 2), 4); - CHECK_EQ(lod_tensor.lod_element(0, 4), 8); + CHECK_EQ(lod_tensor.lod_element(0, 2), 4UL); + CHECK_EQ(lod_tensor.lod_element(0, 4), 8UL); auto lod = lod_tensor.lod(); diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc new file mode 100644 index 0000000000000000000000000000000000000000..33a064890cc62a4e3f04c79bc000951e76fd477c --- /dev/null +++ b/paddle/framework/op_desc.cc @@ -0,0 +1,169 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/op_desc.h" +#include "paddle/framework/block_desc.h" + +namespace paddle { +namespace framework { + +OpDesc *OpDescBind::Proto() { + Sync(); + return &op_desc_; +} + +const std::vector &OpDescBind::Input( + const std::string &name) const { + auto it = inputs_.find(name); + PADDLE_ENFORCE(it != inputs_.end(), "Input %s cannot be found in Op %s", name, + Type()); + return it->second; +} + +std::vector OpDescBind::InputNames() const { + std::vector retv; + retv.reserve(this->inputs_.size()); + for (auto &ipt : this->inputs_) { + retv.push_back(ipt.first); + } + return retv; +} + +void OpDescBind::SetInput(const std::string ¶m_name, + const std::vector &args) { + need_update_ = true; + inputs_[param_name] = args; +} + +const std::vector &OpDescBind::Output( + const std::string &name) const { + auto it = outputs_.find(name); + PADDLE_ENFORCE(it != outputs_.end(), "Output %s cannot be found in Op %s", + name, Type()); + return it->second; +} + +std::vector OpDescBind::OutputNames() const { + std::vector retv; + retv.reserve(this->outputs_.size()); + for (auto &ipt : this->outputs_) { + retv.push_back(ipt.first); + } + return retv; +} + +void OpDescBind::SetOutput(const std::string ¶m_name, + const std::vector &args) { + need_update_ = true; + this->outputs_[param_name] = args; +} + +AttrType OpDescBind::GetAttrType(const std::string &name) const { + auto it = attrs_.find(name); + PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); + return static_cast(it->second.which() - 1); +} + +std::vector OpDescBind::AttrNames() const { + std::vector retv; + retv.reserve(attrs_.size()); + for (auto &attr : attrs_) { + retv.push_back(attr.first); + } + return retv; +} + +void OpDescBind::SetAttr(const std::string &name, const Attribute &v) { + this->attrs_[name] = v; + need_update_ = true; +} + +void OpDescBind::SetAttrMap( + const std::unordered_map &attr_map) { + attrs_ = attr_map; + need_update_ = true; +} + +Attribute OpDescBind::GetAttr(const std::string &name) const { + auto it = attrs_.find(name); + PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); + return it->second; +} + +int OpDescBind::GetBlockAttr(const std::string &name) const { + auto it = attrs_.find(name); + PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); + return boost::get(it->second)->idx(); +} + +const std::unordered_map &OpDescBind::GetAttrMap() + const { + return attrs_; +} + +struct SetAttrDescVisitor : public boost::static_visitor { + explicit SetAttrDescVisitor(OpDesc::Attr *attr) : attr_(attr) {} + mutable OpDesc::Attr *attr_; + void operator()(int v) const { attr_->set_i(v); } + void operator()(float v) const { attr_->set_f(v); } + void operator()(const std::string &v) const { attr_->set_s(v); } + void operator()(bool b) const { attr_->set_b(b); } + + void operator()(const std::vector &v) const { + VectorToRepeated(v, attr_->mutable_ints()); + } + void operator()(const std::vector &v) const { + VectorToRepeated(v, attr_->mutable_floats()); + } + void operator()(const std::vector &v) const { + VectorToRepeated(v, attr_->mutable_strings()); + } + void operator()(const std::vector &v) const { + VectorToRepeated(v, attr_->mutable_bools()); + } + void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->idx()); } + void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); } +}; + +void OpDescBind::Sync() { + if (need_update_) { + this->op_desc_.mutable_inputs()->Clear(); + for (auto &ipt : inputs_) { + auto *input = op_desc_.add_inputs(); + input->set_parameter(ipt.first); + VectorToRepeated(ipt.second, input->mutable_arguments()); + } + + this->op_desc_.mutable_outputs()->Clear(); + for (auto &opt : outputs_) { + auto *output = op_desc_.add_outputs(); + output->set_parameter(opt.first); + VectorToRepeated(opt.second, output->mutable_arguments()); + } + + this->op_desc_.mutable_attrs()->Clear(); + for (auto &attr : attrs_) { + auto *attr_desc = op_desc_.add_attrs(); + attr_desc->set_name(attr.first); + attr_desc->set_type( + static_cast(attr.second.which() - 1)); + SetAttrDescVisitor visitor(attr_desc); + boost::apply_visitor(visitor, attr.second); + } + + need_update_ = false; + } +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_desc.h b/paddle/framework/op_desc.h new file mode 100644 index 0000000000000000000000000000000000000000..0af416971556c812db238caeb7959a0a488c6e1b --- /dev/null +++ b/paddle/framework/op_desc.h @@ -0,0 +1,87 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include "paddle/framework/attribute.h" +#include "paddle/framework/type_defs.h" +#include "paddle/framework/var_desc.h" + +namespace paddle { +namespace framework { + +class BlockDescBind; + +class OpDescBind { + public: + OpDesc *Proto(); + + std::string Type() const { return op_desc_.type(); } + + void SetType(const std::string &type) { op_desc_.set_type(type); } + + const std::vector &Input(const std::string &name) const; + + std::vector InputNames() const; + + void SetInput(const std::string ¶m_name, + const std::vector &args); + + const std::vector &Output(const std::string &name) const; + + std::vector OutputNames() const; + + void SetOutput(const std::string ¶m_name, + const std::vector &args); + + std::string DebugString() { return this->Proto()->DebugString(); } + + bool HasAttr(const std::string &name) const { + return attrs_.find(name) != attrs_.end(); + } + + AttrType GetAttrType(const std::string &name) const; + + std::vector AttrNames() const; + + void SetAttr(const std::string &name, const Attribute &v); + + void SetBlockAttr(const std::string &name, BlockDescBind &block); + + // Only be used in C++ + void SetAttrMap(const AttributeMap &attr_map); + + Attribute GetAttr(const std::string &name) const; + + int GetBlockAttr(const std::string &name) const; + + // Only be used in C++ + const AttributeMap &GetAttrMap() const; + + private: + void Sync(); + + OpDesc op_desc_; + VariableNameMap inputs_; + VariableNameMap outputs_; + AttributeMap attrs_; + + // need_update_ indicate there some local changes not be synchronized. If + // local changes should be synchronized, need_update_ should be set to true. + bool need_update_{false}; +}; +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h index b98d8f23a14cf6fbe787953ad16b5c9ab99222ad..470336d367566b342af6a7dac9c9cdf465101ea2 100644 --- a/paddle/framework/op_info.h +++ b/paddle/framework/op_info.h @@ -17,23 +17,25 @@ #include #include #include - #include "paddle/framework/attribute.h" +#include "paddle/framework/op_desc.h" +#include "paddle/framework/type_defs.h" namespace paddle { namespace framework { -class OperatorBase; -using VariableNameMap = std::map>; -using OpCreator = std::function; +class GradOpDescMakerBase { + public: + virtual ~GradOpDescMakerBase() = default; + virtual std::vector operator()(const OpDescBind&) const = 0; +}; struct OpInfo { OpCreator creator_; std::string grad_op_type_; - OpProto* proto_; - OpAttrChecker* checker_; + GradOpDescMakerBase* grad_op_maker_{nullptr}; + OpProto* proto_{nullptr}; + OpAttrChecker* checker_{nullptr}; bool HasOpProtoAndChecker() const { return proto_ != nullptr && checker_ != nullptr; diff --git a/paddle/framework/op_proto_maker.cc b/paddle/framework/op_proto_maker.cc new file mode 100644 index 0000000000000000000000000000000000000000..151d61d5b175535509306d028027c7bc19abce81 --- /dev/null +++ b/paddle/framework/op_proto_maker.cc @@ -0,0 +1,58 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/op_proto_maker.h" + +namespace paddle { +namespace framework { + +void OpProtoAndCheckerMaker::Validate() { + validated_ = true; + CheckNoDuplicatedInOutAttrs(); +} + +OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput( + const std::string& name, const std::string& comment) { + auto* input = proto_->add_inputs(); + input->set_name(name); + input->set_comment(comment); + return OpProtoAndCheckerMaker::VariableBuilder{input}; +} + +OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddOutput( + const std::string& name, const std::string& comment) { + auto* output = proto_->add_outputs(); + output->set_name(name); + output->set_comment(comment); + return OpProtoAndCheckerMaker::VariableBuilder{output}; +} + +void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() { + std::unordered_set names; + auto checker = [&](const std::string& name) { + PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name); + names.insert(name); + }; + for (auto& attr : proto_->attrs()) { + checker(attr.name()); + } + for (auto& input : proto_->inputs()) { + checker(input.name()); + } + for (auto& output : proto_->outputs()) { + checker(output.name()); + } +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_proto_maker.h b/paddle/framework/op_proto_maker.h new file mode 100644 index 0000000000000000000000000000000000000000..4d55a37db9f0a3deac7b3489c8bc288ea41f4799 --- /dev/null +++ b/paddle/framework/op_proto_maker.h @@ -0,0 +1,88 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/attribute.h" +#include "paddle/framework/framework.pb.h" + +namespace paddle { +namespace framework { + +// this class not only make proto but also init attribute checkers. +class OpProtoAndCheckerMaker { + public: + OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) + : proto_(proto), op_checker_(op_checker) {} + + virtual ~OpProtoAndCheckerMaker() { + PADDLE_ENFORCE(validated_, "should call Validate after build"); + } + + void Validate(); + + protected: + struct VariableBuilder { + OpProto::Var* var_; + + VariableBuilder& AsDuplicable() { + var_->set_duplicable(true); + return *this; + } + + VariableBuilder& AsIntermediate() { + var_->set_intermediate(true); + return *this; + } + + VariableBuilder& NotInGradient() { + var_->set_not_in_gradient(true); + return *this; + } + }; + + VariableBuilder AddInput(const std::string& name, const std::string& comment); + + VariableBuilder AddOutput(const std::string& name, + const std::string& comment); + + template + TypedAttrChecker& AddAttr(const std::string& name, + const std::string& comment, + bool generated = false) { + auto* attr = proto_->add_attrs(); + attr->set_name(name); + attr->set_comment(comment); + attr->set_generated(generated); + attr->set_type(AttrTypeID()); + return op_checker_->AddAttrChecker(name); + } + + void AddComment(const std::string& comment) { proto_->set_comment(comment); } + + private: + void CheckNoDuplicatedInOutAttrs(); + + OpProto* proto_; + OpAttrChecker* op_checker_; + bool validated_{false}; +}; + +class NOPMaker : public OpProtoAndCheckerMaker { + public: + NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) {} +}; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_proto_maker_test.cc b/paddle/framework/op_proto_maker_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..b01e30f75371ca4aa63dae86ddfb966b1d4c7830 --- /dev/null +++ b/paddle/framework/op_proto_maker_test.cc @@ -0,0 +1,51 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/op_proto_maker.h" + +#include "gtest/gtest.h" + +class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { + public: + TestAttrProtoMaker(paddle::framework::OpProto* proto, + paddle::framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddAttr("scale", "scale of test op"); + AddAttr("scale", "scale of test op"); + } +}; + +TEST(ProtoMaker, DuplicatedAttr) { + paddle::framework::OpProto op_proto; + paddle::framework::OpAttrChecker op_checker; + auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker); + ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); +} + +class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { + public: + TestInOutProtoMaker(paddle::framework::OpProto* proto, + paddle::framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("input", "input of test op"); + AddInput("input", "input of test op"); + } +}; + +TEST(ProtoMaker, DuplicatedInOut) { + paddle::framework::OpProto op_proto; + paddle::framework::OpAttrChecker op_checker; + auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker); + ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); +} \ No newline at end of file diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 572dff860a306bb03ba9e6702fec85e4a2ea1b54..4ee2c7d27561c3855059c42e1604f353c65bfa41 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -21,48 +21,42 @@ limitations under the License. */ #include #include #include "paddle/framework/attribute.h" +#include "paddle/framework/details/op_registry.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/grad_op_builder.h" -#include "paddle/framework/op_info.h" #include "paddle/framework/operator.h" #include "paddle/framework/scope.h" namespace paddle { namespace framework { +template +struct OperatorRegistrar { + explicit OperatorRegistrar(const char* op_type) : op_type(op_type) { + PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), + "'%s' is registered more than once.", op_type); + static_assert(sizeof...(ARGS) != 0, + "OperatorRegistrar should be invoked at least by OpClass"); + details::OperatorRegistrarRecursive<0, false, ARGS...>(op_type, &info); + } + + ~OperatorRegistrar() { OpInfoMap::Instance().Insert(op_type, info); } + + const char* op_type; + + OpInfo info; +}; + class OpRegistry { public: template static void RegisterOp(const std::string& op_type, const std::string& grad_op_type) { - PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), - "'%s' is registered more than once.", op_type); - OpInfo op_info; - op_info.creator_ = []( - const std::string& type, const VariableNameMap& inputs, - const VariableNameMap& outputs, const AttributeMap& attrs) { - return new OpType(type, inputs, outputs, attrs); - }; - op_info.grad_op_type_ = grad_op_type; - if (std::type_index(typeid(ProtoMakerType)) != - std::type_index(typeid(NOPMaker))) { - op_info.proto_ = new OpProto; - op_info.checker_ = new OpAttrChecker; - auto maker = ProtoMakerType(op_info.proto_, op_info.checker_); - maker.Validate(); - op_info.proto_->set_type(op_type); - PADDLE_ENFORCE( - op_info.proto_->IsInitialized(), - "Fail to initialize %s's OpProto, because %s is not initialized", - op_type, op_info.proto_->InitializationErrorString()); - } else { - op_info.proto_ = nullptr; - op_info.checker_ = nullptr; - } - OpInfoMap::Instance().Insert(op_type, op_info); + OperatorRegistrar reg(op_type.c_str()); + reg.info.grad_op_type_ = grad_op_type; // register gradient op if (!grad_op_type.empty()) { - RegisterOp(grad_op_type, ""); + OperatorRegistrar grad_reg(grad_op_type.c_str()); } } @@ -99,13 +93,39 @@ class OpRegistrar : public Registrar { } }; -template +template +struct OpKernelRegistrarFunctor; + +template +struct OpKernelRegistrarFunctor { + using KERNEL_TYPE = + typename std::tuple_element>::type; + + void operator()(const char* op_type) const { + using T = typename KERNEL_TYPE::ELEMENT_TYPE; + OperatorWithKernel::OpKernelKey key(ToDataType(std::type_index(typeid(T))), + PlaceType()); + OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KERNEL_TYPE); + + constexpr auto size = std::tuple_size>::value; + OpKernelRegistrarFunctor + func; + func(op_type); + } +}; + +template +struct OpKernelRegistrarFunctor { + void operator()(const char* op_type) const {} +}; + +// User can register many kernel in one place. The data type could be different. +template class OpKernelRegistrar : public Registrar { public: explicit OpKernelRegistrar(const char* op_type) { - OperatorWithKernel::OpKernelKey key; - key.place_ = PlaceType(); - OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KernelType); + OpKernelRegistrarFunctor func; + func(op_type); } }; diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index e00c6e8d904508ec9985537fc703c7c61a14e0de..f89f40b444f893d898595db50e245824a19284f6 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -10,7 +10,6 @@ class CosineOp : public OperatorBase { using OperatorBase::OperatorBase; void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} - void InferShape(const Scope& scope) const override {} }; class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { @@ -29,7 +28,6 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class MyTestOp : public OperatorBase { public: using OperatorBase::OperatorBase; - void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} }; @@ -174,4 +172,15 @@ TEST(OpRegistry, CustomChecker) { op->Run(scope, dev_ctx); int test_attr = op->Attr("test_attr"); ASSERT_EQ(test_attr, 4); +} + +class CosineOpComplete : public paddle::framework::CosineOp { + public: + DEFINE_OP_CONSTRUCTOR(CosineOpComplete, paddle::framework::CosineOp); + DEFINE_OP_CLONE_METHOD(CosineOpComplete); +}; + +TEST(OperatorRegistrar, Test) { + using namespace paddle::framework; + OperatorRegistrar reg("cos"); } \ No newline at end of file diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index e1e122091f7759b1a68f1f982bc2a35e8241f9f0..1012a30b0a6b28e79b92007244bb6e0139cf39f9 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -14,7 +14,7 @@ limitations under the License. */ #include "paddle/framework/operator.h" #include -#include "paddle/framework/op_registry.h" +#include namespace paddle { namespace framework { @@ -22,17 +22,35 @@ namespace framework { template <> Eigen::DefaultDevice& ExecutionContext::GetEigenDevice< platform::CPUPlace, Eigen::DefaultDevice>() const { - return *device_context_->get_eigen_device(); + return *device_context_.GetEigenDevice(); } #ifndef PADDLE_ONLY_CPU template <> Eigen::GpuDevice& ExecutionContext::GetEigenDevice() const { - return *device_context_->get_eigen_device(); + return *device_context_.GetEigenDevice(); } #endif +const Tensor* GetTensorFromVar(const Variable* var) { + if (var->IsType()) { + return &var->Get(); + } + PADDLE_ENFORCE(var->IsType(), + "The Input must be LoDTensor or Tensor."); + return &var->Get(); +} + +Tensor* GetTensorFromVar(Variable* var) { + if (var->IsType()) { + return var->GetMutable(); + } + PADDLE_ENFORCE(var->IsType(), + "The Input must be LoDTensor or Tensor."); + return var->GetMutable(); +} + std::string OperatorBase::Input(const std::string& name) const { auto& ins = Inputs(name); PADDLE_ENFORCE_LE(ins.size(), 1UL, @@ -60,8 +78,8 @@ std::string OperatorBase::Output(const std::string& name) const { const std::vector& OperatorBase::Outputs( const std::string& name) const { auto it = outputs_.find(name); - PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output %s", type_, - name); + PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output called %s", + type_, name); return it->second; } @@ -186,42 +204,52 @@ void OperatorBase::GenerateTemporaryNames() { } } -void OpProtoAndCheckerMaker::Validate() { - validated_ = true; - CheckNoDuplicatedInOutAttrs(); +template <> +const Tensor* InferShapeContext::Input(const std::string& name) const { + auto* var = InputVar(name); + return var == nullptr ? nullptr : GetTensorFromVar(var); +} + +template <> +const std::vector InferShapeContext::MultiInput( + const std::string& name) const { + auto names = op().Inputs(name); + std::vector res; + res.reserve(names.size()); + std::transform(names.begin(), names.end(), std::back_inserter(res), + [&](const std::string& sub_name) { + auto var = scope_.FindVar(sub_name); + return var == nullptr ? nullptr : GetTensorFromVar(var); + }); + return res; } -OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput( - const std::string& name, const std::string& comment) { - auto* input = proto_->add_inputs(); - input->set_name(name); - input->set_comment(comment); - return OpProtoAndCheckerMaker::VariableBuilder{input}; +template <> +Tensor* InferShapeContext::Output(const std::string& name) const { + auto var = OutputVar(name); + return var == nullptr ? nullptr : var->GetMutable(); } -OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddOutput( - const std::string& name, const std::string& comment) { - auto* output = proto_->add_outputs(); - output->set_name(name); - output->set_comment(comment); - return OpProtoAndCheckerMaker::VariableBuilder{output}; +template <> +std::vector InferShapeContext::MultiOutput( + const std::string& name) const { + auto names = op().Outputs(name); + std::vector res; + res.reserve(names.size()); + std::transform(names.begin(), names.end(), std::back_inserter(res), + [&](const std::string& sub_name) { + auto var = scope_.FindVar(sub_name); + return var == nullptr ? nullptr + : var->GetMutable(); + }); + return res; } -void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() { - std::unordered_set names; - auto checker = [&](const std::string& name) { - PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name); - names.insert(name); - }; - for (auto& attr : proto_->attrs()) { - checker(attr.name()); - } - for (auto& input : proto_->inputs()) { - checker(input.name()); - } - for (auto& output : proto_->outputs()) { - checker(output.name()); - } +std::ostream& operator<<(std::ostream& os, + const OperatorWithKernel::OpKernelKey& kernel_key) { + os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_ + << "]"; + return os; } } // namespace framework diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 4600b06009bcef7d0774d25b816aac4733f30795..73e53a4176db32b7cbfd79c088dadfc23037213f 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -15,14 +15,18 @@ limitations under the License. */ #pragma once #include +#include #include #include #include #include "op_info.h" #include "paddle/framework/attribute.h" +#include "paddle/framework/data_type.h" #include "paddle/framework/framework.pb.h" +#include "paddle/framework/lod_tensor.h" #include "paddle/framework/scope.h" +#include "paddle/framework/shape_inference.h" #include "paddle/framework/tensor.h" #include "paddle/platform/device_context.h" #include "paddle/platform/place.h" @@ -55,6 +59,9 @@ class OperatorBase; class InferShapeContext; class ExecutionContext; +extern const Tensor* GetTensorFromVar(const Variable* var); +extern Tensor* GetTensorFromVar(Variable* var); + /** * OperatorBase has the basic element that Net will call to do computation. * Only CreateOperator from OpRegistry will new Operator directly. User @@ -77,10 +84,6 @@ class OperatorBase { virtual std::string DebugString() const; - /// InferShape infer the size of Variables used by this Operator with - /// information inside scope - virtual void InferShape(const Scope& scope) const = 0; - /// Net will call this function to Run an op. virtual void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const = 0; @@ -158,7 +161,6 @@ class OperatorBase { class NOP : public OperatorBase { public: using OperatorBase::OperatorBase; - void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} std::unique_ptr Clone() const override { @@ -166,71 +168,6 @@ class NOP : public OperatorBase { } }; -// this class not only make proto but also init attribute checkers. -class OpProtoAndCheckerMaker { - public: - OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) - : proto_(proto), op_checker_(op_checker) {} - - ~OpProtoAndCheckerMaker() { - PADDLE_ENFORCE(validated_, "should call Validate after build"); - } - - void Validate(); - - protected: - struct VariableBuilder { - OpProto::Var* var_; - - VariableBuilder& AsDuplicable() { - var_->set_duplicable(true); - return *this; - } - - VariableBuilder& AsIntermediate() { - var_->set_intermediate(true); - return *this; - } - - VariableBuilder& NotInGradient() { - var_->set_not_in_gradient(true); - return *this; - } - }; - - VariableBuilder AddInput(const std::string& name, const std::string& comment); - - VariableBuilder AddOutput(const std::string& name, - const std::string& comment); - - template - TypedAttrChecker& AddAttr(const std::string& name, - const std::string& comment, - bool generated = false) { - auto* attr = proto_->add_attrs(); - attr->set_name(name); - attr->set_comment(comment); - attr->set_generated(generated); - attr->set_type(AttrTypeID()); - return op_checker_->AddAttrChecker(name); - } - - void AddComment(const std::string& comment) { proto_->set_comment(comment); } - - private: - void CheckNoDuplicatedInOutAttrs(); - - OpProto* proto_; - OpAttrChecker* op_checker_; - bool validated_{false}; -}; - -class NOPMaker : public OpProtoAndCheckerMaker { - public: - NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) {} -}; - class InferShapeContext { public: InferShapeContext(const OperatorBase& op, const Scope& scope) @@ -276,9 +213,9 @@ class InferShapeContext { return res; } - std::vector MultiOutputVar(const std::string& name) const { + std::vector MultiOutputVar(const std::string& name) const { auto names = op_.Outputs(name); - std::vector res; + std::vector res; res.reserve(names.size()); std::transform(names.begin(), names.end(), std::back_inserter(res), [this](const std::string& name) { @@ -326,47 +263,159 @@ class InferShapeContext { return res; } + void ShareLoD(const std::string& in, const std::string& out, size_t i = 0, + size_t j = 0) const { + PADDLE_ENFORCE_LT(i, InputSize(in)); + PADDLE_ENFORCE_LT(j, OutputSize(out)); + auto* in_var = MultiInputVar(in)[i]; + auto* out_var = MultiOutputVar(out)[j]; + if (!in_var->IsType()) return; + PADDLE_ENFORCE(out_var->IsType(), + "The %d-th output of Output(%s) must be LoDTensor.", j, out); + auto in_tensor = in_var->Get(); + auto* out_tensor = out_var->GetMutable(); + out_tensor->set_lod(in_tensor.lod()); + } + private: const OperatorBase& op_; const Scope& scope_; }; -template -struct EigenDeviceConverter; +template <> +const Tensor* InferShapeContext::Input(const std::string& name) const; template <> -struct EigenDeviceConverter { - using EigenDeviceType = Eigen::DefaultDevice; -}; +const std::vector InferShapeContext::MultiInput( + const std::string& name) const; -#ifndef PADDLE_ONLY_CPU template <> -struct EigenDeviceConverter { - using EigenDeviceType = Eigen::GpuDevice; -}; -#endif +Tensor* InferShapeContext::Output(const std::string& name) const; + +template <> +std::vector InferShapeContext::MultiOutput( + const std::string& name) const; class ExecutionContext : public InferShapeContext { public: ExecutionContext(const OperatorBase& op, const Scope& scope, - const platform::DeviceContext* device_context) + const platform::DeviceContext& device_context) : InferShapeContext(op, scope), device_context_(device_context) {} template ::EigenDeviceType> + typename DeviceType = typename platform::EigenDeviceConverter< + PlaceType>::EigenDeviceType> DeviceType& GetEigenDevice() const; - platform::Place GetPlace() const { return device_context_->GetPlace(); } + platform::Place GetPlace() const { return device_context_.GetPlace(); } - const platform::DeviceContext* device_context() const { + const platform::DeviceContext& device_context() const { return device_context_; } - const platform::DeviceContext* device_context_; + private: + const platform::DeviceContext& device_context_; +}; + +class RuntimeInferShapeContext : public InferShapeContextBase { + public: + RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope) + : op_(op), scope_(scope) {} + + bool HasInput(const std::string& name) const { + auto ipt = op_.Input(name); + auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); + return var != nullptr; + } + + bool HasOutput(const std::string& name) const { + auto ipt = op_.Output(name); + auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); + return var != nullptr; + } + + bool HasInputs(const std::string& name) const { + auto inputs = op_.Inputs(name); + if (inputs.size() == 0UL) { + return false; + } + for (auto& input : inputs) { + if (scope_.FindVar(input) == nullptr) { + return false; + } + } + return true; + } + + bool HasOutputs(const std::string& name) const { + auto outputs = op_.Outputs(name); + if (outputs.size() == 0UL) { + return false; + } + for (auto& output : outputs) { + if (scope_.FindVar(output) == nullptr) { + return false; + } + } + return true; + } + + DDim GetInputDim(const std::string& name) const { + return GetDim(op_.Input(name)); + } + + void SetInputDim(const std::string& name, const DDim& dim) { + SetDim(op_.Input(name), dim); + } + + DDim GetOutputDim(const std::string& name) const { + return GetDim(op_.Output(name)); + } + + void SetOutputDim(const std::string& name, const DDim& dim) { + SetDim(op_.Output(name), dim); + } + + AttrReader Attrs() const { return AttrReader(op_.Attrs()); } + + const std::vector& Inputs(const std::string& name) const { + return op_.Inputs(name); + } + + const std::vector& Outputs(const std::string& name) const { + return op_.Outputs(name); + } + + private: + template + Tensor* GetTensor(const std::string& name) const { + Tensor* t = nullptr; + auto* var = scope_.FindVar(name); + if (!var->IsType() && !var->IsType()) { + if (Allocate) { + t = var->GetMutable(); + } else { + PADDLE_THROW("Variable(%s) should be tensor", name); + } + } else { + t = GetTensorFromVar(scope_.FindVar(name)); + } + return t; + } + + DDim GetDim(const std::string& name) const { + return GetTensor(name)->dims(); + } + + void SetDim(const std::string& name, const DDim& dim) { + GetTensor(name)->Resize(dim); + } + + const OperatorBase& op_; + const Scope& scope_; }; -class OpKernel { +class OpKernelBase { public: /** * ExecutionContext is the only parameter of Kernel Run function. @@ -377,46 +426,77 @@ class OpKernel { virtual void Compute(const ExecutionContext& context) const = 0; - virtual ~OpKernel() {} + virtual ~OpKernelBase() = default; +}; + +template +class OpKernel : public OpKernelBase { + public: + using ELEMENT_TYPE = T; }; class OperatorWithKernel : public OperatorBase { public: struct OpKernelKey { platform::Place place_; + DataType data_type_; - OpKernelKey() = default; - explicit OpKernelKey(const platform::DeviceContext& dev_ctx) { - place_ = dev_ctx.GetPlace(); - } + OpKernelKey(DataType data_type, platform::Place place) + : place_(place), data_type_(data_type) {} + + OpKernelKey(DataType data_type, const platform::DeviceContext& dev_ctx) + : place_(dev_ctx.GetPlace()), data_type_(data_type) {} bool operator==(const OpKernelKey& o) const { - return platform::places_are_same_class(place_, o.place_); + return platform::places_are_same_class(place_, o.place_) && + data_type_ == o.data_type_; } }; struct OpKernelHash { - std::hash hash_; + std::hash hash_; size_t operator()(const OpKernelKey& key) const { - return hash_(platform::is_gpu_place(key.place_)); + int place = key.place_.which(); + int data_type = static_cast(key.data_type_); + int pre_hash = data_type << NUM_PLACE_TYPE_LIMIT_IN_BIT | + (place & ((1 << NUM_PLACE_TYPE_LIMIT_IN_BIT) - 1)); + return hash_(pre_hash); } }; using OpKernelMap = - std::unordered_map, OpKernelHash>; + std::unordered_map, + OpKernelHash>; OperatorWithKernel(const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} - void InferShape(const Scope& scope) const override { - InferShape(InferShapeContext(*this, scope)); - } - void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const final { - auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx)); - opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx)); + RuntimeInferShapeContext infer_shape_ctx(*this, scope); + this->InferShape(&infer_shape_ctx); + + ExecutionContext ctx(*this, scope, dev_ctx); + + // check if op[type] has kernel registered. + auto& all_op_kernels = AllOpKernels(); + auto kernels_iter = all_op_kernels.find(type_); + if (kernels_iter == all_op_kernels.end()) { + PADDLE_THROW("op[%s] has no kernel", type_); + } + + // check if op[type] have kernel for kernel_key + OpKernelMap& kernels = kernels_iter->second; + auto kernel_key = OpKernelKey(IndicateDataType(ctx), dev_ctx); + auto kernel_iter = kernels.find(kernel_key); + + if (kernel_iter == kernels.end()) { + PADDLE_THROW("op[%s] has no kernel with kernel_key[%s]", type_, + kernel_key); + } + + kernel_iter->second->Compute(ctx); } static std::unordered_map& @@ -426,14 +506,47 @@ class OperatorWithKernel : public OperatorBase { } bool SupportGPU() const override { - OperatorWithKernel::OpKernelKey key; - key.place_ = platform::GPUPlace(); - return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0; + auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_); + return std::any_of(op_kernels.begin(), op_kernels.end(), + [](OpKernelMap::const_reference kern_pair) { + return platform::is_gpu_place(kern_pair.first.place_); + }); } protected: - virtual void InferShape(const InferShapeContext& ctx) const = 0; + virtual void InferShape(InferShapeContextBase* ctx) const = 0; + + // indicate kernel DataType by input data. Defaultly all input data must be + // same. + virtual DataType IndicateDataType(const ExecutionContext& ctx) const { + auto& scope = ctx.scope(); + int data_type = -1; + for (auto& input : this->inputs_) { + for (auto& ipt_name : input.second) { + auto* var = scope.FindVar(ipt_name); + if (var != nullptr) { + const Tensor* t = nullptr; + if (var->IsType()) { + t = &var->Get(); + } else if (var->IsType()) { + t = &var->Get(); + } + if (t != nullptr) { + int tmp = static_cast(ToDataType(t->type())); + PADDLE_ENFORCE(tmp == data_type || data_type == -1, + "DataType of Paddle Op must be same."); + data_type = tmp; + } + } + } + } + PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input"); + return static_cast(data_type); + } }; +std::ostream& operator<<(std::ostream& os, + const OperatorWithKernel::OpKernelKey& kernel_key); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 20bbb11896a4c6f11079669f0b25773f6460594d..a0c17b41f27d9ec9a0f8e80576a052617919b000 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -14,6 +14,7 @@ limitations under the License. */ #include "paddle/framework/operator.h" #include "gtest/gtest.h" +#include "paddle/framework/op_info.h" #include "paddle/framework/op_registry.h" namespace paddle { @@ -26,7 +27,6 @@ class OpWithoutKernelTest : public OperatorBase { OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs), x(1) {} - void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override { ++op_run_num; @@ -86,7 +86,6 @@ TEST(OperatorBase, all) { auto op = paddle::framework::OpRegistry::CreateOp(op_desc); scope.NewVar("OUT1"); ASSERT_EQ(paddle::framework::op_run_num, 0); - op->InferShape(scope); op->Run(scope, device_context); ASSERT_EQ(paddle::framework::op_run_num, 1); } @@ -114,11 +113,14 @@ class OpWithKernelTest : public OperatorWithKernel { using OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext& ctx) const override {} + void InferShape(framework::InferShapeContextBase* ctx) const override {} + DataType IndicateDataType(const ExecutionContext& ctx) const override { + return DataType::FP32; + } }; template -class CPUKernelTest : public OpKernel { +class CPUKernelTest : public OpKernel { public: void Compute(const ExecutionContext& ctx) const { std::cout << "this is cpu kernel" << std::endl; @@ -145,7 +147,7 @@ class OpKernelTestMultiInputsProtoAndCheckerMaker } }; -class CPUKernalMultiInputsTest : public OpKernel { +class CPUKernalMultiInputsTest : public OpKernel { public: void Compute(const ExecutionContext& ctx) const { auto xs = ctx.op().Inputs("xs"); @@ -254,7 +256,6 @@ class OperatorClone : public paddle::framework::OperatorBase { const paddle::framework::VariableNameMap& outputs, const paddle::framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} - void InferShape(const paddle::framework::Scope& scope) const override {} void Run(const paddle::framework::Scope& scope, const paddle::platform::DeviceContext& dev_ctx) const override {} }; @@ -264,37 +265,3 @@ TEST(Operator, Clone) { auto b = a.Clone(); ASSERT_EQ(a.Type(), b->Type()); } - -class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { - public: - TestAttrProtoMaker(paddle::framework::OpProto* proto, - paddle::framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddAttr("scale", "scale of test op"); - AddAttr("scale", "scale of test op"); - } -}; - -TEST(ProtoMaker, DuplicatedAttr) { - paddle::framework::OpProto op_proto; - paddle::framework::OpAttrChecker op_checker; - auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker); - ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); -} - -class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { - public: - TestInOutProtoMaker(paddle::framework::OpProto* proto, - paddle::framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("input", "input of test op"); - AddInput("input", "input of test op"); - } -}; - -TEST(ProtoMaker, DuplicatedInOut) { - paddle::framework::OpProto op_proto; - paddle::framework::OpAttrChecker op_checker; - auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker); - ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); -} \ No newline at end of file diff --git a/paddle/framework/program_desc.cc b/paddle/framework/program_desc.cc new file mode 100644 index 0000000000000000000000000000000000000000..e89f9a46d587b6378aa3be92306c5680093e1926 --- /dev/null +++ b/paddle/framework/program_desc.cc @@ -0,0 +1,60 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/program_desc.h" +#include "paddle/framework/block_desc.h" + +namespace paddle { +namespace framework { + +using ProgDescMap = + std::unordered_map>; +static ProgDescMap *g_bind_map = nullptr; + +ProgramDescBind &ProgramDescBind::Instance(ProgramDesc *prog) { + if (g_bind_map == nullptr) { + g_bind_map = new ProgDescMap(); + } + auto &map = *g_bind_map; + auto &ptr = map[prog]; + + if (ptr == nullptr) { + ptr.reset(new ProgramDescBind(prog)); + } + return *ptr; +} + +BlockDescBind *ProgramDescBind::AppendBlock(const BlockDescBind &parent) { + auto *b = prog_->add_blocks(); + b->set_parent_idx(parent.ID()); + b->set_idx(prog_->blocks_size() - 1); + blocks_.emplace_back(new BlockDescBind(this, b)); + return blocks_.back().get(); +} + +ProgramDesc *ProgramDescBind::Proto() { + for (auto &block : blocks_) { + block->Sync(); + } + return prog_; +} + +ProgramDescBind::ProgramDescBind(ProgramDesc *prog) { + prog_ = prog; + for (auto &block : *prog->mutable_blocks()) { + blocks_.emplace_back(new BlockDescBind(this, &block)); + } +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/program_desc.h b/paddle/framework/program_desc.h new file mode 100644 index 0000000000000000000000000000000000000000..06ffcd4b15078f62ea8b7a3714e73de799530785 --- /dev/null +++ b/paddle/framework/program_desc.h @@ -0,0 +1,51 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/framework/framework.pb.h" + +namespace paddle { +namespace framework { + +class BlockDescBind; + +class ProgramDescBind { + public: + static ProgramDescBind &Instance(ProgramDesc *prog); + + ProgramDescBind(const ProgramDescBind &o) = delete; + ProgramDescBind &operator=(const ProgramDescBind &o) = delete; + + BlockDescBind *AppendBlock(const BlockDescBind &parent); + + BlockDescBind *Block(size_t idx) { return blocks_[idx].get(); } + + std::string DebugString() { return Proto()->DebugString(); } + + size_t Size() const { return blocks_.size(); } + + ProgramDesc *Proto(); + + private: + explicit ProgramDescBind(ProgramDesc *prog); + + // Not owned + ProgramDesc *prog_; + + std::vector> blocks_; +}; +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/scope.h b/paddle/framework/scope.h index 2ba3f8ed355b48800cfa4180e4e8a94f2c9958a9..c93b03e48130afe9568089b6a7586c4185d1d5b4 100644 --- a/paddle/framework/scope.h +++ b/paddle/framework/scope.h @@ -58,6 +58,8 @@ class Scope { /// nullptr if cannot find. Variable* FindVar(const std::string& name) const; + const Scope& parent() const { return *parent_; } + /// Find the scope or an ancestor scope that contains the given variable. const Scope* FindScope(const Variable* var) const; diff --git a/paddle/framework/shape_inference.h b/paddle/framework/shape_inference.h new file mode 100644 index 0000000000000000000000000000000000000000..bc8af0eb3ec7e8685eb7d2734e9b8f75372d1309 --- /dev/null +++ b/paddle/framework/shape_inference.h @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/ddim.h" + +namespace paddle { +namespace framework { + +class InferShapeContextBase { + public: + virtual ~InferShapeContextBase() {} + virtual bool HasInput(const std::string &name) const = 0; + virtual bool HasOutput(const std::string &name) const = 0; + + virtual bool HasInputs(const std::string &name) const = 0; + virtual bool HasOutputs(const std::string &name) const = 0; + + virtual framework::DDim GetInputDim(const std::string &name) const = 0; + std::vector GetInputsDim(const std::string &name) const { + const std::vector &names = Inputs(name); + return GetDims(names); + } + virtual void SetInputDim(const std::string &name, + const framework::DDim &dim) = 0; + void SetInputsDim(const std::string &name, + const std::vector &dims) { + auto &names = Inputs(name); + SetDims(names, dims); + } + virtual framework::DDim GetOutputDim(const std::string &name) const = 0; + std::vector GetOutputsDim(const std::string &name) const { + const std::vector &names = Outputs(name); + return GetDims(names); + } + virtual void SetOutputDim(const std::string &name, const DDim &dim) = 0; + void SetOutputsDim(const std::string &name, + const std::vector &dims) { + auto &names = Outputs(name); + SetDims(names, dims); + } + virtual AttrReader Attrs() const = 0; + virtual const std::vector &Inputs( + const std::string &name) const = 0; + virtual const std::vector &Outputs( + const std::string &name) const = 0; + // TODO(qiao) implement this function + void ShareLoD(const std::string &in, const std::string &out, size_t i = 0, + size_t j = 0) const {} + + protected: + virtual framework::DDim GetDim(const std::string &name) const = 0; + virtual void SetDim(const std::string &name, const framework::DDim &dim) = 0; + std::vector GetDims( + const std::vector &names) const { + std::vector ret; + ret.reserve(names.size()); + std::transform( + names.begin(), names.end(), std::back_inserter(ret), + [this](const std::string &name) { return this->GetDim(name); }); + return ret; + } + void SetDims(const std::vector &names, + const std::vector &dims) { + size_t length = names.size(); + PADDLE_ENFORCE_EQ(length, dims.size()); + for (size_t i = 0; i < length; ++i) { + SetDim(names[i], dims[i]); + } + } +}; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 4b5a2ae523f2f7fde5445f0534cd99969ad9d59e..80a3f0a3935ef6809ebd6f3bfb849d4e87d76d1b 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -30,16 +30,9 @@ limitations under the License. */ namespace paddle { namespace framework { -namespace details { -template -struct CastToPyBufferImpl; -} class Tensor { public: - template - friend struct details::CastToPyBufferImpl; - template friend struct EigenTensor; @@ -116,6 +109,8 @@ class Tensor { return holder_->place(); } + std::type_index type() const { return holder_->type(); } + private: template inline void check_memory_size() const; @@ -165,12 +160,6 @@ class Tensor { /*! points to dimensions of memory block. */ DDim dims_; - /** - * A cache of the number of elements in a tensor. - * Would be 0 for an uninitialized tensor. - */ - int64_t numel_; - /** * @brief A PlaceHolder may be shared by more than one tensor. * diff --git a/paddle/framework/tensor_array.cc b/paddle/framework/tensor_array.cc new file mode 100644 index 0000000000000000000000000000000000000000..d54714c66c04f3f923aae4288c0d2bac8be5972c --- /dev/null +++ b/paddle/framework/tensor_array.cc @@ -0,0 +1,283 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + + + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/tensor_array.h" + +#include +#include +#include + +namespace paddle { +namespace framework { + +namespace detail { + +/* + * Offer an iterator over the length-sorted lod-tensor's top level. The top + * level of a lod-tensor stores batch-size of sequences, each top-level sequence + * may contains several lower-level sequences, sort top-level lod by the numbers + * of lower-level sequences in descending order, so that during RNN's running, + * the batch-size will keep decreasing, the short sentences will end at the tail + * of each batch. + * + * Let's take a simple lod-tensor for example + * + * |(0) |(1) top-level has two instances + * ||| ||||| lower-level + * + * sort by lower-level's length + * + * |(1) |(0) + * ||||| ||| + * + * when RNN runs, it get 5 batches (equals the number of elements the longest + * sequence has) + * + * ||||| + * ||| + * + * the first three batches has two elements, the last two elements just has 1 + * element each. + */ +struct DynamicBatchUnpacker { + using value_type = float; + + DynamicBatchUnpacker(const LoDTensor& source, size_t level, + bool descend = true) + : source(&source), level(level) { + BuildLengthSortedMeta(descend); + } + + LoDTensor GetBatch(size_t index); + + std::vector meta; + + LoDTensor const* source; + size_t level; + + protected: + void BuildLengthSortedMeta(bool descend); +}; + +LoDTensor PackDynamicBatch(const std::vector& source, + const std::vector& meta, const LoD& lod, + size_t level); + +} // namespace detail + +const LoDTensor& TensorArray::Read(size_t index) const { + PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index); + if (index >= size()) { + values_.resize(index + 1); + } + return values_[index]; +} + +void TensorArray::Write(size_t index, const LoDTensor& value) { + PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index); + + if (index >= size()) { + values_.resize(index + 1); + } + + values_[index].Resize(value.dims()); + values_[index].mutable_data(platform::CPUPlace()); + values_[index].CopyFrom(value, platform::CPUPlace()); +} + +void TensorArray::WriteShared(size_t index, const LoDTensor& value) { + PADDLE_ENFORCE_LE(index, MAX_SIZE, "index[%d] too large", index); + if (index >= size()) { + values_.resize(index + 1); + } + + values_[index].ShareDataWith(value); +} + +LoDTensor TensorArray::Pack(size_t level, const std::vector& meta, + const LoD& lod) const { + return detail::PackDynamicBatch(values_, meta, lod, level); +} + +std::vector TensorArray::Unpack(const LoDTensor& source, int level, + bool length_desend) { + detail::DynamicBatchUnpacker unpacker(source, level, + length_desend /*descend*/); + + // find max length of all the sequences + size_t max_length = 0; + for (const auto& seq : unpacker.meta) { + max_length = std::max(max_length, seq.end - seq.begin); + } + + // write batches to values + for (size_t batch_id = 0; batch_id < max_length; batch_id++) { + Write(batch_id, unpacker.GetBatch(batch_id)); + } + + return unpacker.meta; +} + +LoDTensor TensorArray::Stack() const { + LoDTensor result; + if (size() == 0) return result; + + const auto& first_dims = values_.front().dims(); + // check all the values have the same shape + // TODO(superjom) check the same dtypes + for (size_t idx = 1; idx < size(); idx++) { + const auto& value_dims = values_[idx].dims(); + PADDLE_ENFORCE_EQ(first_dims, value_dims); + } + + // copy + auto result_dims = vectorize(first_dims); + result_dims.insert(result_dims.begin(), size()); + result.Resize(make_ddim(result_dims)); + result.mutable_data(platform::CPUPlace()); + + for (size_t idx = 0; idx < size(); idx++) { + result.Slice(idx, idx + 1) + .CopyFrom(Read(idx), platform::CPUPlace()); + } + return result; +} + +void TensorArray::Unstack(const LoDTensor& source) const { + Unstack(source, false /*data_shared*/); +} + +void TensorArray::UnstackShared(const LoDTensor& source) const { + Unstack(source, true /*data_shared*/); +} + +void TensorArray::Unstack(const LoDTensor& source, bool data_shared) const { + size_t first_dim = source.dims()[0]; + DDim value_dims = slice_ddim(source.dims(), 1, source.dims().size()); + PADDLE_ENFORCE_GT(first_dim, 0, + "source should have some data to be unstacked"); + + values_.resize(first_dim); + + for (size_t elem = 0; elem < first_dim; elem++) { + // create a new value + auto& value = values_[elem]; + if (data_shared) { + // share memory + value.ShareDataWith(source.Slice(elem, elem + 1)); + } else { + // copy + value.Resize(value_dims); + value.CopyFrom(source.Slice(elem, elem + 1), + platform::CPUPlace()); + } + } +} + +size_t TensorArray::size() const { return values_.size(); } + +namespace detail { + +void DynamicBatchUnpacker::BuildLengthSortedMeta(bool descend) { + PADDLE_ENFORCE(meta.empty(), "duplicate build meta"); + // collect meta for each sequence in some level + auto lod = SliceLevels(source->lod(), level, level + 1)[0]; + + for (size_t seq_id = 0; seq_id < lod.size() - 1; seq_id++) { + DySeqMeta seq_meta({lod[seq_id], lod[seq_id + 1], seq_id}); + meta.push_back(seq_meta); + } + + PADDLE_ENFORCE_GT(meta.size(), 0, "meta is empty"); + + // sort by length + sort(meta.begin(), meta.end(), + [descend](const DySeqMeta& a, const DySeqMeta& b) { + bool a_ge_b = (a.end - a.begin) > (b.end - b.begin); + return descend ? a_ge_b : !a_ge_b; + }); +} + +LoDTensor DynamicBatchUnpacker::GetBatch(size_t index) { + PADDLE_ENFORCE(!meta.empty(), "should build meta first"); + LoDTensor result; + + // collect indice need to copy to the batch + std::vector indice; + for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) { + const auto& seq_meta = meta[seq_id]; + if (index >= seq_meta.end) break; + indice.push_back(seq_meta.begin + index); + } + + PADDLE_ENFORCE(!indice.empty(), "invalid batch at %d", index); + + // copy the indice of records in LoDTensor + auto record_dims = slice_ddim(source->dims(), 1, source->dims().size()); + auto record_dims_vec = vectorize(record_dims); + record_dims_vec.insert(record_dims_vec.begin(), indice.size()); + result.Resize(make_ddim(record_dims_vec)); + result.mutable_data(platform::CPUPlace()); + + for (size_t i = 0; i < indice.size() - 1; i++) { + auto index = indice[i]; + auto target = result.Slice(i, i + 1); + auto source_ = source->Slice(index, index + 1); + target.CopyFrom(source_, platform::CPUPlace()); + } + + return result; +} + +LoDTensor PackDynamicBatch(const std::vector& source, + const std::vector& meta, const LoD& lod, + size_t level) { + PADDLE_ENFORCE(!source.empty()); + PADDLE_ENFORCE(!meta.empty()); + PADDLE_ENFORCE(!lod.empty()); + + LoDTensor result; + + // init result space + auto record_dims = slice_ddim(source[0].dims(), 1, source[0].dims().size()); + auto record_dims_vec = vectorize(record_dims); + auto height = lod[level].back(); + record_dims_vec.insert(record_dims_vec.begin(), height); + result.Resize(make_ddim(record_dims_vec)); + result.mutable_data(platform::CPUPlace()); + + for (size_t batch_id = 0; batch_id < source.size(); batch_id++) { + for (size_t seq_id = 0; seq_id < meta.size(); seq_id++) { + const auto& seq_meta = meta[seq_id]; + // source is source[batch_id][seq_id] + // target is result[index] + auto index = seq_meta.begin + batch_id; + if (index >= seq_meta.end) break; + auto source_ = source[batch_id].Slice(seq_id, seq_id + 1); + auto target = result.Slice(index, index + 1); + target.CopyFrom(source_, platform::CPUPlace()); + } + } + + result.set_lod(lod); + + return result; +} + +} // namespace detail + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/tensor_array.h b/paddle/framework/tensor_array.h new file mode 100644 index 0000000000000000000000000000000000000000..e76f33d2c0818aa6091d6d5edb1cdfd1e9122476 --- /dev/null +++ b/paddle/framework/tensor_array.h @@ -0,0 +1,118 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include + +#include "paddle/framework/lod_tensor.h" + +namespace paddle { +namespace framework { + +/* + * DyBatchSeqPosition stores indices of the basic element in tensor. It is used + * after lod-tensor's re-assembling, its info can be used to recover the order + * in original lod-tensor. + */ +struct DySeqMeta { + size_t begin; + size_t end; // not included + size_t ori_idx; +}; + +/* + * TensorArray is a C-array-like array of tensors, it is meant to be used with + * dynamic iteration primitives such as while_loop. It is used to segment inputs + * and store states in all time steps. + * + * By providing some methods similar to a C++ array, the difinition of some + * state-based dynamic models such as RNN cound be more natural and highly + * flexible. + */ +class TensorArray { + public: + using value_type = float; + + // max number of values allowed to store. + const size_t MAX_SIZE{100000}; + + /* + * Inputs: + * - value_shared: share memory between tensors. + */ + explicit TensorArray(bool values_shared = true) + : values_shared_(values_shared) {} + + /* + * Read the value at location `index` in the `TensorArray`. + */ + const LoDTensor &Read(size_t index) const; + + /* + * Write value into the index of the TensorArray. + */ + void Write(size_t index, const LoDTensor &value); + + /* + * Write value into the index of the TensorArray, with memory shared. + */ + void WriteShared(size_t index, const LoDTensor &value); + + /* + * Recover the original LoD-arranged LoDTensor with the `values`, `level` and + * `indice_map`. + */ + LoDTensor Pack(size_t level, const std::vector &meta, + const LoD &lod) const; + + /* + * Split LoDTensor in some `level` and write the generated batches to + * `values`, if set `desend`, will sort by length in descending order else in + * ascending order. + */ + std::vector Unpack(const LoDTensor &source, int level, + bool length_desend); + + /* + * Pack the values into a tensor with rank one higher than each tensor in + * values. + */ + LoDTensor Stack() const; + + /* + * Unpacks the given division of a rank-`R` tensor into rank-`(R-1)` tensors. + */ + void Unstack(const LoDTensor &source) const; + + /* + * Unpacks the given division of a rank-`R` tensor into rank-`(R-1)` tensors, + * with memory of tensors shared. + */ + void UnstackShared(const LoDTensor &source) const; + + /* + * Return the number of values. + */ + size_t size() const; + + protected: + void Unstack(const LoDTensor &source, bool data_shared) const; + + private: + mutable std::vector values_; + bool values_shared_; +}; // class TensorArray + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/tensor_array_test.cc b/paddle/framework/tensor_array_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..d9f52509cdd1b79f6d53b5d4922f9e44279de08b --- /dev/null +++ b/paddle/framework/tensor_array_test.cc @@ -0,0 +1,130 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/tensor_array.h" + +#include + +namespace paddle { +namespace framework { + +class TensorArrayTester : public ::testing::Test { + protected: + void SetUp() override { + LoDTensor source; + source.Resize(make_ddim({batch_size, dim})); + int* data = source.mutable_data(platform::CPUPlace()); + for (int i = 0; i < 16 * 32; i++) { + data[i] = i; + } + ta.Unstack(source); + } + + TensorArray ta; + const int batch_size = 16; + const int dim = 32; +}; + +TEST_F(TensorArrayTester, Read) { + for (int i = 0; i < batch_size; i++) { + const auto& tensor = ta.Read(i); + ASSERT_EQ(tensor.dims()[0], 1); + ASSERT_EQ(tensor.dims()[1], dim); + } +} + +TEST_F(TensorArrayTester, Write) { + LoDTensor source; + source.Resize(make_ddim({1, dim})); + for (int i = 0; i < dim; i++) { + *(source.mutable_data(platform::CPUPlace()) + i) = i; + } + + ta.Write(2, source); + + const auto& tensor = ta.Read(2); + for (int i = 0; i < dim; i++) { + EXPECT_EQ(*(tensor.data() + i), *(source.data() + i)); + } +} + +TEST_F(TensorArrayTester, WriteShared) { + LoDTensor source; + source.Resize(make_ddim({1, dim})); + for (int i = 0; i < dim; i++) { + *(source.mutable_data(platform::CPUPlace()) + i) = i; + } + + ta.WriteShared(2, source); + + const auto& tensor = ta.Read(2); + for (int i = 0; i < dim; i++) { + EXPECT_EQ(*(tensor.data() + i), *(source.data() + i)); + } + + EXPECT_EQ(source.data(), tensor.data()); +} + +class TensorArrayPackTester : public ::testing::Test { + protected: + virtual void SetUp() override { + lod.push_back(std::vector{0, 2, 9, 13}); + + source.set_lod(lod); + source.Resize(make_ddim({13, 128})); + source.mutable_data(platform::CPUPlace()); + + // content of each setence: 0 1 2 3 4 + const auto& level = lod.front(); + for (size_t i = 0; i < level.size() - 1; i++) { + size_t begin = level[i]; + size_t end = level[i + 1]; + for (size_t j = begin; j < end; j++) { + auto record = source.Slice(j, j + 1); + for (int dim = 0; dim < 128; dim++) { + record.mutable_data(platform::CPUPlace())[dim] = j - begin; + } + } + } + + // unpack + meta = ta.Unpack(source, 0, true); + } + + LoD lod; + TensorArray ta; + LoDTensor source; + std::vector meta; +}; + +TEST_F(TensorArrayPackTester, Unpack) { + ASSERT_EQ(ta.size(), 7UL); + + const auto& t0 = ta.Read(0); + const auto& t1 = ta.Read(1); + + ASSERT_EQ(t0.data()[0], int(0)); + ASSERT_EQ(t1.data()[0], int(1)); +} + +TEST_F(TensorArrayPackTester, Pack) { + LoDTensor packed = ta.Pack(0, meta, lod); +} + +TEST_F(TensorArrayTester, size) { + ASSERT_EQ(ta.size(), static_cast(batch_size)); +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index 642b53efc7095d25712ca324638f5fe9b8316c0c..a5405f9c31543b5733f9db923c2a6f8b968cfc2d 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -22,7 +22,7 @@ namespace framework { template inline void Tensor::check_memory_size() const { PADDLE_ENFORCE_NOT_NULL( - holder_, "Tenosr holds no memory. Call Tensor::mutable_data first."); + holder_, "Tensor holds no memory. Call Tensor::mutable_data first."); PADDLE_ENFORCE_GE( holder_->size(), numel() * sizeof(T) + offset_, "Tensor's dims_ is out of bound. Call Tensor::mutable_data " @@ -130,26 +130,29 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound."); PADDLE_ENFORCE_LT(begin_idx, end_idx, "Begin index must be less than end index."); - PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1."); - size_t base = numel() / dims_[0]; - Tensor dst; - dst.holder_ = holder_; - DDim dst_dims = dims_; - dst_dims[0] = end_idx - begin_idx; - dst.Resize(dst_dims); - dst.offset_ = offset_ + begin_idx * base * sizeof(T); - return dst; + + if (dims_[0] == 1) { + return *this; + } else { + size_t base = numel() / dims_[0]; + Tensor dst; + dst.holder_ = holder_; + DDim dst_dims = dims_; + dst_dims[0] = end_idx - begin_idx; + dst.Resize(dst_dims); + dst.offset_ = offset_ + begin_idx * base * sizeof(T); + return dst; + } } inline Tensor& Tensor::Resize(const DDim& dims) { dims_ = dims; - numel_ = product(dims_); return *this; } inline const DDim& Tensor::dims() const { return dims_; } -inline int64_t Tensor::numel() const { return numel_; } +inline int64_t Tensor::numel() const { return product(dims_); } template inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) { diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index 55302ea47120f420e952b26830c8ea4cbcce6435..e2ec738de35c90c6a06c9a46b062d4cce55f5eda 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -36,7 +36,7 @@ TEST(Tensor, DataAssert) { } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = - "holder_ should not be null\nTenosr holds no memory. Call " + "holder_ should not be null\nTensor holds no memory. Call " "Tensor::mutable_data first."; const char* what = err.what(); for (size_t i = 0; i < msg.length(); ++i) { @@ -112,7 +112,7 @@ TEST(Tensor, ShareDataWith) { } catch (paddle::platform::EnforceNotMet err) { caught = true; std::string msg = - "holder_ should not be null\nTenosr holds no memory. Call " + "holder_ should not be null\nTensor holds no memory. Call " "Tensor::mutable_data first."; const char* what = err.what(); for (size_t i = 0; i < msg.length(); ++i) { @@ -274,4 +274,4 @@ TEST(Tensor, ReshapeToMatrix) { Tensor res = ReshapeToMatrix(src, 2); ASSERT_EQ(res.dims()[0], 2 * 3); ASSERT_EQ(res.dims()[1], 4 * 9); -} \ No newline at end of file +} diff --git a/paddle/framework/type_defs.h b/paddle/framework/type_defs.h new file mode 100644 index 0000000000000000000000000000000000000000..dec5066f1e649a27c9f47fc5f93faa1498b37de7 --- /dev/null +++ b/paddle/framework/type_defs.h @@ -0,0 +1,38 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include +#include "paddle/platform/variant.h" + +namespace paddle { +namespace framework { +class OperatorBase; +using VariableNameMap = std::map>; + +// The order should be as same as framework.proto +using Attribute = + boost::variant, + std::vector, std::vector, bool, + std::vector, BlockDesc*>; + +using AttributeMap = std::unordered_map; + +using OpCreator = std::function; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/var_desc.cc b/paddle/framework/var_desc.cc new file mode 100644 index 0000000000000000000000000000000000000000..13b9c5f3cdf98e6d22f4217fa1cf9a48910a78d8 --- /dev/null +++ b/paddle/framework/var_desc.cc @@ -0,0 +1,36 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/var_desc.h" + +namespace paddle { +namespace framework { + +void VarDescBind::SetShape(const std::vector &dims) { + VectorToRepeated(dims, desc_.mutable_lod_tensor()->mutable_dims()); +} + +void VarDescBind::SetDataType(DataType data_type) { + desc_.mutable_lod_tensor()->set_data_type(data_type); +} + +std::vector VarDescBind::Shape() const { + return RepeatedToVector(desc_.lod_tensor().dims()); +} + +DataType VarDescBind::GetDataType() const { + return desc_.lod_tensor().data_type(); +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h new file mode 100644 index 0000000000000000000000000000000000000000..4763bf09d004539ab24e4aad3bf429667f1fcc73 --- /dev/null +++ b/paddle/framework/var_desc.h @@ -0,0 +1,73 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/framework/framework.pb.h" + +namespace paddle { +namespace framework { + +// convert between std::vector and protobuf repeated. +template +inline std::vector RepeatedToVector( + const google::protobuf::RepeatedField &repeated_field) { + std::vector ret; + ret.reserve(repeated_field.size()); + std::copy(repeated_field.begin(), repeated_field.end(), + std::back_inserter(ret)); + return ret; +} + +template +inline void VectorToRepeated(const std::vector &vec, + RepeatedField *repeated_field) { + repeated_field->Reserve(vec.size()); + for (const auto &elem : vec) { + *repeated_field->Add() = elem; + } +} + +// Specialize vector. +template +inline void VectorToRepeated(const std::vector &vec, + RepeatedField *repeated_field) { + repeated_field->Reserve(vec.size()); + for (auto elem : vec) { + *repeated_field->Add() = elem; + } +} + +class VarDescBind { + public: + explicit VarDescBind(const std::string &name) { desc_.set_name(name); } + + VarDesc *Proto() { return &desc_; } + + std::string Name() const { return desc_.name(); } + + void SetShape(const std::vector &dims); + + void SetDataType(DataType data_type); + + std::vector Shape() const; + + DataType GetDataType() const; + + private: + VarDesc desc_; +}; +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/variable.md b/paddle/framework/variable.md index f44d5ea46e7ce98dd443d684ad42308496bc4179..442ef6b718b227d79ca73031efcbb55817558252 100644 --- a/paddle/framework/variable.md +++ b/paddle/framework/variable.md @@ -7,7 +7,7 @@ Variable is also known as *blob* in MxNet and Caffe2. It is the input and outpu For the flexibility of a DL system, a variable should be able to contain any typed value -- a tensor in most cases, but could also be some integer IDs or a scope of other variables in the case of RNN. -To use the minimum amount of memory, we'd like that a variable to allocate memory when it has to, or, lazy memory allocation. Let's take the following example: +To use the minimum amount of memory, we would like that a variable allocates memory only when it has to, or, lazy memory allocation. Let's take the following example: ```cpp Variable vr, v1, v2; @@ -38,7 +38,7 @@ This syntax for lazy memory allocation when we call `Randomize` and `Mult`, thos To make memory allocation lazy, we cannot assume that we know the type held by a variable at definition time. In other words, `class Variable` cannot be a template `template class Variable`. -Because we don't know the type `T`, we cannot save a `T*` as `Variable's` data member. Instead, we save an interface object `Placeholder`, who can return the pointer to the saved object via `Placeholder::Ptr()` as `void*`. +Because we don't know the type `T`, we cannot save a `T*` as `Variable's` data member. Instead, we save an interface object `Placeholder`, which can return the pointer to the saved object via `Placeholder::Ptr()` as `void*`. But anyway, Variable needs to know `T` so could it `delete(ptr)` and so could `Variable::Get` checks the expected type and the saved object's type. @@ -49,4 +49,4 @@ Because `PlaceholderImpl` knows `T`, it can save and return `typeid(T)` for the ## Conclusion -The technique type hiding utilizes C++ class templates, interface and derivation, and C++ RTTI (typeid). This combination saves us from definition something like `caffe2::TypeMata`, which takes hundreds of lines of C++ code. +The technique type hiding utilizes C++ class templates, interface and derivation, and C++ RTTI (typeid). This combination saves us from defining something like `caffe2::TypeMeta`, which takes hundreds of lines of C++ code. diff --git a/paddle/function/neon/NeonDepthwiseConv.cpp b/paddle/function/neon/NeonDepthwiseConv.cpp index 18126152ea0b4ebfe4ec5c8084479787814ed173..38aa6670612b0771cdd8f1805a6d1bd9f281bdc1 100644 --- a/paddle/function/neon/NeonDepthwiseConv.cpp +++ b/paddle/function/neon/NeonDepthwiseConv.cpp @@ -52,7 +52,7 @@ public: int outputHeight = output[2]; int outputWidth = output[3]; int filterMultiplier = outputChannels / groups_; - CHECK_EQ(inputChannels, groups_); + CHECK_EQ(static_cast(inputChannels), groups_); // only support strideH() == strideW() and filterHeight == filterWidth. CHECK_EQ(strideH(), strideW()); diff --git a/paddle/function/neon/NeonDepthwiseConv.h b/paddle/function/neon/NeonDepthwiseConv.h index 33722d3cac61b62f5dce8f51105c1bf4e70c4a6c..98a86d278f39e70472793e6a1d38f7dae469fd62 100644 --- a/paddle/function/neon/NeonDepthwiseConv.h +++ b/paddle/function/neon/NeonDepthwiseConv.h @@ -18,7 +18,6 @@ limitations under the License. */ #include "neon_util.h" namespace paddle { - namespace neon { #if defined(__ARM_NEON__) || defined(__ARM_NEON) @@ -26,17 +25,20 @@ namespace neon { template struct DepthwiseConvKernel {}; -inline float32_t conv3x3(float32x4_t r0, - float32x4_t r1, - float32x4_t r2, +inline float32_t conv3x3(const float* r0, + const float* r1, + const float* r2, float32x4_t k0, float32x4_t k1, float32x4_t k2) { - float32x4_t tmp; - tmp = vmulq_f32(r0, k0); - tmp = vmlaq_f32(tmp, r1, k1); - tmp = vmlaq_f32(tmp, r2, k2); - return vaddvq_f32(tmp); + float32_t tmp[12]; + vst1q_f32(&(tmp[0]), k0); + vst1q_f32(&(tmp[4]), k1); + vst1q_f32(&(tmp[8]), k2); + float32_t sum0 = r0[0] * tmp[0] + r0[1] * tmp[1] + r0[2] * tmp[2]; + float32_t sum1 = r1[0] * tmp[4] + r1[1] * tmp[5] + r1[2] * tmp[6]; + float32_t sum2 = r2[0] * tmp[8] + r2[1] * tmp[9] + r2[2] * tmp[10]; + return sum0 + sum1 + sum2; } inline float32_t conv4x4(float32x4_t r0, @@ -136,10 +138,7 @@ struct DepthwiseConvKernel<3, 1> { } for (int r = 0; r < remain; r++) { - float32x4_t i0 = vld1q_f32(r0); - float32x4_t i1 = vld1q_f32(r1); - float32x4_t i2 = vld1q_f32(r2); - *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); + *outputData = conv3x3(r0, r1, r2, k[0], k[1], k[2]); r0++; r1++; r2++; @@ -243,10 +242,7 @@ struct DepthwiseConvKernel<3, 2> { } for (int r = 0; r < remain; r++) { - float32x4_t i0 = vld1q_f32(r0); - float32x4_t i1 = vld1q_f32(r1); - float32x4_t i2 = vld1q_f32(r2); - *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); + *outputData = conv3x3(r0, r1, r2, k[0], k[1], k[2]); r0 += 2; r1 += 2; r2 += 2; diff --git a/paddle/gserver/activations/ActivationFunction.cpp b/paddle/gserver/activations/ActivationFunction.cpp index 78e958e06fac84fa956abc9faea60157bf6132eb..8b7b2e9b65898950e036ebc023cd28990cef303f 100644 --- a/paddle/gserver/activations/ActivationFunction.cpp +++ b/paddle/gserver/activations/ActivationFunction.cpp @@ -22,9 +22,12 @@ limitations under the License. */ #include #include "paddle/parameter/Argument.h" #include "paddle/utils/ClassRegistrar.h" - #include "paddle/utils/Logging.h" +#ifdef PADDLE_USE_MKLDNN +#include "MKLDNNActivation.h" +#endif + namespace paddle { static ClassRegistrar gActivationRegistrar; @@ -456,6 +459,12 @@ Error __must_check backward(Argument& act) { END_DEFINE_ACTIVATION(log) ActivationFunction* ActivationFunction::create(const std::string& type) { +#ifdef PADDLE_USE_MKLDNN + if (!type.empty() && type.compare(0, 7, "mkldnn_") == 0) { + return MKLDNNActivation::create(type); + } +#endif + return gActivationRegistrar.createByType(type); } diff --git a/paddle/gserver/activations/MKLDNNActivation.cpp b/paddle/gserver/activations/MKLDNNActivation.cpp new file mode 100644 index 0000000000000000000000000000000000000000..18c5638100065109fba1f0647a1c5f91256f7b9d --- /dev/null +++ b/paddle/gserver/activations/MKLDNNActivation.cpp @@ -0,0 +1,249 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNActivation.h" +#include "mkldnn.hpp" +#include "paddle/utils/ClassRegistrar.h" + +namespace paddle { + +static ClassRegistrar gMKLDNNActivationRegistrar; +/** + * @def MKLDNN_ACTIVATION_CLASS_NAME + * @note MKLDNN_ACTIVATION_CLASS_NAME(relu) relu_; + * means mkldnn_reluActivation relu_; + */ +#define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation + +/** + * @def BEGIN_MKLDNN_ACTIVATION + */ +#define BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \ + class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) : public BASE_CLASS { +/** + * @def END_MKLDNN_ACTIVATION + */ +#define END_MKLDNN_ACTIVATION(ACT_TYPE) \ +private: \ + static const std::string name; \ + \ +public: \ + const std::string& getName() const { return name; } \ + } \ + ; \ + const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name = \ + "mkldnn_" #ACT_TYPE; \ + static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] { \ + gMKLDNNActivationRegistrar \ + .registerClass( \ + "mkldnn_" #ACT_TYPE); \ + }); + +/** + * @def DEFINE_MKLDNN_ACTIVATION + */ +#define DEFINE_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \ + BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \ + END_MKLDNN_ACTIVATION(ACT_TYPE) + +/** + * @def DEFINE_MKLDNN_ELTWISE_ACTIVATION + */ +#define DEFINE_MKLDNN_ELTWISE_ACTIVATION( \ + ACT_TYPE, BASE_CLASS, ALPHA, BWD_ALPHA) \ + BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \ +private: \ + static const float alpha; \ + static const float bwdAlpha; \ + \ +public: \ + float getAlpha() const { return alpha; } \ + float getBwdAlpha() const { return bwdAlpha; } \ + END_MKLDNN_ACTIVATION(ACT_TYPE) \ + const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA; \ + const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA; + +/** + * @brief MKLDNN Relu Activation. + * Actually mkldnn_relu is Leaky Relu. + * f(x) = x (x >= 0) + * f(x) = negative_slope * x (x < 0) + * @note the negative_slope should be -0.f in forward + */ +DEFINE_MKLDNN_ELTWISE_ACTIVATION(relu, MKLDNNEltwiseActivation, -0.f, 0.f) + +/** + * @brief MKLDNN Tanh Activation. + */ +DEFINE_MKLDNN_ELTWISE_ACTIVATION(tanh, MKLDNNEltwiseActivation, 0.f, 0.f) + +/** + * @brief MKLDNN ELU(Exponential Linear Unit) Activation. + * f(x) = x (x >= 0) + * f(x) = negative_slope * (exp(x) - 1) (x < 0) + */ +DEFINE_MKLDNN_ELTWISE_ACTIVATION(elu, MKLDNNEltwiseActivation, 0.f, 0.f) + +mkldnn::algorithm MKLDNNEltwiseActivation::getAlgo(std::string type) const { + const std::map algoMap = { + {"relu", algorithm::eltwise_relu}, + {"tanh", algorithm::eltwise_tanh}, + {"elu", algorithm::eltwise_elu}}; + type.erase(0, 7); // remove mkldnn_ + algorithm algo = (algorithm)0; + mapGet(type, algoMap, &algo); + return algo; +} + +void MKLDNNEltwiseActivation::resetFwd(Argument& act) { + if (cnt_ == act.value->getElementCnt()) { + return; + } + MKLDNNActivation::resetFwd(act); + // note: alpha represents the NegativeSlope when used in relu. + float alpha = getAlpha(); + float beta = getBeta(); + algorithm algo = getAlgo(this->getName()); + auto fwdDesc = eltwise_fwd::desc(mkldnn::prop_kind::forward_training, + algo, + val_->getMemoryDesc(), + alpha, + beta); + fwdPD_.reset(new eltwise_fwd::primitive_desc(fwdDesc, *engine_)); + // use inplace for forward but save input value before submit + inVal_ = val_; + copyInVal_ = nullptr; + if (act.grad && algo == algorithm::eltwise_tanh) { + // tanh need save src input for backward + inVal_ = MKLDNNMatrix::create(nullptr, val_->getPrimitiveDesc()); + copyInVal_ = std::make_shared(*val_, *inVal_); + CHECK(copyInVal_) << "should not be emptry"; + pipelineFwd_.push_back(*copyInVal_); + } + fwd_.reset(new eltwise_fwd(*fwdPD_, *val_, *val_)); + pipelineFwd_.push_back(*fwd_); + needResetBwd_ = true; +} + +void MKLDNNEltwiseActivation::resetBwd(Argument& act) { + if (!needResetBwd_) { + return; + } + VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward"; + needResetBwd_ = false; + algorithm algo = getAlgo(this->getName()); + float alpha = getBwdAlpha(); + float beta = getBeta(); + grad_ = MKLDNNMatrix::create(act.grad, val_->getPrimitiveDesc()); + auto eng = CPUEngine::Instance().getEngine(); + auto bwdDesc = eltwise_bwd::desc( + algo, grad_->getMemoryDesc(), val_->getMemoryDesc(), alpha, beta); + auto bwdPD = eltwise_bwd::primitive_desc(bwdDesc, eng, *fwdPD_); + CHECK(inVal_); + bwd_.reset(new eltwise_bwd(bwdPD, *inVal_, *grad_, *grad_)); + pipelineBwd_.clear(); + pipelineBwd_.push_back(*bwd_); +} + +/** + * @brief MKLDNN Softmax Activation + */ +DEFINE_MKLDNN_ACTIVATION(softmax, MKLDNNSoftmaxActivation) + +void MKLDNNSoftmaxActivation::resetFwd(Argument& act) { + if (cnt_ == act.value->getElementCnt()) { + return; + } + MKLDNNActivation::resetFwd(act); + int axis = 1; + auto fwdDesc = softmax_fwd::desc( + mkldnn::prop_kind::forward_scoring, val_->getMemoryDesc(), axis); + auto fwdPD = softmax_fwd::primitive_desc(fwdDesc, *engine_); + fwd_.reset(new softmax_fwd(fwdPD, *val_, *val_)); + pipelineFwd_.push_back(*fwd_); +} + +Error __must_check MKLDNNSoftmaxActivation::forward(Argument& act) { + resetFwd(act); + stream_->submit(pipelineFwd_); + real* v = act.value->getData(); + real threshold = exp(-64); +#pragma omp parallel for + for (size_t i = 0; i < act.value->getElementCnt(); ++i) { + v[i] = v[i] < threshold ? threshold : v[i]; + } + return Error(); +} + +Error __must_check MKLDNNSoftmaxActivation::backward(Argument& act) { + MatrixPtr outputV = act.value; + MatrixPtr outputG = act.grad; + Matrix::resizeOrCreate(sftMaxDot_, + outputG->getHeight(), + outputG->getWidth(), + /* trans */ false, + /* useGpu */ false); + Matrix::resizeOrCreate(sftMaxSum_, + outputG->getHeight(), + 1, + /* trans */ false, + /* useGpu */ false); + sftMaxDot_->dotMul(*outputG, *outputV); + sftMaxSum_->colMerge(*sftMaxDot_); + act.grad->softmaxDerivative(*act.value, *sftMaxSum_); + return Error(); +} + +ActivationFunction* MKLDNNActivation::create(const std::string& type) { + return gMKLDNNActivationRegistrar.createByType(type); +} + +std::vector MKLDNNActivation::getAllRegisteredTypes() { + std::vector types; + gMKLDNNActivationRegistrar.forEachType( + [&](const std::string& type) { types.push_back(type); }); + return types; +} + +void MKLDNNActivation::resetFwd(Argument& act) { + VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward"; + cnt_ = act.value->getElementCnt(); + pipelineFwd_.clear(); + stream_.reset(new MKLDNNStream()); + engine_.reset(new mkldnn::engine(mkldnn::engine::cpu, 0)); + val_ = std::dynamic_pointer_cast(act.value); + if (val_ == nullptr) { + int bs = act.getBatchSize(); + int ih = act.getFrameHeight() > 0 ? act.getFrameHeight() : 1; + int iw = act.getFrameWidth() > 0 ? act.getFrameWidth() : 1; + int ic = cnt_ / bs / ih / iw; + CHECK_EQ(cnt_, (size_t)bs * ic * ih * iw); + val_ = MKLDNNMatrix::create( + act.value, {bs, ic, ih, iw}, mkldnn::memory::format::nchw, *engine_); + CHECK(val_); + val_->downSpatial(); + } +} + +Error __must_check MKLDNNActivation::forward(Argument& act) { + resetFwd(act); + stream_->submit(pipelineFwd_); + return Error(); +} +Error __must_check MKLDNNActivation::backward(Argument& act) { + resetBwd(act); + stream_->submit(pipelineBwd_); + return Error(); +} +} // namespace paddle diff --git a/paddle/gserver/activations/MKLDNNActivation.h b/paddle/gserver/activations/MKLDNNActivation.h new file mode 100644 index 0000000000000000000000000000000000000000..dd16421fd6e93b49c30b1d3b601f95980afec57b --- /dev/null +++ b/paddle/gserver/activations/MKLDNNActivation.h @@ -0,0 +1,119 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "ActivationFunction.h" +#include "mkldnn.hpp" +#include "paddle/gserver/layers/MKLDNNBase.h" +#include "paddle/math/MKLDNNMatrix.h" +#include "paddle/parameter/Argument.h" + +namespace paddle { + +/** + * @brief Base class of MKLDNN Activation. + * Common activation function are provieded, + * including mkldnn_relu, mkldnn_elu, mkldnn_tanh, mkldnn_softmax + */ +class MKLDNNActivation : public ActivationFunction { +protected: + // input value element count + size_t cnt_; + // should not merge the resetBwd into resetFwd, + // because the grad data would be changing before backward. + bool needResetBwd_; + // mkldnn matrix, primitive, stream and pipeline + MKLDNNMatrixPtr val_; + MKLDNNMatrixPtr grad_; + std::shared_ptr engine_; + std::shared_ptr stream_; + std::shared_ptr fwd_; + std::shared_ptr bwd_; + std::vector pipelineFwd_; + std::vector pipelineBwd_; + +public: + MKLDNNActivation() : cnt_(0), needResetBwd_(true) {} + ~MKLDNNActivation() {} + static ActivationFunction* create(const std::string& type); + static std::vector getAllRegisteredTypes(); + virtual const std::string& getName() const = 0; + /** + * reset the forward primitives + */ + virtual void resetFwd(Argument& act); + /** + * reset the backward primitives, + * can not merge this functions into resetFwd as the grad data + * would be changing before backward. + */ + virtual void resetBwd(Argument& act) {} + virtual Error __must_check forward(Argument& act); + virtual Error __must_check backward(Argument& act); +}; + +/** + * @brief Base class of MKLDNN Eltwise Activation, + * includes mkldnn_relu, mkldnn_elu and mkldnn_tanh. + */ +class MKLDNNEltwiseActivation : public MKLDNNActivation { + typedef mkldnn::eltwise_forward eltwise_fwd; + typedef mkldnn::eltwise_backward eltwise_bwd; + typedef mkldnn::algorithm algorithm; + +protected: + // save the forward primitive desc, which can be used backward + std::shared_ptr fwdPD_; + // eltwise_bwd need src input value + MKLDNNMatrixPtr inVal_; + // use for copy data + std::shared_ptr copyInVal_; + +public: + MKLDNNEltwiseActivation() {} + ~MKLDNNEltwiseActivation() {} + virtual const std::string& getName() const = 0; + + // in common, the alpha of forward and backward should be equal. + // but for relu, to avoid negative value, they should be opposite + virtual float getAlpha() const = 0; + virtual float getBwdAlpha() const = 0; + virtual float getBeta() const { return 0.f; } + virtual algorithm getAlgo(std::string type) const; + void resetFwd(Argument& act) override; + void resetBwd(Argument& act) override; +}; + +/** + * @brief Base class of MKLDNN softmax Activation, + * only have mkldnn forward, use cpu implement for backward. + */ +class MKLDNNSoftmaxActivation : public MKLDNNActivation { + typedef mkldnn::softmax_forward softmax_fwd; + +private: + // for backward + MatrixPtr sftMaxSum_; + MatrixPtr sftMaxDot_; + +public: + MKLDNNSoftmaxActivation() {} + ~MKLDNNSoftmaxActivation() {} + virtual const std::string& getName() const = 0; + void resetFwd(Argument& act) override; + Error __must_check forward(Argument& act) override; + Error __must_check backward(Argument& act) override; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/CudnnPoolLayer.cpp b/paddle/gserver/layers/CudnnPoolLayer.cpp index 4adb2d4709e585a6fec052435c33714d6e3a3f0e..810a1af2d09c63c3787a1ac225c2c7de4238d609 100644 --- a/paddle/gserver/layers/CudnnPoolLayer.cpp +++ b/paddle/gserver/layers/CudnnPoolLayer.cpp @@ -29,9 +29,9 @@ bool CudnnPoolLayer::typeCheck(const std::string &poolType, if (mode) { *mode = HL_POOLING_AVERAGE; } - } else if (poolType == "cudnn-avg-excl-pad-pool") { + } else if (poolType == "cudnn-avg-incl-pad-pool") { if (mode) { - *mode = HL_POOLING_AVERAGE_EXCLUDE_PADDING; + *mode = HL_POOLING_AVERAGE_INCLUDE_PADDING; } } else { return false; diff --git a/paddle/gserver/layers/DetectionOutputLayer.cpp b/paddle/gserver/layers/DetectionOutputLayer.cpp index 0cf0a92bf4bd8f9b8eba2016b2377d9dfb18c70a..f9040f7ae746f9ae1736cd477d3a69a2c49e9d34 100644 --- a/paddle/gserver/layers/DetectionOutputLayer.cpp +++ b/paddle/gserver/layers/DetectionOutputLayer.cpp @@ -143,7 +143,7 @@ void DetectionOutputLayer::forward(PassType passType) { resetOutput(numKept, 7); } else { MatrixPtr outV = getOutputValue(); - outV = NULL; + if (outV) outV->resize(0, 0); return; } MatrixPtr outV = getOutputValue(); diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.cpp b/paddle/gserver/layers/ExpandConvBaseLayer.cpp deleted file mode 100644 index 2b7bef0a757d7c706be3815c539b036b094596cf..0000000000000000000000000000000000000000 --- a/paddle/gserver/layers/ExpandConvBaseLayer.cpp +++ /dev/null @@ -1,124 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "ExpandConvBaseLayer.h" - -#include "paddle/utils/Logging.h" -namespace paddle { - -bool ExpandConvBaseLayer::init(const LayerMap &layerMap, - const ParameterMap ¶meterMap) { - /* Initialize the basic convolutional parent class */ - ConvBaseLayer::init(layerMap, parameterMap); - - int index = 0; - for (auto &inputConfig : config_.inputs()) { - const ConvConfig &conf = inputConfig.conv_conf(); - /* Consistent caffe mode for multiple input */ - caffeMode_ = conf.caffe_mode(); - - // create a new weight - size_t height, width; - height = filterPixels_[index] * filterChannels_[index]; - width = (!isDeconv_) ? numFilters_ : channels_[index]; - CHECK_EQ(parameters_[index]->getSize(), width * height); - Weight *w = new Weight(height, width, parameters_[index]); - weights_.emplace_back(w); - index++; - } - if (biasParameter_.get()) { - if (sharedBiases_) { - CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); - biases_ = - std::unique_ptr(new Weight(numFilters_, 1, biasParameter_)); - } else { - biases_ = - std::unique_ptr(new Weight(getSize(), 1, biasParameter_)); - } - } - getOutputSize(); - - return true; -} - -size_t ExpandConvBaseLayer::getOutputSize() { - CHECK_NE(inputLayers_.size(), 0UL); - size_t layerSize = ConvBaseLayer::calOutputSize(); - return layerSize; -} - -void ExpandConvBaseLayer::addSharedBias() { - size_t mapW = getOutputSize() / numFilters_; - size_t mapH = getOutputValue()->getElementCnt() / mapW; - MatrixPtr out = - Matrix::create(getOutputValue()->getData(), mapH, mapW, false, useGpu_); - - Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_); - - out->transpose(transOutValue_, false); // false means no memory allocation - transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_, - numFilters_); - - MatrixPtr bias = Matrix::create(biases_->getW()->getData(), - 1, - biases_->getW()->getElementCnt(), - false, - useGpu_); - transOutValue_->addBias(*bias, 1.0f); - - transOutValue_->reshape(mapW, mapH); - transOutValue_->transpose(out, false); // false means no memory allocation - - out->clear(); - bias->clear(); -} - -void ExpandConvBaseLayer::addUnsharedBias() { - MatrixPtr outValue = getOutputValue(); - MatrixPtr bias = Matrix::create(biases_->getW()->getData(), - 1, - biases_->getW()->getElementCnt(), - false, - useGpu_); - outValue->addBias(*bias, 1.0f); -} - -void ExpandConvBaseLayer::bpropSharedBias(MatrixPtr biases, MatrixPtr v) { - size_t mapW = getOutputSize() / numFilters_; - size_t mapH = v->getElementCnt() / mapW; - MatrixPtr vTmp = Matrix::create(v->getData(), mapH, mapW, false, useGpu_); - - Matrix::resizeOrCreate(transOutValue_, mapW, mapH, false, useGpu_); - - vTmp->transpose(transOutValue_, false); // false means no memory allocation - transOutValue_->reshape(transOutValue_->getElementCnt() / numFilters_, - numFilters_); - biases->collectBias(*transOutValue_, 1.0f); -} - -void ExpandConvBaseLayer::bpropBiases(MatrixPtr v) { - MatrixPtr biases = Matrix::create(biases_->getWGrad()->getData(), - 1, - biases_->getWGrad()->getElementCnt(), - false, - useGpu_); - if (sharedBiases_) { - bpropSharedBias(biases, v); - } else { - biases->collectBias(*v, 1.0f); - } - biases->clear(); -} - -} // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.h b/paddle/gserver/layers/ExpandConvBaseLayer.h deleted file mode 100644 index 01c699d2344443a1887ec0b5005125f617cbe279..0000000000000000000000000000000000000000 --- a/paddle/gserver/layers/ExpandConvBaseLayer.h +++ /dev/null @@ -1,57 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once - -#include -#include "ConvBaseLayer.h" -#include "paddle/math/Matrix.h" - -namespace paddle { - -/** - * @brief A subclass of ConvBaseLayer that is a superclass of both - * ExpandConvLayer and ExpandConvTransLayer - */ -class ExpandConvBaseLayer : public ConvBaseLayer { -protected: - /// The transpose of output, which is an auxiliary matrix. - MatrixPtr transOutValue_; - -public: - explicit ExpandConvBaseLayer(const LayerConfig& config) - : ConvBaseLayer(config) {} - - ~ExpandConvBaseLayer() {} - - bool init(const LayerMap& layerMap, - const ParameterMap& parameterMap) override; - - size_t getOutputSize(); - - /** - * Add shared bias. - */ - void addSharedBias(); - - /** - * Add unshared bias. - */ - void addUnsharedBias(); - - void bpropSharedBias(MatrixPtr biases, MatrixPtr v); - void bpropBiases(MatrixPtr v); -}; - -} // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvLayer.cpp b/paddle/gserver/layers/ExpandConvLayer.cpp index 20de475fc3f6b6f3c05ac26bea8363daff0cf110..48dfcb49a4c2c46891bb5236fc1f8e644c03f327 100644 --- a/paddle/gserver/layers/ExpandConvLayer.cpp +++ b/paddle/gserver/layers/ExpandConvLayer.cpp @@ -36,7 +36,36 @@ inline bool isDepthwiseConv(int channels, int groups) { bool ExpandConvLayer::init(const LayerMap &layerMap, const ParameterMap ¶meterMap) { /* Initialize the basic convolutional parent class */ - ExpandConvBaseLayer::init(layerMap, parameterMap); + ConvBaseLayer::init(layerMap, parameterMap); + + int index = 0; + for (auto &inputConfig : config_.inputs()) { + const ConvConfig &conf = inputConfig.conv_conf(); + /* Consistent caffe mode for multiple input */ + caffeMode_ = conf.caffe_mode(); + + // create a new weight + size_t height, width; + height = filterPixels_[index] * filterChannels_[index]; + width = (!isDeconv_) ? numFilters_ : channels_[index]; + CHECK_EQ(parameters_[index]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[index]); + weights_.emplace_back(w); + index++; + } + + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = std::unique_ptr( + new Weight(1, numFilters_, biasParameter_, 0)); + } else { + biases_ = + std::unique_ptr(new Weight(1, getSize(), biasParameter_, 0)); + } + } + + getOutputSize(); size_t numInputs = config_.inputs_size(); inputShape_.resize(numInputs); @@ -108,6 +137,12 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, return true; } +size_t ExpandConvLayer::getOutputSize() { + CHECK_NE(inputLayers_.size(), 0UL); + size_t layerSize = ConvBaseLayer::calOutputSize(); + return layerSize; +} + // i is the index of input layers #define BACKWARD_INPUT(i, inputs, outputs) \ backward_[2 * i]->calc(inputs, outputs) @@ -155,11 +190,7 @@ void ExpandConvLayer::forward(PassType passType) { /* add the bias-vector */ if (biases_.get()) { - if (sharedBiases_) { - addSharedBias(); - } else { - addUnsharedBias(); - } + output_.value->addBias(*biases_->getW(), 1.0, sharedBiases_); } /* activation */ @@ -171,7 +202,7 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) { MatrixPtr outGrad = getOutputGrad(); if (biases_ && biases_->getWGrad()) { - bpropBiases(outGrad); + biases_->getWGrad()->collectBias(*getOutputGrad(), 1, sharedBiases_); /* Increasing the number of gradient */ biases_->getParameterPtr()->incUpdate(callback); } diff --git a/paddle/gserver/layers/ExpandConvLayer.h b/paddle/gserver/layers/ExpandConvLayer.h index a1f943d1521547af0f82cec7da8a4efe9037cd71..a0873de19253f2496bc0c2fba550b3199dfc7486 100644 --- a/paddle/gserver/layers/ExpandConvLayer.h +++ b/paddle/gserver/layers/ExpandConvLayer.h @@ -15,7 +15,7 @@ limitations under the License. */ #pragma once #include -#include "ExpandConvBaseLayer.h" +#include "ConvBaseLayer.h" #include "paddle/math/Matrix.h" namespace paddle { @@ -28,10 +28,9 @@ namespace paddle { * The config file api is img_conv_layer. */ -class ExpandConvLayer : public ExpandConvBaseLayer { +class ExpandConvLayer : public ConvBaseLayer { public: - explicit ExpandConvLayer(const LayerConfig& config) - : ExpandConvBaseLayer(config) {} + explicit ExpandConvLayer(const LayerConfig& config) : ConvBaseLayer(config) {} ~ExpandConvLayer() {} @@ -41,6 +40,8 @@ public: void forward(PassType passType) override; void backward(const UpdateCallback& callback) override; + size_t getOutputSize(); + protected: std::vector inputShape_; std::vector filterShape_; diff --git a/paddle/gserver/layers/Layer.cpp b/paddle/gserver/layers/Layer.cpp index 2bc20eee6c452d0943dbf43b17ebe77976c97489..e95f42c863b3733ca66055e1b3939e734cae8ad1 100644 --- a/paddle/gserver/layers/Layer.cpp +++ b/paddle/gserver/layers/Layer.cpp @@ -14,26 +14,12 @@ limitations under the License. */ #include "paddle/utils/Util.h" +#include "CostLayer.h" +#include "ValidationLayer.h" #include "paddle/math/SparseMatrix.h" #include "paddle/utils/Error.h" #include "paddle/utils/Logging.h" -#include "AddtoLayer.h" -#include "CRFLayer.h" -#include "CosSimLayer.h" -#include "CostLayer.h" -#include "DataLayer.h" -#include "ExpandConvLayer.h" -#include "FullyConnectedLayer.h" -#include "HierarchicalSigmoidLayer.h" -#include "MaxLayer.h" -#include "MixedLayer.h" -#include "NormLayer.h" -#include "PoolLayer.h" -#include "TensorLayer.h" -#include "TransLayer.h" -#include "ValidationLayer.h" - DEFINE_bool(log_error_clipping, false, "enable log error clipping or not"); namespace paddle { @@ -109,6 +95,10 @@ ClassRegistrar Layer::registrar_; LayerPtr Layer::create(const LayerConfig& config) { std::string type = config.type(); + // NOTE: As following types have illegal character '-', + // they can not use REGISTER_LAYER to registrar. + // Besides, to fit with old training models, + // they can not use '_' instead. if (type == "multi-class-cross-entropy") return LayerPtr(new MultiClassCrossEntropy(config)); else if (type == "rank-cost") @@ -117,8 +107,6 @@ LayerPtr Layer::create(const LayerConfig& config) { return LayerPtr(new AucValidation(config)); else if (type == "pnpair-validation") return LayerPtr(new PnpairValidation(config)); - // NOTE: stop adding "if" statements here. - // Instead, use REGISTER_LAYER to add more layer types return LayerPtr(registrar_.createByType(config.type(), config)); } diff --git a/paddle/gserver/layers/MKLDNNConvLayer.cpp b/paddle/gserver/layers/MKLDNNConvLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..0d6742e909635c1097b4fe21bbb304f8a71af5cb --- /dev/null +++ b/paddle/gserver/layers/MKLDNNConvLayer.cpp @@ -0,0 +1,551 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNConvLayer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/utils/Logging.h" + +using namespace mkldnn; // NOLINT +typedef memory::format format; + +namespace paddle { + +REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer); + +bool MKLDNNConvLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + if (!MKLDNNLayer::init(layerMap, parameterMap)) { + return false; + } + CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet"; + CHECK_EQ(inputLayers_.size(), parameters_.size()); + CHECK(config_.shared_biases()) << "Only support shared biases yet"; + + oc_ = config_.num_filters(); + const ConvConfig& conf = config_.inputs(0).conv_conf(); + ic_ = conf.channels(); + fw_ = conf.filter_size(); + fh_ = conf.filter_size_y(); + pw_ = conf.padding(); + ph_ = conf.padding_y(); + dw_ = conf.dilation(); + dh_ = conf.dilation_y(); + sw_ = conf.stride(); + sh_ = conf.stride_y(); + gp_ = conf.groups(); + oh_ = conf.output_y(); + ow_ = conf.output_x(); + ih_ = conf.img_size_y(); + iw_ = conf.img_size(); + caffeMode_ = conf.caffe_mode(); + CHECK(caffeMode_) << "Only support caffe mode yet"; + CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet"; + // check group setting + CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc"; + CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic"; + + // create weight + size_t height = oc_ / gp_; + size_t width = ic_ * fh_ * fw_; + CHECK_EQ(parameters_[0]->getSize(), height * width); + weight_ = + std::unique_ptr(new Weight(height, width, parameters_[0], 0)); + + // create biases + if (biasParameter_.get() != NULL) { + biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_, 0)); + } + return true; +} + +void MKLDNNConvLayer::convertWeightsFromPaddle() { + if (hasInitedWgt_) { + return; + } + + CHECK(wgtVal_) << "should have been initialized"; + // the paddle weight format is oihw or goihw + auto targetDim = wgtVal_->getDims(); + auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw; + wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim); + hasInitedWgt_ = true; +} + +void MKLDNNConvLayer::convertWeightsToPaddle() { + CHECK(wgtVal_) << "should have been initialized"; + auto targetDim = wgtVal_->getDims(); + auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw; + wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); +} + +void MKLDNNConvLayer::reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + reshapeInput(bs, ih, iw); + + // cal output sizes + // oc can not be changed + int fh = (fh_ - 1) * dh_ + 1; + int fw = (fw_ - 1) * dw_ + 1; + oh = outputSize(ih, fh, ph_, sh_, caffeMode_); + ow = outputSize(iw, fw, pw_, sw_, caffeMode_); + + reshapeOutput(oh, ow); + resizeOutput(bs, oc * oh * ow); + + printSizeInfo(); +} + +void MKLDNNConvLayer::resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + resetFwdPD(fwdPD_); + + resetFwdBuffers(fwdPD_, in, wgt, bias, out); + + resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out); + + printValueFormatFlow(); +} + +void MKLDNNConvLayer::resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + std::shared_ptr bwdWgtPD; + std::shared_ptr bwdDataPD; + + resetBwdWgtPD(bwdWgtPD); + + resetBwdDataPD(bwdDataPD); + + resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out); + + resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out); + + printGradFormatFlow(); +} + +void MKLDNNConvLayer::updateInputData() { + cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); +} + +void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) { + weight_->getParameterPtr()->incUpdate(callback); + if (biases_ && biases_->getWGrad()) { + biases_->getParameterPtr()->incUpdate(callback); + } +} + +void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt, + memory::dims& bias, + memory::dims& stride, + memory::dims& dilation, + memory::dims& padL, + memory::dims& padR) { + wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_} + : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_}; + bias = memory::dims{oc_}; + stride = memory::dims{sh_, sw_}; + padL = memory::dims{ph_, pw_}; + padR = getPaddingR(); + // note: mkldnn dilation start from 0 + dilation = memory::dims{dh_ - 1, dw_ - 1}; +} + +void MKLDNNConvLayer::resetFwdPD( + std::shared_ptr& pd) { + // dims for conv + memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_}; + memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; + memory::dims wgtDims, biasDims, strides, dilations, padL, padR; + loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); + + prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring + : prop_kind::forward_training; + algorithm algo = algorithm::convolution_direct; + padding_kind padKind = padding_kind::zero; + conv_fwd::desc fwdDesc = + biases_ && biases_->getW() + ? conv_fwd::desc(pk, + algo, + MKLDNNMatrix::createMemoryDesc(inDims), + MKLDNNMatrix::createMemoryDesc(wgtDims), + MKLDNNMatrix::createMemoryDesc(biasDims), + MKLDNNMatrix::createMemoryDesc(outDims), + strides, + dilations, + padL, + padR, + padKind) + : conv_fwd::desc(pk, + algo, + MKLDNNMatrix::createMemoryDesc(inDims), + MKLDNNMatrix::createMemoryDesc(wgtDims), + MKLDNNMatrix::createMemoryDesc(outDims), + strides, + dilations, + padL, + padR, + padKind); + pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_)); +} + +void MKLDNNConvLayer::resetFwdBuffers( + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + CHECK(pd); + resetInValue(pd, in); + + resetWgtBiasValue(pd, wgt, bias); + + resetOutValue(pd, out); +} + +void MKLDNNConvLayer::resetFwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + pipeline.clear(); + + if (cvtInVal_) { + pipeline.push_back(*cvtInVal_); + } + + if (bias) { + fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out)); + } else { + fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out)); + } + pipeline.push_back(*fwd_); + + if (cvtOutVal_) { + pipeline.push_back(*cvtOutVal_); + } +} + +void MKLDNNConvLayer::resetInValue( + std::shared_ptr& pd, MKLDNNMatrixPtr& in) { + const MatrixPtr& inMat = inputLayers_[0]->getOutput().value; + in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc()); + + // create buffer and reorder if input value do not match + cpuInVal_ = nullptr; + cvtInVal_ = nullptr; + + MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast(inMat); + CHECK_EQ(inputIsOnlyMKLDNN(), dnnIn != nullptr); + if (dnnIn != nullptr && dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) { + in = dnnIn; + return; + } + if (dnnIn) { + if (dnnIn->getFormat() == format::nc) { + CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format"; + // create a new one with nchw format and same data + memory::dims inDims = memory::dims{bs_, ic_, 1, 1}; + dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_); + } + if (dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) { + in = dnnIn; + return; + } + cpuInVal_ = dnnIn; + in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc()); + cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in); + CHECK(cvtInVal_) << "should not be emptry"; + } else { + memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_}; + cpuInVal_ = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_); + if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) { + // create new mkldnn matrix + in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc()); + cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in); + CHECK(cvtInVal_) << "should not be emptry"; + } else { + in = cpuInVal_; + } + } +} + +void MKLDNNConvLayer::resetWgtBiasValue( + std::shared_ptr& pd, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias) { + wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc()); + VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat(); + + bias = (biases_ && biases_->getW()) + ? MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc()) + : nullptr; +} + +void MKLDNNConvLayer::resetOutValue( + std::shared_ptr& pd, MKLDNNMatrixPtr& out) { + out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc()); + + // create reorder if output value has cpu device and pd do not match + cpuOutVal_ = nullptr; + cvtOutVal_ = nullptr; + if (!outputIsOnlyMKLDNN()) { + const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value; + memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; + cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_); + if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) { + cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); + CHECK(cvtOutVal_) << "should not be emptry"; + } else { + // CPU output share the same data of MKLDNN output + cpuOut->setData(out->getData()); + cpuOutVal_ = out; + } + } +} + +void MKLDNNConvLayer::resetBwdWgtPD( + std::shared_ptr& pd) { + memory::dims wgtDims, biasDims, strides, dilations, padL, padR; + loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); + + // create backward weight using input, output and weight value memory desc + CHECK(inVal_) << "Should have input value"; + CHECK(outVal_) << "Should have output value"; + CHECK(wgtVal_) << "Should have weight value"; + algorithm algo = algorithm::convolution_direct; + padding_kind padKind = padding_kind::zero; + auto bwdWgtDesc = biasVal_ != nullptr + ? conv_bwdWgt::desc(algo, + inVal_->getMemoryDesc(), + wgtVal_->getMemoryDesc(), + biasVal_->getMemoryDesc(), + outVal_->getMemoryDesc(), + strides, + padL, + padR, + padKind) + : conv_bwdWgt::desc(algo, + inVal_->getMemoryDesc(), + wgtVal_->getMemoryDesc(), + outVal_->getMemoryDesc(), + strides, + padL, + padR, + padKind); + pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_)); + CHECK(pd->src_primitive_desc() == inVal_->getPrimitiveDesc()) + << "primitive desc of in value should equal"; + CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc()) + << "primitive desc of out grad should equal the out value"; + CHECK(pd->diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc()) + << "primitive desc of weight grad should equal the weight value"; +} + +void MKLDNNConvLayer::resetBwdDataPD( + std::shared_ptr& pd) { + pd = nullptr; + if (inputLayers_[0]->getOutput().grad == nullptr) { + return; + } + + memory::dims wgtDims, biasDims, strides, dilations, padL, padR; + loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR); + CHECK(inVal_) << "Should have input value"; + CHECK(outVal_) << "Should have output value"; + // create backward data using input and output value memory desc + // but using weight memory desc with any format + auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct, + inVal_->getMemoryDesc(), + MKLDNNMatrix::createMemoryDesc(wgtDims), + outVal_->getMemoryDesc(), + strides, + padL, + padR, + padding_kind::zero); + pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_)); + CHECK(pd->diff_src_primitive_desc() == inVal_->getPrimitiveDesc()) + << "primitive desc of in grad should equal the in value"; + CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc()) + << "primitive desc of out grad should equal"; +} + +void MKLDNNConvLayer::resetBwdBuffers( + std::shared_ptr& wgtPD, + std::shared_ptr& dataPD, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + CHECK(wgtPD); + resetOutGrad(wgtPD, out); + + resetWgtBiasGrad(wgtPD, wgt, bias); + + resetInGrad(dataPD, in); + + resetWgtValBwdData(dataPD, wgtValBwdData_); +} + +void MKLDNNConvLayer::resetBwdPipeline( + std::vector& pipeline, + std::shared_ptr& wgtPD, + std::shared_ptr& dataPD, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + pipeline.clear(); + + if (cvtOutGrad_) { + pipeline.push_back(*cvtOutGrad_); + } + + // add bwdWgt handle + if (bias) { + bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias)); + } else { + bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt)); + } + pipeline.push_back(*bwdWgt_); + + if (dataPD == nullptr) { + return; + } + + if (cvtWgtVal_) { + pipeline.push_back(*cvtWgtVal_); + } + + // add bwdData handle + CHECK(wgtValBwdData_) << "Should have weight memory"; + bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in)); + pipeline.push_back(*bwdData_); + + if (cvtInGrad_) { + pipeline.push_back(*cvtInGrad_); + } +} + +void MKLDNNConvLayer::resetOutGrad( + std::shared_ptr& wgtPD, MKLDNNMatrixPtr& out) { + const MatrixPtr& outMat = output_.grad; + out = MKLDNNMatrix::create(outMat, wgtPD->diff_dst_primitive_desc()); + CHECK(outVal_ != nullptr && + out->getPrimitiveDesc() == outVal_->getPrimitiveDesc()) + << "primitive desc of out grad and value should be equal"; + + // TODO(TJ): merge outgrad + // create reorder if has output grad does not match + cpuOutGrad_ = nullptr; + cvtOutGrad_ = nullptr; + if (!outputIsOnlyMKLDNN()) { + const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; + outMat->setData(cpuOut->getData()); + // same PrimitiveDesc with cpuInVal_ + CHECK(cpuOutVal_); + cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc()); + if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) { + out = cpuOutGrad_; + } else { + out = MKLDNNMatrix::create(nullptr, wgtPD->diff_dst_primitive_desc()); + cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); + CHECK(cvtOutGrad_); + } + } +} + +void MKLDNNConvLayer::resetWgtBiasGrad( + std::shared_ptr& wgtPD, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias) { + wgt = MKLDNNMatrix::create(weight_->getWGrad(), + wgtPD->diff_weights_primitive_desc()); + CHECK(nullptr != wgtVal_ && + wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc()) + << "primitive desc of weight grad and value should be equal"; + VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat(); + + bias = nullptr; + if (biasVal_ == nullptr) { + return; + } + bias = MKLDNNMatrix::create(biases_->getWGrad(), + wgtPD->diff_bias_primitive_desc()); + CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc()) + << "primitive desc of bias grad should equal the bias value"; +} + +void MKLDNNConvLayer::resetInGrad( + std::shared_ptr& dataPD, + MKLDNNMatrixPtr& in) { + if (dataPD == nullptr) { + return; + } + + // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done + in = MKLDNNMatrix::create(inputLayers_[0]->getOutput().grad, + dataPD->diff_src_primitive_desc()); + CHECK(nullptr != inVal_ && + in->getPrimitiveDesc() == inVal_->getPrimitiveDesc()) + << "primitive desc of input grad and value should be equal"; + + // create reorder if has output grad does not match + cpuInGrad_ = nullptr; + cvtInGrad_ = nullptr; + if (!inputIsOnlyMKLDNN()) { + const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE); + // same PrimitiveDesc with cpuInVal_ + CHECK(cpuInVal_); + cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc()); + if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) { + const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE); + in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc()); + cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_); + CHECK(cvtInGrad_); + } else { + in = cpuInGrad_; + } + } +} + +void MKLDNNConvLayer::resetWgtValBwdData( + std::shared_ptr& dataPD, + MKLDNNMatrixPtr& wgt) { + if (dataPD == nullptr) { + return; + } + + // create new weight value for backward data, and create reorder if necessary + // since the primitive_desc would be different with wgtVal_ + CHECK(wgtVal_) << "should have weight value"; + if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) { + wgtValBwdData_ = + MKLDNNMatrix::create(nullptr, dataPD->weights_primitive_desc()); + cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_); + CHECK(cvtWgtVal_); + } else { + wgtValBwdData_ = wgtVal_; + } + VLOG(MKLDNN_FMTS) << "weight value format for backward data: " + << wgtValBwdData_->getFormat(); +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNConvLayer.h b/paddle/gserver/layers/MKLDNNConvLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..f84f2f737c47a1b8adc2b83360a0396ffbc6ae24 --- /dev/null +++ b/paddle/gserver/layers/MKLDNNConvLayer.h @@ -0,0 +1,253 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "MKLDNNLayer.h" +#include "mkldnn.hpp" + +namespace paddle { +typedef mkldnn::convolution_forward conv_fwd; +typedef mkldnn::convolution_backward_weights conv_bwdWgt; +typedef mkldnn::convolution_backward_data conv_bwdData; + +/** + * @brief A subclass of MKLDNNLayer conv layer. + * + * The config file api is mkldnn_conv + */ +class MKLDNNConvLayer : public MKLDNNLayer { +protected: + // padding height and width + int ph_, pw_; + // stride height and width + int sh_, sw_; + // dilation height and width + int dh_, dw_; + // filter(kenerl) height and width + int fh_, fw_; + // group number + int gp_; + + // in resetBwdData, the format of wgtValBwdData_ is different with wgtVal_ + MKLDNNMatrixPtr wgtValBwdData_; + // convert handle from wgtVal_ to wgtValBwdData_ + std::shared_ptr cvtWgtVal_; + + // save forward primitive_desc, which can be used backward + std::shared_ptr fwdPD_; + + // MKLDNNMatrixPtr which should be created from CPU Device + MKLDNNMatrixPtr cpuInVal_; + MKLDNNMatrixPtr cpuInGrad_; + MKLDNNMatrixPtr cpuOutVal_; + MKLDNNMatrixPtr cpuOutGrad_; + // convert handle between CPU device and MKLDNN device + std::shared_ptr cvtInVal_; + std::shared_ptr cvtInGrad_; + std::shared_ptr cvtOutVal_; + std::shared_ptr cvtOutGrad_; + + // whether the weight has been init + bool hasInitedWgt_; + + // true by default, which impact the calculation of output image size. + // details can refer to mathUtil.h + bool caffeMode_; + + // weight and bias + std::unique_ptr weight_; + std::unique_ptr biases_; + +public: + explicit MKLDNNConvLayer(const LayerConfig& config) + : MKLDNNLayer(config), hasInitedWgt_(false), caffeMode_(true) {} + + ~MKLDNNConvLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + + void resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; + + void resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; + + void updateInputData() override; + + void updateWeights(const UpdateCallback& callback) override; + + void convertWeightsFromPaddle() override; + + void convertWeightsToPaddle() override; + + void printSizeInfo() override { + MKLDNNLayer::printSizeInfo(); + VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_ + << ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_ + << ", sw: " << sw_ << ", dh: " << dh_ << ", dw: " << dw_; + } + + void printValueFormatFlow() override { + if (cpuInVal_) { + VLOG(MKLDNN_FMTS) << cpuInVal_->getFormat() << " >>>"; + } + MKLDNNLayer::printValueFormatFlow(); + if (cpuOutVal_) { + VLOG(MKLDNN_FMTS) << " >>> " << cpuOutVal_->getFormat(); + } + } + + void printGradFormatFlow() override { + if (cpuInGrad_) { + VLOG(MKLDNN_FMTS) << cpuInGrad_->getFormat() << " <<<"; + } + MKLDNNLayer::printGradFormatFlow(); + if (cpuOutGrad_) { + VLOG(MKLDNN_FMTS) << " <<< " << cpuOutGrad_->getFormat(); + } + } + +protected: + /** + * load the dims settings of this conv + */ + void loadConvSettings(mkldnn::memory::dims& wgt, + mkldnn::memory::dims& bias, + mkldnn::memory::dims& stride, + mkldnn::memory::dims& dilation, + mkldnn::memory::dims& padL, + mkldnn::memory::dims& padR); + + /** + * reset the forward primitive descriptor. + */ + void resetFwdPD(std::shared_ptr& pd); + /** + * reset the MKLDNNMatrix buffers used in forward. + */ + void resetFwdBuffers(std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); + /** + * reset the forward pipeline. + */ + void resetFwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); + + /** + * reset MKLDNNMatrix of input value + */ + void resetInValue(std::shared_ptr& pd, + MKLDNNMatrixPtr& in); + /** + * reset MKLDNNMatrix of weight and bias value + */ + void resetWgtBiasValue(std::shared_ptr& pd, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias); + /** + * reset MKLDNNMatrix of output value + */ + void resetOutValue(std::shared_ptr& pd, + MKLDNNMatrixPtr& out); + + /** + * reset the backward weight primitive descriptor. + */ + void resetBwdWgtPD(std::shared_ptr& pd); + /** + * reset the backward data primitive descriptor. + */ + void resetBwdDataPD(std::shared_ptr& pd); + /** + * reset the MKLDNNMatrix buffers used in backward. + */ + void resetBwdBuffers(std::shared_ptr& wgtPD, + std::shared_ptr& dataPD, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); + /** + * reset the backward pipeline. + */ + void resetBwdPipeline(std::vector& pipeline, + std::shared_ptr& wgtPD, + std::shared_ptr& dataPD, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); + + /** + * reset MKLDNNMatrix of output grad + */ + void resetOutGrad(std::shared_ptr& wgtPD, + MKLDNNMatrixPtr& out); + /** + * reset MKLDNNMatrix of weight and bias grad + */ + void resetWgtBiasGrad(std::shared_ptr& wgtPD, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias); + /** + * reset MKLDNNMatrix of input grad + */ + void resetInGrad(std::shared_ptr& dataPD, + MKLDNNMatrixPtr& in); + /** + * reset MKLDNNMatrix of weight value for backward data + * since the primitive_desc would be different with wgtVal_ + */ + void resetWgtValBwdData(std::shared_ptr& dataPD, + MKLDNNMatrixPtr& wgt); + + /** + * get padding_r according to + * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/ + * test_convolution_forward_common.hpp + * @note: mkldnn dilation start from 0 while paddle start from 1 + */ + mkldnn::memory::dims getPaddingR() const { + mkldnn::memory::dims padR = {ph_, pw_}; + for (int i = 0; i < 2; ++i) { + if ((ih_ - ((fh_ - 1) * dh_ + 1) + ph_ + padR[0]) / sh_ + 1 != oh_) { + ++padR[0]; + } + if ((iw_ - ((fw_ - 1) * dw_ + 1) + pw_ + padR[1]) / sw_ + 1 != ow_) { + ++padR[1]; + } + } + return padR; + } +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp index f70343251ad4fbb99f9614618f6d1bff1174f15e..e829456d6afd7cc844f752d4571cd9f90c73997f 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.cpp +++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp @@ -17,9 +17,6 @@ limitations under the License. */ using namespace mkldnn; // NOLINT typedef memory::format format; -typedef inner_product_forward fc_fwd; -typedef inner_product_backward_weights fc_bwdWgt; -typedef inner_product_backward_data fc_bwdData; namespace paddle { @@ -31,7 +28,7 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap, return false; } - CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet"; + CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet"; CHECK_EQ(inputLayers_.size(), parameters_.size()); CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet"; @@ -52,7 +49,7 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap, // create biases if (biasParameter_.get() != NULL) { - biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_)); + biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_, 0)); } return true; } @@ -93,84 +90,156 @@ void MKLDNNFcLayer::reshape( printSizeInfo(); } -void MKLDNNFcLayer::resetFwd(std::vector& pipeline, +void MKLDNNFcLayer::resetFwd(std::vector& pipeline, MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { - pipeline.clear(); - bool hasBias = biases_ && biases_->getW(); - const MatrixPtr& wgtVal = weight_->getW(); - const MatrixPtr& biasVal = hasBias ? biases_->getW() : nullptr; - const MatrixPtr& outVal = output_.value; + resetFwdBuffers(in, wgt, bias, out); + + resetFwdPD(fwdPD_, in, wgt, bias, out); + + resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out); + + printValueFormatFlow(); +} + +void MKLDNNFcLayer::resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + std::shared_ptr bwdWgtPD; + std::shared_ptr bwdDataPD; + + resetBwdBuffers(in, wgt, bias, out); + + resetBwdWgtPD(bwdWgtPD, wgt, bias, out); + + resetBwdDataPD(bwdDataPD, in, out); + + resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out); + + printGradFormatFlow(); +} + +void MKLDNNFcLayer::updateInputData() { + inVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); +} +void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) { + weight_->getParameterPtr()->incUpdate(callback); + if (biases_ && biases_->getWGrad()) { + biases_->getParameterPtr()->incUpdate(callback); + } +} + +void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + resetInValue(in); + + resetWgtBiasValue(wgt, bias); + + resetOutValue(out); +} + +void MKLDNNFcLayer::resetInValue(MKLDNNMatrixPtr& in) { if (inputIsOnlyMKLDNN()) { - const MatrixPtr& inVal = getInputValue(0); - in = std::dynamic_pointer_cast(inVal); + const MatrixPtr& dnnIn = getInputValue(0); + in = std::dynamic_pointer_cast(dnnIn); CHECK(in) << "Input should be MKLDNNMatrix"; } else { CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; - const MatrixPtr& inVal = getInputValue(0, CPU_DEVICE); + const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE); in = MKLDNNMatrix::create( - inVal, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_); + cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_); } in->downSpatial(); +} + +void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias) { + format wgtFmt = format::oihw; + if (inVal_->getFormat() == format::nChw8c) { + wgtFmt = format::oIhw8i; + } else if (inVal_->getFormat() == format::nChw16c) { + wgtFmt = format::oIhw16i; + } wgt = MKLDNNMatrix::create( - wgtVal, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_); + weight_->getW(), {oc_, ic_, ih_, iw_}, wgtFmt, engine_); wgt->downSpatial(); - bias = hasBias ? MKLDNNMatrix::create(biasVal, {oc_}, format::x, engine_) - : nullptr; - out = MKLDNNMatrix::create(outVal, {bs_, oc_}, format::nc, engine_); + VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat(); + + bias = (biases_ && biases_->getW()) + ? MKLDNNMatrix::create(biases_->getW(), {oc_}, format::x, engine_) + : nullptr; +} - // change original output value to mkldnn output value - output_.value = std::dynamic_pointer_cast(out); +void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) { + out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_); if (!outputIsOnlyMKLDNN()) { // fc cpu output value do not need create convert // just share point - getOutput(CPU_DEVICE).value->setData(output_.value->getData()); + getOutput(CPU_DEVICE).value->setData(out->getData()); } +} - // create forward handle +void MKLDNNFcLayer::resetFwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr in, + MKLDNNMatrixPtr wgt, + MKLDNNMatrixPtr bias, + MKLDNNMatrixPtr out) { + CHECK(in); + CHECK(wgt); + CHECK(out); prop_kind pk = prop_kind::forward; - fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk, - in->getMemoryDesc(), - wgt->getMemoryDesc(), - bias->getMemoryDesc(), - out->getMemoryDesc()) - : fc_fwd::desc(pk, - in->getMemoryDesc(), - wgt->getMemoryDesc(), - out->getMemoryDesc()); - fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); - if (hasBias) { - fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *bias, *out)); + fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk, + in->getMemoryDesc(), + wgt->getMemoryDesc(), + bias->getMemoryDesc(), + out->getMemoryDesc()) + : fc_fwd::desc(pk, + in->getMemoryDesc(), + wgt->getMemoryDesc(), + out->getMemoryDesc()); + pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_)); +} + +void MKLDNNFcLayer::resetFwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + pipeline.clear(); + + if (bias) { + fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out)); } else { - fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *out)); + fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out)); } - printValueFormatFlow(); pipeline.push_back(*fwd_); } -void MKLDNNFcLayer::resetBwd(std::vector& pipeline, - MKLDNNMatrixPtr& in, - MKLDNNMatrixPtr& wgt, - MKLDNNMatrixPtr& bias, - MKLDNNMatrixPtr& out) { - pipeline.clear(); - if (!needResetBwd_) { - return; - } - needResetBwd_ = false; - bool hasBias = biases_ && biases_->getWGrad(); +void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + resetOutGrad(out); - /// backward weight - CHECK(inVal_) << "Should have input value"; - const MatrixPtr& wgtGrad = weight_->getWGrad(); - const MatrixPtr& biasGrad = hasBias ? biases_->getWGrad() : nullptr; + resetWgtBiasGrad(wgt, bias); + resetInGrad(in); +} + +void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) { // TODO(TJ): merge outgrad int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE; + output_.grad->setData(getOutput(device).grad->getData()); // for MKLDNN device: // can not directly cast outputgrad to mkldnnmatrix, // since each layer can not write the inputgrad to mkldnn inputgrad. @@ -178,66 +247,88 @@ void MKLDNNFcLayer::resetBwd(std::vector& pipeline, // for CPU device: // fc do not need to convert from cpu device since output is always nc format // only need create from cpu device - const MatrixPtr& outGrad = getOutput(device).grad; - out = MKLDNNMatrix::create(outGrad, outVal_->getPrimitiveDesc()); - wgt = MKLDNNMatrix::create(wgtGrad, wgtVal_->getPrimitiveDesc()); - bias = hasBias ? MKLDNNMatrix::create(biasGrad, biasVal_->getPrimitiveDesc()) - : nullptr; - - // create memory primitive desc - fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, - inVal_->getMemoryDesc(), - wgt->getMemoryDesc(), - out->getMemoryDesc()); - fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); - fc_bwdWgt::desc bwdWgtDesc = hasBias - ? fc_bwdWgt::desc(inVal_->getMemoryDesc(), - wgt->getMemoryDesc(), - bias->getMemoryDesc(), - out->getMemoryDesc()) - : fc_bwdWgt::desc(inVal_->getMemoryDesc(), - wgt->getMemoryDesc(), - out->getMemoryDesc()); - fc_bwdWgt::primitive_desc bwdWgtPD = - fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD); - - if (hasBias) { - bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias)); - } else { - bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt)); + CHECK(outVal_); + out = + MKLDNNMatrix::create(getOutput(device).grad, outVal_->getPrimitiveDesc()); +} + +void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias) { + CHECK(wgtVal_); + wgt = MKLDNNMatrix::create(weight_->getWGrad(), wgtVal_->getPrimitiveDesc()); + + bias = nullptr; + if (biasVal_ == nullptr) { + return; } - pipeline.push_back(*bwdWgt_); + bias = + MKLDNNMatrix::create(biases_->getWGrad(), biasVal_->getPrimitiveDesc()); +} - /// backward data +void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) { + in = nullptr; const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad; if (inGrad == nullptr) { return; } - if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) { - // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done - } else { - in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc()); - } - - fc_bwdData::desc bwdDataDesc = fc_bwdData::desc( - inVal_->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc()); - fc_bwdData::primitive_desc bwdDataPD = - fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD); + // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done + CHECK(inVal_); + in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc()); +} - CHECK(wgtVal_) << "Should have weight memory"; - bwdData_.reset(new fc_bwdData(bwdDataPD, *out, *wgtVal_, *in)); - printGradFormatFlow(); - pipeline.push_back(*bwdData_); +void MKLDNNFcLayer::resetBwdWgtPD( + std::shared_ptr& pd, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + CHECK(inVal_); + fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(), + wgt->getMemoryDesc(), + bias->getMemoryDesc(), + out->getMemoryDesc()) + : fc_bwdWgt::desc(inVal_->getMemoryDesc(), + wgt->getMemoryDesc(), + out->getMemoryDesc()); + pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_)); } -void MKLDNNFcLayer::updateInputData() { - inVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); +void MKLDNNFcLayer::resetBwdDataPD( + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + pd = nullptr; + if (in == nullptr) { + return; + } + CHECK(wgtVal_); + fc_bwdData::desc bwdDataDesc = fc_bwdData::desc( + in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc()); + pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_)); } -void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) { - weight_->getParameterPtr()->incUpdate(callback); - if (biases_ && biases_->getWGrad()) { - biases_->getParameterPtr()->incUpdate(callback); +void MKLDNNFcLayer::resetBwdPipeline( + std::vector& pipeline, + std::shared_ptr& bwdWgtPD, + std::shared_ptr& bwdDataPD, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + pipeline.clear(); + CHECK(inVal_); + if (bias) { + bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias)); + } else { + bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt)); + } + pipeline.push_back(*bwdWgt_); + + if (bwdDataPD == nullptr) { + return; } + CHECK(wgtVal_) << "Should have weight memory"; + bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in)); + pipeline.push_back(*bwdData_); } + } // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNFcLayer.h b/paddle/gserver/layers/MKLDNNFcLayer.h index 3119f863496df092da13c08bf733f13c42e53780..c76878aafab7e986d2bf478eaba02f2f0aced293 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.h +++ b/paddle/gserver/layers/MKLDNNFcLayer.h @@ -18,6 +18,9 @@ limitations under the License. */ #include "mkldnn.hpp" namespace paddle { +typedef mkldnn::inner_product_forward fc_fwd; +typedef mkldnn::inner_product_backward_weights fc_bwdWgt; +typedef mkldnn::inner_product_backward_data fc_bwdData; /** * @brief A subclass of MKLDNNLayer fc layer. @@ -32,6 +35,9 @@ protected: // if has already init the weight bool hasInitedWgt_; + // save forward primitive_desc, which can be used backward + std::shared_ptr fwdPD_; + // fc weight and bias std::unique_ptr weight_; std::unique_ptr biases_; @@ -67,6 +73,59 @@ public: void convertWeightsFromPaddle() override; void convertWeightsToPaddle() override; + +protected: + /** + * Forward functions: reset buffers(input, output, weight and bias), + * reset primitive descriptor, + * reset pipeline. + */ + void resetFwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); + void resetInValue(MKLDNNMatrixPtr& in); + void resetWgtBiasValue(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias); + void resetOutValue(MKLDNNMatrixPtr& out); + void resetFwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr in, + MKLDNNMatrixPtr wgt, + MKLDNNMatrixPtr bias, + MKLDNNMatrixPtr out); + void resetFwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); + + /** + * Backward functions: reset buffers(input, output, weight and bias), + * reset primitive descriptor for backward weight, + * reset primitive descriptor for backward data, + * reset pipeline. + */ + void resetBwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); + void resetOutGrad(MKLDNNMatrixPtr& out); + void resetWgtBiasGrad(MKLDNNMatrixPtr& wgt, MKLDNNMatrixPtr& bias); + void resetInGrad(MKLDNNMatrixPtr& in); + void resetBwdWgtPD(std::shared_ptr& pd, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); + void resetBwdDataPD(std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out); + void resetBwdPipeline(std::vector& pipeline, + std::shared_ptr& bwdWgtPD, + std::shared_ptr& bwdDataPD, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out); }; } // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index 169679c8297542cac4a43f5a8e1af311ad9282df..c09fd89462ef4fdaeaae3e122f96b0cc6ce373ea 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -115,10 +115,15 @@ public: copySeqInfoToOutputs(); size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt(); if (inputElemenCnt_ != elemenCnt) { + VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward"; // reset when input total sizes changed, not only the batchsize inputElemenCnt_ = elemenCnt; reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); + if (outVal_) { + // change original output value to mkldnn output value + output_.value = std::dynamic_pointer_cast(outVal_); + } convertWeightsFromPaddle(); needResetBwd_ = true; } @@ -137,18 +142,17 @@ public: } void backward(const UpdateCallback& callback) override { - /* Do derivation */ { + if (needResetBwd_) { + VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward"; + resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); + needResetBwd_ = false; + } + { REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); backwardActivation(); } - { REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); - if (needResetBwd_) { - resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); - needResetBwd_ = false; - } - stream_->submit(pipelineBwd_); } diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.cpp b/paddle/gserver/layers/MKLDNNPoolLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b62dfb7c54258a593aa50d5b30096423f375c69d --- /dev/null +++ b/paddle/gserver/layers/MKLDNNPoolLayer.cpp @@ -0,0 +1,276 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNPoolLayer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/utils/Logging.h" + +using namespace mkldnn; // NOLINT +typedef memory::format format; + +namespace paddle { + +REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer); + +bool MKLDNNPoolLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + if (!MKLDNNLayer::init(layerMap, parameterMap)) { + return false; + } + + /* the size of inputs for pool-layer is 1 */ + CHECK_EQ(config_.inputs_size(), 1); + const PoolConfig& conf = config_.inputs(0).pool_conf(); + ic_ = conf.channels(); + ih_ = conf.img_size_y(); + iw_ = conf.img_size(); + oc_ = ic_; + oh_ = conf.output_y(); + ow_ = conf.output_x(); + fh_ = conf.size_y(); + fw_ = conf.size_x(); + ph_ = conf.padding_y(); + pw_ = conf.padding(); + sh_ = conf.stride_y(); + sw_ = conf.stride(); + + const std::string& type = conf.pool_type(); + if (type == "max-projection") { + poolAlgo_ = algorithm::pooling_max; + } else if (type == "avg-projection") { + // paddle only use exclude_padding + poolAlgo_ = algorithm::pooling_avg_exclude_padding; + } else { + LOG(FATAL) << "unknow pooling type!"; + } + return true; +} + +void MKLDNNPoolLayer::reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + reshapeInput(bs, ih, iw); + // ic_ and oc can not be changed + CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic) + << "Input channel can not be changed"; + + // cal output sizes + // paddle used false caffeMode for pooling + oh = outputSize(ih, fh_, ph_, sh_, false); + ow = outputSize(iw, fw_, pw_, sw_, false); + reshapeOutput(oh, ow); + + resizeOutput(bs, oc * oh * ow); + + printSizeInfo(); +} + +void MKLDNNPoolLayer::resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + resetFwdBuffers(in, out); + + resetFwdPD(fwdPD_, in, out); + + resetFwdPipeline(pipeline, fwdPD_, in, out); + + printValueFormatFlow(); +} + +void MKLDNNPoolLayer::resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + std::shared_ptr pd; + + resetBwdBuffers(in, out); + + resetBwdPD(pd, in, out); + + resetBwdPipeline(pipeline, pd, in, out); + + printGradFormatFlow(); +} + +void MKLDNNPoolLayer::updateInputData() { + inVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); +} + +void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + resetInValue(in); + + resetOutValue(out); +} + +void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) { + if (inputIsOnlyMKLDNN()) { + const MatrixPtr& dnnIn = getInputValue(0); + in = std::dynamic_pointer_cast(dnnIn); + CHECK(in) << "Input should be MKLDNNMatrix"; + } else { + CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; + const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE); + in = MKLDNNMatrix::create( + cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_); + } +} + +void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) { + CHECK(inVal_) << "Should reset input value first"; + memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; + out = MKLDNNMatrix::create( + output_.value, outDims, inVal_->getFormat(), engine_); + + // create reorder if output value has cpu device and pd do not match + cpuOutVal_ = nullptr; + cvtOutVal_ = nullptr; + if (!outputIsOnlyMKLDNN()) { + const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value; + cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_); + if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) { + cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_); + CHECK(cvtOutVal_) << "should not be emptry"; + } else { + // CPU output share the same data of MKLDNN output + cpuOut->setData(out->getData()); + cpuOutVal_ = out; + } + } +} + +void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr in, + MKLDNNMatrixPtr out) { + memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_}; + memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_}; + memory::dims kernels = memory::dims{fh_, fw_}; + memory::dims strides = memory::dims{sh_, sw_}; + memory::dims padL = memory::dims{ph_, pw_}; + memory::dims padR = getPaddingR(); + padding_kind padKind = padding_kind::zero; + prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring + : prop_kind::forward_training; + auto fwdDesc = pool_fwd::desc(pk, + poolAlgo_, + in->getMemoryDesc(), + out->getMemoryDesc(), + strides, + kernels, + padL, + padR, + padKind); + pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_)); + + // prepare workspace if necessary + workspace_ = + (passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max) + ? std::make_shared(memory(pd->workspace_primitive_desc())) + : nullptr; +} + +void MKLDNNPoolLayer::resetFwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + pipeline.clear(); + fwd_ = workspace_ + ? std::make_shared(pool_fwd(*pd, *in, *out, *workspace_)) + : std::make_shared(pool_fwd(*pd, *in, *out)); + pipeline.push_back(*fwd_); + + if (cvtOutVal_) { + pipeline.push_back(*cvtOutVal_); + } +} + +void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + resetOutGrad(out); + + resetInGrad(in); +} +void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) { + CHECK(outVal_) << "Should have output value"; + out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc()); + + // create reorder if output value has cpu device and pd do not match + cpuOutGrad_ = nullptr; + cvtOutGrad_ = nullptr; + if (!outputIsOnlyMKLDNN()) { + const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad; + cpuOutGrad_ = MKLDNNMatrix::create( + cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_); + if (cpuOutGrad_->getPrimitiveDesc() != out->getPrimitiveDesc()) { + cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out); + CHECK(cvtOutGrad_) << "should not be emptry"; + } else { + // share the same data of CPU output + output_.grad->setData(cpuOut->getData()); + out = cpuOutGrad_; + } + } +} + +void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) { + in = nullptr; + const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad; + if (inGrad == nullptr) { + return; + } + CHECK(inVal_); + in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc()); +} + +void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + memory::dims kernels = memory::dims{fh_, fw_}; + memory::dims strides = memory::dims{sh_, sw_}; + memory::dims padL = memory::dims{ph_, pw_}; + memory::dims padR = getPaddingR(); + CHECK(in); + CHECK(out); + auto bwdDesc = pool_bwd::desc(poolAlgo_, + in->getMemoryDesc(), + out->getMemoryDesc(), + strides, + kernels, + padL, + padR, + padding_kind::zero); + pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_)); +} + +void MKLDNNPoolLayer::resetBwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + pipeline.clear(); + if (cvtOutGrad_) { + pipeline.push_back(*cvtOutGrad_); + } + + bwdData_ = + workspace_ + ? std::make_shared(pool_bwd(*pd, *out, *workspace_, *in)) + : std::make_shared(pool_bwd(*pd, *out, *in)); + pipeline.push_back(*bwdData_); +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNPoolLayer.h b/paddle/gserver/layers/MKLDNNPoolLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..891e15a7efcdd2e54f61352efc1ba7345b91c76b --- /dev/null +++ b/paddle/gserver/layers/MKLDNNPoolLayer.h @@ -0,0 +1,138 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "MKLDNNLayer.h" +#include "mkldnn.hpp" + +namespace paddle { +typedef mkldnn::pooling_forward pool_fwd; +typedef mkldnn::pooling_backward pool_bwd; + +/** + * @brief A subclass of MKLDNNLayer pool layer. + * + * The config file api is mkldnn_pool + */ +class MKLDNNPoolLayer : public MKLDNNLayer { +protected: + // padding height and width + int ph_, pw_; + // stride height and width + int sh_, sw_; + // filter(kenerl) height and width + int fh_, fw_; + + // pooling_avg or pooling_max + mkldnn::algorithm poolAlgo_; + + // MKLDNNMatrixPtr which should be created from CPU Device + MKLDNNMatrixPtr cpuOutVal_; + MKLDNNMatrixPtr cpuOutGrad_; + // convert handle between CPU device and MKLDNN device + std::shared_ptr cvtOutVal_; + std::shared_ptr cvtOutGrad_; + + // save forward primitive_desc, which can be used backward + std::shared_ptr fwdPD_; + // according to https://github.com/01org/mkl-dnn/blob/master/tests/gtests/ + // test_pooling_forward.cpp, pool need workspace for backward + std::shared_ptr workspace_; + +public: + explicit MKLDNNPoolLayer(const LayerConfig& config) : MKLDNNLayer(config) {} + + ~MKLDNNPoolLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; + + void resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; + + void resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; + + void updateInputData() override; + + void printSizeInfo() override { + MKLDNNLayer::printSizeInfo(); + VLOG(MKLDNN_SIZES) << getName() << ": fh: " << fh_ << ", fw: " << fw_ + << ": ph: " << ph_ << ", pw: " << pw_ << ", sh: " << sh_ + << ", sw: " << sw_; + } + +protected: + /** + * Forward functions: reset buffers(input, output), + * reset primitive descriptor, + * reset pipeline. + */ + void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); + void resetInValue(MKLDNNMatrixPtr& in); + void resetOutValue(MKLDNNMatrixPtr& out); + void resetFwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr in, + MKLDNNMatrixPtr out); + void resetFwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out); + + /** + * Backward functions: reset buffers(input, output), + * reset primitive descriptor, + * reset pipeline. + */ + void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); + void resetOutGrad(MKLDNNMatrixPtr& out); + void resetInGrad(MKLDNNMatrixPtr& in); + void resetBwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out); + void resetBwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out); + + /** + * get padding_r according to + * https://github.com/01org/mkl-dnn/blob/master/tests/gtests/ + * test_pooling_forward.cpp + */ + mkldnn::memory::dims getPaddingR() const { + mkldnn::memory::dims padR = {ph_, pw_}; + for (int i = 0; i < 2; ++i) { + if ((ih_ + ph_ + padR[0] - fh_) / sh_ + 1 < oh_) { + ++padR[0]; + } + if ((iw_ + pw_ + padR[1] - fw_) / sw_ + 1 < ow_) { + ++padR[1]; + } + } + return padR; + } +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/SequenceSliceLayer.cpp b/paddle/gserver/layers/SequenceSliceLayer.cpp index d3a83fad276a384ab3fddd5349912c56be6f3cc0..ce68ca449429711eeee692be750a4a2f1dac61a6 100644 --- a/paddle/gserver/layers/SequenceSliceLayer.cpp +++ b/paddle/gserver/layers/SequenceSliceLayer.cpp @@ -73,9 +73,10 @@ void SequenceSliceLayer::checkInputs() { CHECK(inputSeq.hasSeq()) << "The first input of sequence slice layer " << "must be a sequence."; const MatrixPtr indices1 = getInputValue(1); - CHECK_EQ(static_cast(indices1->getHeight()), - inputSeq.hasSubseq() ? inputSeq.getNumSubSequences() - : inputSeq.getNumSequences()) + CHECK_EQ( + indices1->getHeight(), + static_cast(inputSeq.hasSubseq() ? inputSeq.getNumSubSequences() + : inputSeq.getNumSequences())) << "Height of the second input should be equal to number of sequence " << "in the first input."; if (inputLayers_.size() == 3) { @@ -151,7 +152,7 @@ void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts, if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k); int seqLen = endPos - begPos + 1; - CHECK_GT(seqLen, 0U); + CHECK_GT(seqLen, 0); for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m); hasSubseq ? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen) diff --git a/paddle/gserver/tests/MKLDNNTester.cpp b/paddle/gserver/tests/MKLDNNTester.cpp index 2f48e5b2d3ffc9337ed1314f6db6549e56263fdd..f59618be9d09d146be52fb51cae84f4d24c15ef1 100644 --- a/paddle/gserver/tests/MKLDNNTester.cpp +++ b/paddle/gserver/tests/MKLDNNTester.cpp @@ -64,15 +64,17 @@ void MKLDNNTester::reset(const TestConfig& dnn, configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i])); } refLayer_ = testLayers_[REF]; - dnnLayer_ = std::dynamic_pointer_cast(testLayers_[DNN]); - CHECK(dnnLayer_); - // for comparison with Paddle reference results, - // need manually add cpu device output for test - dnnLayer_->addOutputArgument(CPU_DEVICE); + dnnLayer_ = testLayers_[DNN]; EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size()); EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size()); - setInputImgSize(); + + // for comparison with Paddle reference results, + // need manually add cpu device output for test + MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast(dnnLayer_); + if (dnnLayer) { + dnnLayer->addOutputArgument(CPU_DEVICE); + } } void MKLDNNTester::setInputImgSize() { @@ -122,7 +124,7 @@ void MKLDNNTester::randomTopDiffs() { void MKLDNNTester::checkForward() { VLOG(MKLDNN_ALL) << "Check Forward"; printTopDatas(); - double delta = compareMatrix(dnnLayer_->getOutput(-1).value, + double delta = compareMatrix(dnnLayer_->getOutput(CPU_DEVICE).value, refLayer_->getOutputValue()); EXPECT_LE(fabs(delta), eps_); } @@ -155,7 +157,10 @@ void MKLDNNTester::checkBackwardWgts() { vector dnnWgts; // used to temply save mkldnn weights saveWgt(parameters_[DNN], dnnWgts); - dnnLayer_->convertWeightsToPaddle(); + MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast(dnnLayer_); + if (dnnLayer) { + dnnLayer->convertWeightsToPaddle(); + } for (size_t i = 0; i < parameters_[DNN].size(); ++i) { const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE); @@ -322,6 +327,10 @@ void MKLDNNTester::runOnce() { // and clearTopDatas(REF) should be coverd by ref layers clearBotDiffs(REF); clearWgtDiffs(REF); + // it is necessary to clear bottom diffs when only activation is dnn type + if (configs_[DNN].layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) { + clearBotDiffs(DNN); + } } void MKLDNNTester::run(const TestConfig& dnn, @@ -333,8 +342,19 @@ void MKLDNNTester::run(const TestConfig& dnn, float epsilon, bool log, int level) { - VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type() - << " vs " << ref.layerConfig.type(); + CHECK(dnn.layerConfig.type().compare(0, 7, "mkldnn_") == 0 || + dnn.layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) + << "should be MKLDNN layer or MKLDNN activation"; + if (dnn.layerConfig.type() == ref.layerConfig.type()) { + VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " + << dnn.layerConfig.active_type() << " vs " + << ref.layerConfig.active_type(); + } else { + VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " + << dnn.layerConfig.type() << " vs " + << ref.layerConfig.type(); + } + ih_ = inputImgH; iw_ = inputImgW; iter_ = iter; diff --git a/paddle/gserver/tests/MKLDNNTester.h b/paddle/gserver/tests/MKLDNNTester.h index 5ac885638cde7693a0c847733e7a6149c1b7e6c2..171d176ee757f1164c38d86273bdf9e5aefeda06 100644 --- a/paddle/gserver/tests/MKLDNNTester.h +++ b/paddle/gserver/tests/MKLDNNTester.h @@ -41,8 +41,7 @@ protected: vector layerMaps_; vector> parameters_; vector testLayers_; - LayerPtr refLayer_; - MKLDNNLayerPtr dnnLayer_; + LayerPtr refLayer_, dnnLayer_; /// run some iterations, all the result should pass size_t iter_; diff --git a/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp b/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp index 538d18cdc3d262df0ddb031d9e6b38a3fea57606..c922237d33da5de0ece61df732334bee5592249d 100644 --- a/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp +++ b/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp @@ -228,7 +228,7 @@ void genGroundTruth(vector& beamExpansions, curBeam.groundTruth[j] = *(start + n); curBeam.inBeam[j] = 1; } else { - CHECK_LE(curBeam.rowIdxInBeam[j] + 1, + CHECK_LE((size_t)curBeam.rowIdxInBeam[j] + 1, curBeam.subSeqStartPos.size() - 1); int start = curBeam.subSeqStartPos[curBeam.rowIdxInBeam[j]]; int end = curBeam.subSeqStartPos[curBeam.rowIdxInBeam[j] + 1]; diff --git a/paddle/gserver/tests/test_MKLDNN.cpp b/paddle/gserver/tests/test_MKLDNN.cpp index e1d2270df24331914f3a51acc90a518084b3ce4e..a70b2f17f4f1130322f3c50d244f70fdcf34468b 100644 --- a/paddle/gserver/tests/test_MKLDNN.cpp +++ b/paddle/gserver/tests/test_MKLDNN.cpp @@ -17,6 +17,8 @@ limitations under the License. */ #include #include "MKLDNNTester.h" #include "ModelConfig.pb.h" +#include "paddle/gserver/activations/MKLDNNActivation.h" +#include "paddle/math/MathUtils.h" using namespace paddle; // NOLINT @@ -24,17 +26,26 @@ DECLARE_bool(thread_local_rand_use_global_seed); DECLARE_bool(use_gpu); DECLARE_bool(use_mkldnn); -struct testFCDesc { +#define RUN_MKLDNN_TEST(DNN_CONFIG, REF_CONFIG, DESC) \ + MKLDNNTester tester; \ + for (auto bs : {DESC.bs, 1}) { \ + tester.run(DNN_CONFIG, REF_CONFIG, bs, DESC.ih, DESC.iw); \ + } + +#define RUN_MKLDNN_TEST_LAYER(DNN_CONFIG, REF_TYPE, DESC) \ + TestConfig ref = DNN_CONFIG; \ + ref.layerConfig.set_type(REF_TYPE); \ + RUN_MKLDNN_TEST(DNN_CONFIG, ref, DESC) + +struct testFcDesc { int bs; int ic; int oc; int ih, iw; // oh == ow == 1 }; -void testFcLayer(const testFCDesc& pm) { - const std::string compareTypes[] = {"mkldnn_fc", "fc"}; - TestConfig cfg; - cfg.layerConfig.set_type(compareTypes[0]); +static void getMKLDNNFcConfig(TestConfig& cfg, const testFcDesc& pm) { + cfg.layerConfig.set_type("mkldnn_fc"); cfg.layerConfig.set_size(pm.oc); cfg.inputDefs.push_back( {INPUT_DATA, @@ -42,25 +53,195 @@ void testFcLayer(const testFCDesc& pm) { /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw), /* size of weight= */ size_t(pm.oc * pm.ic * pm.ih * pm.iw)}); cfg.layerConfig.add_inputs(); +} - MKLDNNTester tester; +void testFcLayer(const testFcDesc& pm) { + TestConfig dnnConfig; + getMKLDNNFcConfig(dnnConfig, pm); for (auto biasSize : {pm.oc, 0}) { - cfg.biasSize = biasSize; - TestConfig ref = cfg; - ref.layerConfig.set_type(compareTypes[1]); - for (auto bs : {pm.bs, 1}) { - tester.run(cfg, ref, bs, pm.ih, pm.iw); - } + dnnConfig.biasSize = biasSize; + RUN_MKLDNN_TEST_LAYER(dnnConfig, "fc", pm) } } TEST(MKLDNNLayer, FcLayer) { - testFcLayer({/*bs*/ 2, /*ic*/ 2, /*oc*/ 3, /*ih*/ 1, /*iw*/ 1}); - testFcLayer({/*bs*/ 3, /*ic*/ 7, /*oc*/ 19, /*ih*/ 1, /*iw*/ 1}); - testFcLayer({/*bs*/ 8, /*ic*/ 16, /*oc*/ 32, /*ih*/ 13, /*iw*/ 13}); - testFcLayer({/*bs*/ 4, /*ic*/ 12, /*oc*/ 18, /*ih*/ 13, /*iw*/ 11}); - testFcLayer({/*bs*/ 2, /*ic*/ 64, /*oc*/ 32, /*ih*/ 16, /*iw*/ 16}); - testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16}); + /* bs, ic, ih, iw, oc */ + testFcLayer({2, 2, 1, 1, 3}); + testFcLayer({3, 7, 1, 1, 19}); + testFcLayer({8, 16, 13, 13, 32}); + testFcLayer({4, 12, 13, 13, 18}); + testFcLayer({2, 64, 16, 16, 32}); + testFcLayer({15, 3, 16, 16, 6}); +} + +struct testConvDesc { + int bs, gp; + int ic, ih, iw; + int oc, oh, ow; + int fh, fw; + int ph, pw; + int sh, sw; + int dh, dw; +}; + +static void getMKLDNNConvConfig(TestConfig& cfg, const testConvDesc& pm) { + cfg.layerConfig.set_type("mkldnn_conv"); + cfg.layerConfig.set_num_filters(pm.oc); + cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow); + cfg.layerConfig.set_shared_biases(true); + cfg.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw), + /* size of weight= */ size_t(pm.oc * pm.ic * pm.fh * pm.fw / pm.gp)}); + LayerInputConfig* input = cfg.layerConfig.add_inputs(); + ConvConfig* conv = input->mutable_conv_conf(); + conv->set_groups(pm.gp); + conv->set_img_size(pm.iw); + conv->set_img_size_y(pm.ih); + conv->set_output_x(pm.ow); + conv->set_output_y(pm.oh); + conv->set_filter_size(pm.fw); + conv->set_filter_size_y(pm.fh); + conv->set_channels(pm.ic); + conv->set_padding(pm.pw); + conv->set_padding_y(pm.ph); + conv->set_stride(pm.sw); + conv->set_stride_y(pm.sh); + conv->set_dilation(pm.dw); + conv->set_dilation_y(pm.dh); + conv->set_caffe_mode(true); + conv->set_filter_channels(conv->channels() / conv->groups()); + CHECK_EQ(conv->filter_channels() * pm.gp, conv->channels()) + << "it is indivisible"; + + int fh = (pm.fh - 1) * pm.dh + 1; + int fw = (pm.fw - 1) * pm.dw + 1; + int ow = outputSize(pm.iw, fw, pm.pw, pm.sw, true); + int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true); + CHECK_EQ(ow, pm.ow) << "output size check failed"; + CHECK_EQ(oh, pm.oh) << "output size check failed"; +} + +void testConvLayer(const testConvDesc& pm) { + TestConfig dnnConfig; + getMKLDNNConvConfig(dnnConfig, pm); + for (auto biasSize : {pm.oc, 0}) { + dnnConfig.biasSize = biasSize; + RUN_MKLDNN_TEST_LAYER(dnnConfig, "exconv", pm) + } +} + +TEST(MKLDNNLayer, ConvLayer) { + /* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */ + testConvLayer({2, 1, 3, 32, 32, 16, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1}); + testConvLayer({2, 1, 8, 16, 16, 8, 16, 16, 3, 3, 1, 1, 1, 1, 1, 1}); + testConvLayer({3, 1, 16, 32, 32, 3, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1}); + testConvLayer({8, 1, 16, 18, 18, 32, 18, 18, 3, 3, 1, 1, 1, 1, 1, 1}); + testConvLayer({16, 1, 1, 42, 31, 32, 23, 11, 4, 5, 3, 2, 2, 3, 1, 1}); + testConvLayer({2, 1, 8, 16, 16, 8, 8, 8, 3, 3, 1, 1, 2, 2, 1, 1}); + testConvLayer({3, 1, 8, 13, 13, 8, 7, 7, 3, 3, 1, 1, 2, 2, 1, 1}); + // with groups + testConvLayer({2, 2, 4, 5, 5, 8, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1}); + testConvLayer({2, 3, 3, 5, 5, 3, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1}); + testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1}); +} + +struct testPoolDesc { + int bs, ic; // input channel and output channel are the same + int ih, iw; + int oh, ow; + int fh, fw; + int ph, pw; + int sh, sw; +}; + +static void getMKLDNNPoolConfig(TestConfig& cfg, const testPoolDesc& pm) { + cfg.layerConfig.set_type("mkldnn_pool"); + cfg.layerConfig.set_size(pm.ic * pm.oh * pm.ow); + cfg.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw), + 0}); + LayerInputConfig* input = cfg.layerConfig.add_inputs(); + PoolConfig* pool = input->mutable_pool_conf(); + pool->set_pool_type("avg-projection"); + pool->set_channels(pm.ic); + pool->set_img_size(pm.iw); + pool->set_img_size_y(pm.ih); + pool->set_output_x(pm.ow); + pool->set_output_y(pm.oh); + pool->set_size_x(pm.fw); + pool->set_size_y(pm.fh); + pool->set_padding(pm.pw); + pool->set_padding_y(pm.ph); + pool->set_stride(pm.sw); + pool->set_stride_y(pm.sh); + + int oh = outputSize(pm.ih, pm.fh, pm.ph, pm.sh, false); + int ow = outputSize(pm.iw, pm.fw, pm.pw, pm.sw, false); + CHECK_EQ(ow, pm.ow) << "output size check failed"; + CHECK_EQ(oh, pm.oh) << "output size check failed"; +} + +void testPoolLayer(const testPoolDesc& pm) { + TestConfig dnnConfig; + getMKLDNNPoolConfig(dnnConfig, pm); + LayerInputConfig* input = dnnConfig.layerConfig.mutable_inputs(0); + PoolConfig* pool = input->mutable_pool_conf(); + for (auto type : {"max-projection", "avg-projection"}) { + pool->set_pool_type(type); + RUN_MKLDNN_TEST_LAYER(dnnConfig, "pool", pm) + } +} + +TEST(MKLDNNLayer, PoolLayer) { + /* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw */ + testPoolLayer({2, 1, 4, 4, 2, 2, 3, 3, 0, 0, 2, 2}); + testPoolLayer({10, 8, 16, 16, 8, 8, 2, 2, 0, 0, 2, 2}); + testPoolLayer({4, 2, 5, 5, 3, 3, 3, 3, 1, 1, 2, 2}); + testPoolLayer({8, 16, 56, 56, 28, 28, 3, 3, 0, 0, 2, 2}); + testPoolLayer({8, 16, 14, 14, 7, 7, 3, 3, 0, 0, 2, 2}); + testPoolLayer({4, 16, 7, 7, 1, 1, 7, 7, 0, 0, 1, 1}); + testPoolLayer({4, 2, 5, 5, 3, 3, 5, 5, 1, 1, 1, 1}); + testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2}); +} + +struct testActDesc { + int bs, ic, ih, iw; +}; + +static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) { + cfg.biasSize = 0; + cfg.layerConfig.set_type("addto"); + size_t layerSize = pm.ic * pm.ih * pm.iw; + cfg.layerConfig.set_size(layerSize); + cfg.inputDefs.push_back({INPUT_DATA, "layer_0", layerSize, 0}); + cfg.layerConfig.add_inputs(); +} + +void testActivation(std::string actType, const testActDesc& pm) { + // TODO(TJ): remove me when paddle support elu activation + if (actType == "mkldnn_elu") { + return; + } + const std::string compareTypes[] = {actType, actType.erase(0, 7)}; + TestConfig cfg; + getAddtoConfig(cfg, pm); + TestConfig ref = cfg; + cfg.layerConfig.set_active_type(compareTypes[0]); + ref.layerConfig.set_active_type(compareTypes[1]); + RUN_MKLDNN_TEST(cfg, ref, pm) +} + +TEST(MKLDNNActivation, Activations) { + auto types = MKLDNNActivation::getAllRegisteredTypes(); + for (auto type : types) { + /* bs, c, h, w*/ + testActivation(type, {16, 64, 32, 32}); + testActivation(type, {2, 8, 1, 1}); + } } // TODO(TJ): add branch test diff --git a/paddle/math/BaseMatrix.cu b/paddle/math/BaseMatrix.cu index 5435808fb7f70fdf1ac98815f7fe8890fb85527c..53dd5383601782231e6e742784007d1c9154dc6b 100644 --- a/paddle/math/BaseMatrix.cu +++ b/paddle/math/BaseMatrix.cu @@ -17,6 +17,7 @@ limitations under the License. */ #include #include "BaseMatrix.h" #include "MathFunctions.h" +#include "NEONFunctions.h" #include "SIMDFunctions.h" #include "hl_matrix_apply.cuh" #include "hl_matrix_base.cuh" @@ -666,6 +667,13 @@ void BaseMatrixT::relu(BaseMatrixT& b) { applyBinary(binary::Relu(), b); } +#if defined(__ARM_NEON__) || defined(__ARM_NEON) +template <> +void BaseMatrixT::relu(BaseMatrixT& b) { + neon::relu(data_, b.data_, height_ * width_); +} +#endif + DEFINE_MATRIX_BINARY_OP(ReluDerivative, a *= (b > 0.0f ? 1.0f : 0.0f)); template void BaseMatrixT::reluDerivative(BaseMatrixT& b) { diff --git a/paddle/math/MKLDNNMatrix.cpp b/paddle/math/MKLDNNMatrix.cpp index c4063e5069854242d9f93886b66580385557ca73..0778bb63b7b3bca9b3d2647ca43dad72d783950a 100644 --- a/paddle/math/MKLDNNMatrix.cpp +++ b/paddle/math/MKLDNNMatrix.cpp @@ -49,6 +49,27 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, return create(m, memory::primitive_desc(memory::desc(dims, dtype, fmt), eg)); } +std::shared_ptr MKLDNNMatrix::createReorder(const MKLDNNMatrixPtr& src, + const MKLDNNMatrixPtr& dst, + bool checkData) { + if (src == dst || src->getPrimitiveDesc() == dst->getPrimitiveDesc()) { + return nullptr; + } + + if (checkData && (src->getData() == dst->getData())) { + LOG(FATAL) << "can not create reorder with inplace data"; + return nullptr; + } + + memory::dims srcDims = src->getDims(); + memory::dims dstDims = dst->getDims(); + CHECK_EQ(srcDims.size(), dstDims.size()); + for (size_t i = 0; i < srcDims.size(); ++i) { + CHECK_EQ(srcDims[i], dstDims[i]); + } + return std::make_shared(*src, *dst); +} + void MKLDNNMatrix::reorderDataFrom(const MKLDNNMatrixPtr& m, memory::format srcFmt, memory::dims targetDim) { diff --git a/paddle/math/MKLDNNMatrix.h b/paddle/math/MKLDNNMatrix.h index eef3b429e6fa0087aeac3f5aed9dff983b06e826..c843115eb9a5be50d6ff873f1510844228c9d89f 100644 --- a/paddle/math/MKLDNNMatrix.h +++ b/paddle/math/MKLDNNMatrix.h @@ -52,6 +52,32 @@ public: mkldnn::engine& eg, mkldnn::memory::data_type dtype = mkldnn::memory::data_type::f32); + /** + * Create Memory descriptor. + * default with any format and f32 dtype + */ + static mkldnn::memory::desc createMemoryDesc( + const mkldnn::memory::dims& dims, + const mkldnn::memory::format& fmt = mkldnn::memory::format::any, + const mkldnn::memory::data_type& dtype = mkldnn::memory::data_type::f32) { + return mkldnn::memory::desc(dims, dtype, fmt); + } + + /** + * Create reorder primitive. + * Create a mkldnn::reorder handle for converting src MKLDNNMatrix to dst. + * checkData: whether to check the data handle of src and dst. + * if true, it will check the data and do not allow them equal; + * otherwise, it will not check them, then the reorder created + * may have inplace buffer. + * Do not set false, if you can not guarantee the inplace logical + * would work with your reorder. + */ + static std::shared_ptr createReorder( + const MKLDNNMatrixPtr& src, + const MKLDNNMatrixPtr& dst, + bool checkData = true); + public: /** * Reorder this MKLDNNMatrix from other format. diff --git a/paddle/math/MathFunctions.h b/paddle/math/MathFunctions.h index e8ea6e37ac527a19c529d1731b94bed970211755..8193aa4adffc0409d8ea68417c68fa153a2942d8 100644 --- a/paddle/math/MathFunctions.h +++ b/paddle/math/MathFunctions.h @@ -26,7 +26,7 @@ limitations under the License. */ #include #endif -#ifdef PADDLE_USE_ATLAS +#if defined(PADDLE_USE_ATLAS) || defined(PADDLE_USE_VECLIB) extern "C" { #include #include diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp index 4a2132c8d1bfa329ced575f9b78052bdbfe3e4d5..0023b4d0f5da500f380ecb836b7c54e050b13d67 100644 --- a/paddle/math/Matrix.cpp +++ b/paddle/math/Matrix.cpp @@ -1033,17 +1033,15 @@ void GpuMatrix::maxPoolForward(Matrix& inputMat, real* inputData = inputMat.getData(); size_t frameNum = inputMat.getHeight(); - size_t width = imgSizeW; - size_t height = imgSizeH; - CHECK(height * width * channels == inputMat.getWidth()); + CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth()); CHECK(height_ == inputMat.getHeight()); CHECK(width_ == outputH * outputW * channels); hl_maxpool_forward(frameNum, inputData, channels, - height, - width, + imgSizeH, + imgSizeW, outputH, outputW, sizeX, @@ -1080,11 +1078,8 @@ void GpuMatrix::maxPoolBackward(Matrix& inputMat, real* outDiff = outGrad.getData(); size_t frameNum = inputMat.getHeight(); size_t channels = outV.getWidth() / outputH / outputW; - size_t width = imgSizeW; - size_t height = imgSizeH; - CHECK(height * width * channels == inputMat.getWidth()); + CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth()); CHECK(height_ == inputMat.getHeight()); - CHECK(width_ == width * height * channels); CHECK(outGrad.getHeight() == outV.getHeight() && outGrad.getWidth() == outV.getWidth()); @@ -1093,8 +1088,8 @@ void GpuMatrix::maxPoolBackward(Matrix& inputMat, outData, outDiff, channels, - height, - width, + imgSizeH, + imgSizeW, outputH, outputW, sizeX, @@ -1125,17 +1120,15 @@ void GpuMatrix::avgPoolForward(Matrix& inputMat, real* inputData = inputMat.getData(); size_t frameNum = inputMat.getHeight(); - size_t height = imgSizeH; - size_t width = imgSizeW; - CHECK(height * width * channels == inputMat.getWidth()); + CHECK(imgSizeH * imgSizeW * channels == inputMat.getWidth()); CHECK(height_ == inputMat.getHeight()); CHECK(width_ == outputH * outputW * channels); hl_avgpool_forward(frameNum, inputData, channels, - height, - width, + imgSizeH, + imgSizeW, outputH, outputW, sizeX, @@ -1166,17 +1159,15 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad, real* outDiff = outGrad.getData(); size_t frameNum = outGrad.getHeight(); size_t channels = outGrad.getWidth() / outputH / outputW; - size_t height = imgSizeH; - size_t width = imgSizeW; - CHECK(height * width * channels == width_); + CHECK(imgSizeH * imgSizeW * channels == width_); CHECK(height_ == outGrad.getHeight()); CHECK(outGrad.getWidth() == outputH * outputW * channels); hl_avgpool_backward(frameNum, outDiff, channels, - height, - width, + imgSizeH, + imgSizeW, outputH, outputW, sizeX, @@ -1214,19 +1205,16 @@ void GpuMatrix::maxPool3DForward(Matrix& inputMat, real* inputData = inputMat.getData(); real* maxPoolIdxData = maxPoolIdx.getData(); size_t num = inputMat.getHeight(); - size_t width = imgSizeW; - size_t height = imgSizeH; - size_t depth = imgSizeD; - CHECK(depth * height * width * channels == inputMat.getWidth()); + CHECK(imgSizeD * imgSizeH * imgSizeW * channels == inputMat.getWidth()); CHECK(height_ == inputMat.getHeight()); CHECK(width_ == outputD * outputH * outputW * channels); hl_maxpool3D_forward(num, inputData, channels, - depth, - height, - width, + imgSizeD, + imgSizeH, + imgSizeW, outputD, outputH, outputW, @@ -1269,20 +1257,16 @@ void GpuMatrix::maxPool3DBackward(Matrix& outGrad, real* maxPoolIdxData = maxPoolIdx.getData(); size_t frameNum = getHeight(); size_t channels = outGrad.getWidth() / outputD / outputH / outputW; - size_t width = imgSizeW; - size_t height = imgSizeH; - size_t depth = imgSizeD; - CHECK(depth * height * width * channels == getWidth()); - CHECK(width_ == depth * width * height * channels); + CHECK(imgSizeD * imgSizeH * imgSizeW * channels == getWidth()); CHECK(outGrad.getHeight() == maxPoolIdx.getHeight() && outGrad.getWidth() == maxPoolIdx.getWidth()); hl_maxpool3D_backward(frameNum, outDiff, channels, - depth, - height, - width, + imgSizeD, + imgSizeH, + imgSizeW, outputD, outputH, outputW, @@ -1323,19 +1307,16 @@ void GpuMatrix::avgPool3DForward(Matrix& inputMat, real* inputData = inputMat.getData(); size_t frameNum = inputMat.getHeight(); - size_t height = imgSizeH; - size_t width = imgSizeW; - size_t depth = imgSizeD; - CHECK(depth * height * width * channels == inputMat.getWidth()); + CHECK(imgSizeD * imgSizeH * imgSizeW * channels == inputMat.getWidth()); CHECK(height_ == inputMat.getHeight()); CHECK(width_ == outputD * outputH * outputW * channels); hl_avgpool3D_forward(frameNum, inputData, channels, - depth, - height, - width, + imgSizeD, + imgSizeH, + imgSizeW, outputD, outputH, outputW, @@ -1375,19 +1356,16 @@ void GpuMatrix::avgPool3DBackward(Matrix& outGrad, real* outDiff = outGrad.getData(); size_t frameNum = outGrad.getHeight(); size_t channels = outGrad.getWidth() / outputD / outputH / outputW; - size_t height = imgSizeH; - size_t width = imgSizeW; - size_t depth = imgSizeD; - CHECK(depth * height * width * channels == width_); + CHECK(imgSizeD * imgSizeH * imgSizeW * channels == width_); CHECK(height_ == outGrad.getHeight()); CHECK(outGrad.getWidth() == outputD * outputH * outputW * channels); hl_avgpool3D_backward(frameNum, outDiff, channels, - depth, - height, - width, + imgSizeD, + imgSizeH, + imgSizeW, outputD, outputH, outputW, @@ -1999,11 +1977,11 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, real* inputData = inputMat.getData(); real* outData = data_; size_t num = inputMat.getHeight(); - size_t inWidth = imgSizeW; - size_t inHeight = imgSizeH; - CHECK(inHeight * inWidth == inputMat.getWidth() / channels); + size_t inLength = imgSizeH * imgSizeW; + size_t outLength = outputH * outputW; + CHECK(inLength == inputMat.getWidth() / channels); CHECK_EQ(num, this->getHeight()); - CHECK_EQ(channels * outputH * outputW, this->getWidth()); + CHECK_EQ(channels * outLength, this->getWidth()); size_t outStride = getStride(); /* initialize the data_ */ @@ -2020,24 +1998,24 @@ void CpuMatrix::maxPoolForward(Matrix& inputMat, } for (size_t c = 0; c < channels; ++c) { // channel by channel for (size_t ph = 0; ph < outputH; ++ph) { + int hstart = ph * strideH - paddingH; + int hend = std::min(hstart + sizeY, imgSizeH); + hstart = std::max(hstart, 0); for (size_t pw = 0; pw < outputW; ++pw) { - int hstart = ph * strideH - paddingH; int wstart = pw * strideW - paddingW; - int hend = std::min(hstart + sizeY, inHeight); - int wend = std::min(wstart + sizeX, inWidth); - hstart = std::max(hstart, 0); + int wend = std::min(wstart + sizeX, imgSizeW); wstart = std::max(wstart, 0); for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { - outData[ph * outputW + pw] = std::max(outData[ph * outputW + pw], - inputData[h * inWidth + w]); + outData[ph * outputW + pw] = std::max( + outData[ph * outputW + pw], inputData[h * imgSizeW + w]); } } } } // compute offset - inputData += inHeight * inWidth; - outData += outputH * outputW; + inputData += inLength; + outData += outLength; } } } @@ -2058,8 +2036,10 @@ void CpuMatrix::maxPoolBackward(Matrix& image, size_t paddingH, size_t paddingW) { size_t num = image.getHeight(); - size_t channels = size_t(width_ / imgSizeH / imgSizeW); - CHECK(image.getWidth() == imgSizeH * imgSizeW * channels); + size_t inLength = imgSizeH * imgSizeW; + size_t outLength = outputH * outputW; + size_t channels = size_t(width_ / inLength); + CHECK(image.getWidth() == inLength * channels); CHECK(image.getHeight() == height_ && image.getWidth() == width_); CHECK(outV.getHeight() == outGrad.getHeight() && outV.getWidth() == outGrad.getWidth()); @@ -2080,12 +2060,12 @@ void CpuMatrix::maxPoolBackward(Matrix& image, } for (size_t c = 0; c < channels; ++c) { for (size_t ph = 0; ph < outputH; ++ph) { + int hstart = ph * strideH - paddingH; + int hend = std::min(hstart + sizeY, imgSizeH); + hstart = std::max(hstart, 0); for (size_t pw = 0; pw < outputW; ++pw) { - int hstart = ph * strideH - paddingH; int wstart = pw * strideW - paddingW; - int hend = std::min(hstart + sizeY, imgSizeH); int wend = std::min(wstart + sizeX, imgSizeW); - hstart = std::max(hstart, 0); wstart = std::max(wstart, 0); for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { @@ -2098,10 +2078,10 @@ void CpuMatrix::maxPoolBackward(Matrix& image, } } // offset - inData += imgSizeH * imgSizeW; - tgtGrad += imgSizeH * imgSizeW; - otData += outputH * outputW; - otGrad += outputH * outputW; + inData += inLength; + tgtGrad += inLength; + otData += outLength; + otGrad += outLength; } } } @@ -2120,10 +2100,10 @@ void CpuMatrix::avgPoolForward(Matrix& input, size_t paddingW) { // The main loop size_t num = input.getHeight(); - size_t inHeight = imgSizeH; - size_t inWidth = imgSizeW; - CHECK(inHeight * inWidth * channels == input.getWidth()); - CHECK(outputH * outputW * channels * num == height_ * width_); + size_t inLength = imgSizeH * imgSizeW; + size_t outLength = outputH * outputW; + CHECK(inLength * channels == input.getWidth()); + CHECK(outLength * channels * num == height_ * width_); real* tgtData = data_; real* inData = input.getData(); @@ -2133,30 +2113,27 @@ void CpuMatrix::avgPoolForward(Matrix& input, } for (size_t c = 0; c < channels; ++c) { for (size_t ph = 0; ph < outputH; ++ph) { + int hstart = ph * strideH - paddingH; + int hend = std::min(hstart + sizeY, imgSizeH); + hstart = std::max(hstart, 0); for (size_t pw = 0; pw < outputW; ++pw) { - int hstart = ph * strideH - paddingH; int wstart = pw * strideW - paddingW; - int hend = std::min(hstart + sizeY, inHeight + paddingH); - int wend = std::min(wstart + sizeX, inWidth + paddingW); - int poolSize = (hend - hstart) * (wend - wstart); - hstart = std::max(hstart, 0); + int wend = std::min(wstart + sizeX, imgSizeW); wstart = std::max(wstart, 0); - hend = std::min(hend, static_cast(inHeight)); - wend = std::min(wend, static_cast(inWidth)); - - CHECK(poolSize); tgtData[ph * outputW + pw] = 0; // clear for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { - tgtData[ph * outputW + pw] += inData[h * inWidth + w]; + tgtData[ph * outputW + pw] += inData[h * imgSizeW + w]; } } + int poolSize = (hend - hstart) * (wend - wstart); + CHECK(poolSize); tgtData[ph * outputW + pw] /= poolSize; } } // compute offset - inData += inHeight * inWidth; - tgtData += outputH * outputW; + inData += inLength; + tgtData += outLength; } } } @@ -2176,7 +2153,9 @@ void CpuMatrix::avgPoolBackward(Matrix& input, size_t paddingW) { size_t num = input.getHeight(); size_t channels = input.getWidth() / outputH / outputW; - CHECK(imgSizeH * imgSizeW * channels == getWidth()); + size_t inLength = imgSizeH * imgSizeW; + size_t outLength = outputH * outputW; + CHECK(inLength * channels == getWidth()); real* inData = input.getData(); real* outData = getData(); @@ -2186,16 +2165,14 @@ void CpuMatrix::avgPoolBackward(Matrix& input, } for (size_t c = 0; c < channels; ++c) { for (size_t ph = 0; ph < outputH; ++ph) { + int hstart = ph * strideH - paddingH; + int hend = std::min(hstart + sizeY, imgSizeH); + hstart = std::max(hstart, 0); for (size_t pw = 0; pw < outputW; ++pw) { - int hstart = ph * strideH - paddingH; int wstart = pw * strideW - paddingW; - int hend = std::min(hstart + sizeY, imgSizeH + paddingH); - int wend = std::min(wstart + sizeX, imgSizeW + paddingW); - int poolSize = (hend - hstart) * (wend - wstart); - hstart = std::max(hstart, 0); + int wend = std::min(wstart + sizeX, imgSizeW); wstart = std::max(wstart, 0); - hend = std::min(hend, static_cast(imgSizeH)); - wend = std::min(wend, static_cast(imgSizeW)); + int poolSize = (hend - hstart) * (wend - wstart); CHECK(poolSize); for (int h = hstart; h < hend; ++h) { @@ -2206,8 +2183,8 @@ void CpuMatrix::avgPoolBackward(Matrix& input, } } // offset - outData += imgSizeH * imgSizeW; - inData += outputH * outputW; + outData += inLength; + inData += outLength; } } } @@ -2234,12 +2211,11 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat, real* outData = getData(); real* maxPoolIdxData = maxPoolIdx.getData(); size_t num = inputMat.getHeight(); - size_t inWidth = imgSizeW; - size_t inHeight = imgSizeH; - size_t inDepth = imgSizeD; - CHECK(inHeight * inWidth * inDepth == inputMat.getWidth() / channels); + size_t inLength = imgSizeH * imgSizeW * imgSizeD; + size_t outLength = outputH * outputW * outputD; + CHECK(inLength == inputMat.getWidth() / channels); CHECK_EQ(num, this->getHeight()); - CHECK_EQ(channels * outputH * outputW * outputD, this->getWidth()); + CHECK_EQ(channels * outLength, this->getWidth()); size_t outStride = getStride(); /* initialize the data_ */ @@ -2258,16 +2234,16 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat, } for (size_t c = 0; c < channels; ++c) { // channel by channel for (size_t pd = 0; pd < outputD; ++pd) { + int dstart = pd * strideD - paddingD; + int dend = std::min(dstart + sizeZ, imgSizeD); + dstart = std::max(dstart, 0); for (size_t ph = 0; ph < outputH; ++ph) { + int hstart = ph * strideH - paddingH; + int hend = std::min(hstart + sizeY, imgSizeH); + hstart = std::max(hstart, 0); for (size_t pw = 0; pw < outputW; ++pw) { - int dstart = pd * strideD - paddingD; - int hstart = ph * strideH - paddingH; int wstart = pw * strideW - paddingW; - int dend = std::min(dstart + sizeZ, inDepth); - int hend = std::min(hstart + sizeY, inHeight); - int wend = std::min(wstart + sizeX, inWidth); - dstart = std::max(dstart, 0); - hstart = std::max(hstart, 0); + int wend = std::min(wstart + sizeX, imgSizeW); wstart = std::max(wstart, 0); int maxIdx = -1; real maxOutData = outData[(pd * outputH + ph) * outputW + pw]; @@ -2275,9 +2251,9 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat, for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { if (maxOutData < - inputData[(d * inHeight + h) * inWidth + w]) { - maxOutData = inputData[(d * inHeight + h) * inWidth + w]; - maxIdx = (d * inHeight + h) * inWidth + w; + inputData[(d * imgSizeH + h) * imgSizeW + w]) { + maxOutData = inputData[(d * imgSizeH + h) * imgSizeW + w]; + maxIdx = (d * imgSizeH + h) * imgSizeW + w; } } } @@ -2288,9 +2264,9 @@ void CpuMatrix::maxPool3DForward(Matrix& inputMat, } } // compute offset - inputData += inDepth * inHeight * inWidth; - outData += outputD * outputH * outputW; - maxPoolIdxData += outputD * outputH * outputW; + inputData += inLength; + outData += outLength; + maxPoolIdxData += outLength; } } } @@ -2315,7 +2291,9 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad, real scaleTargets, real scaleOutput) { size_t num = getHeight(); - size_t channels = size_t(width_ / imgSizeD / imgSizeH / imgSizeW); + size_t inLength = imgSizeH * imgSizeW * imgSizeD; + size_t outLength = outputH * outputW * outputD; + size_t channels = size_t(width_ / inLength); CHECK(maxPoolIdx.getHeight() == outGrad.getHeight() && maxPoolIdx.getWidth() == outGrad.getWidth()); @@ -2341,9 +2319,9 @@ void CpuMatrix::maxPool3DBackward(Matrix& outGrad, } } // offset - tgtGrad += imgSizeD * imgSizeH * imgSizeW; - otGrad += outputD * outputH * outputW; - maxPoolIdxData += outputD * outputH * outputW; + tgtGrad += inLength; + otGrad += outLength; + maxPoolIdxData += outLength; } } } @@ -2367,11 +2345,10 @@ void CpuMatrix::avgPool3DForward(Matrix& input, size_t paddingW) { // The main loop size_t num = input.getHeight(); - size_t inDepth = imgSizeD; - size_t inHeight = imgSizeH; - size_t inWidth = imgSizeW; - CHECK(inDepth * inHeight * inWidth * channels == input.getWidth()); - CHECK(outputD * outputH * outputW * channels * num == height_ * width_); + size_t inLength = imgSizeH * imgSizeW * imgSizeD; + size_t outLength = outputH * outputW * outputD; + CHECK(inLength * channels == input.getWidth()); + CHECK(outLength * channels * num == height_ * width_); real* tgtData = getData(); real* inData = input.getData(); @@ -2381,39 +2358,36 @@ void CpuMatrix::avgPool3DForward(Matrix& input, } for (size_t c = 0; c < channels; ++c) { for (size_t pd = 0; pd < outputD; ++pd) { + int dstart = pd * strideD - paddingD; + int dend = std::min(dstart + sizeZ, imgSizeD); + dstart = std::max(dstart, 0); for (size_t ph = 0; ph < outputH; ++ph) { + int hstart = ph * strideH - paddingH; + int hend = std::min(hstart + sizeY, imgSizeH); + hstart = std::max(hstart, 0); for (size_t pw = 0; pw < outputW; ++pw) { - int dstart = pd * strideD - paddingD; - int hstart = ph * strideH - paddingH; int wstart = pw * strideW - paddingW; - int dend = std::min(dstart + sizeZ, inDepth + paddingD); - int hend = std::min(hstart + sizeY, inHeight + paddingH); - int wend = std::min(wstart + sizeX, inWidth + paddingW); - int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart); - dstart = std::max(dstart, 0); - hstart = std::max(hstart, 0); + int wend = std::min(wstart + sizeX, imgSizeW); wstart = std::max(wstart, 0); - dend = std::min(dend, static_cast(inDepth)); - hend = std::min(hend, static_cast(inHeight)); - wend = std::min(wend, static_cast(inWidth)); - CHECK(poolSize); tgtData[(pd * outputH + ph) * outputW + pw] = 0; // clear for (int d = dstart; d < dend; ++d) { for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { tgtData[(pd * outputH + ph) * outputW + pw] += - inData[(d * inHeight + h) * inWidth + w]; + inData[(d * imgSizeH + h) * imgSizeW + w]; } } } + int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart); + CHECK(poolSize); tgtData[(pd * outputH + ph) * outputW + pw] /= poolSize; } } } // compute offset - inData += inDepth * inHeight * inWidth; - tgtData += outputD * outputH * outputW; + inData += inLength; + tgtData += outLength; } } } @@ -2437,8 +2411,10 @@ void CpuMatrix::avgPool3DBackward(Matrix& input, real scaleTargets, real scaleOutput) { size_t num = input.getHeight(); - size_t channels = input.getWidth() / outputD / outputH / outputW; - CHECK(imgSizeD * imgSizeH * imgSizeW * channels == getWidth()); + size_t inLength = imgSizeH * imgSizeW * imgSizeD; + size_t outLength = outputH * outputW * outputD; + size_t channels = input.getWidth() / outLength; + CHECK(inLength * channels == getWidth()); real* inData = input.getData(); real* outData = getData(); @@ -2448,21 +2424,18 @@ void CpuMatrix::avgPool3DBackward(Matrix& input, } for (size_t c = 0; c < channels; ++c) { for (size_t pd = 0; pd < outputD; ++pd) { + int dstart = pd * strideD - paddingD; + int dend = std::min(dstart + sizeZ, imgSizeD); + dstart = std::max(dstart, 0); for (size_t ph = 0; ph < outputH; ++ph) { + int hstart = ph * strideH - paddingH; + int hend = std::min(hstart + sizeY, imgSizeH); + hstart = std::max(hstart, 0); for (size_t pw = 0; pw < outputW; ++pw) { - int dstart = pd * strideD - paddingD; - int hstart = ph * strideH - paddingH; int wstart = pw * strideW - paddingW; - int dend = std::min(dstart + sizeZ, imgSizeD + paddingD); - int hend = std::min(hstart + sizeY, imgSizeH + paddingH); - int wend = std::min(wstart + sizeX, imgSizeW + paddingW); - int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart); - dstart = std::max(dstart, 0); - hstart = std::max(hstart, 0); + int wend = std::min(wstart + sizeX, imgSizeW); wstart = std::max(wstart, 0); - dend = std::min(dend, static_cast(imgSizeD)); - hend = std::min(hend, static_cast(imgSizeH)); - wend = std::min(wend, static_cast(imgSizeW)); + int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart); CHECK(poolSize); for (int d = dstart; d < dend; ++d) { for (int h = hstart; h < hend; ++h) { @@ -2476,8 +2449,8 @@ void CpuMatrix::avgPool3DBackward(Matrix& input, } } // offset - outData += imgSizeD * imgSizeH * imgSizeW; - inData += outputD * outputH * outputW; + outData += inLength; + inData += outLength; } } } diff --git a/paddle/math/NEONFunctions.cpp b/paddle/math/NEONFunctions.cpp new file mode 100644 index 0000000000000000000000000000000000000000..3bf47901f1069ac228fa1b877e29848d8cc130e8 --- /dev/null +++ b/paddle/math/NEONFunctions.cpp @@ -0,0 +1,55 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + +#include "NEONFunctions.h" +#include + +namespace paddle { +namespace neon { + +// b[i] = a[i] > 0.0f ? a[i] : 0.0f +void relu(const float* a, float* b, int len) { + int offset = len % 16; + float32x4_t ma0, ma1, ma2, ma3; + float32x4_t mb0, mb1, mb2, mb3; + + float32x4_t zero = vdupq_n_f32(0.f); + for (int k = 0; k < len / 16; k++, a += 16, b += 16) { + ma0 = vld1q_f32(a); + ma1 = vld1q_f32(a + 4); + ma2 = vld1q_f32(a + 8); + ma3 = vld1q_f32(a + 12); + + mb0 = vmaxq_f32(ma0, zero); + mb1 = vmaxq_f32(ma1, zero); + mb2 = vmaxq_f32(ma2, zero); + mb3 = vmaxq_f32(ma3, zero); + + vst1q_f32(b, mb0); + vst1q_f32(b + 4, mb1); + vst1q_f32(b + 8, mb2); + vst1q_f32(b + 12, mb3); + } + + for (int i = 0; i < offset; i++) { + b[i] = a[i] > 0.0f ? a[i] : 0.0f; + } +} + +} // namespace neon +} // namespace paddle + +#endif diff --git a/paddle/math/NEONFunctions.h b/paddle/math/NEONFunctions.h new file mode 100644 index 0000000000000000000000000000000000000000..69085e333547a31a341fbfde247f1e30adb957ee --- /dev/null +++ b/paddle/math/NEONFunctions.h @@ -0,0 +1,23 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +namespace paddle { +namespace neon { + +void relu(const float* a, float* b, int len); + +} // namespace neon +} // namespace paddle diff --git a/paddle/math/RowBuffer.h b/paddle/math/RowBuffer.h index dbb829c4e24a659e4a97c0a3ba4c5c78b68815d3..9ef5b89680b00981188d78cb312dc75e2c0a79ee 100644 --- a/paddle/math/RowBuffer.h +++ b/paddle/math/RowBuffer.h @@ -99,7 +99,11 @@ public: /** * @brief clear local buffer. It only affect auto-growth buffer. */ - inline void clear() { rowStore_.clear(); } + inline void clear() { + // swap an empty vector to it to free the memory. + std::vector> empty; + rowStore_.swap(empty); + } /** * @brief get current number of rows. diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp index 103f06acc57d7a23f019f5e713f6cacf2179e9e0..061fb22e3fd744d9d9895fd1008089e4a6ce6a0f 100644 --- a/paddle/math/tests/test_matrixCompare.cpp +++ b/paddle/math/tests/test_matrixCompare.cpp @@ -825,9 +825,8 @@ void testMaxPoolFwdBwd(int numSamples, int strideW, int padH, int padW) { - int outH = 0, outW = 0; - outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1; - outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1; + int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true); + int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true); int inWidth = imgSizeH * imgSizeW * channels; MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); @@ -927,9 +926,8 @@ void testAvgPoolFwdBwd(int numSamples, int strideW, int padH, int padW) { - int outH = 0, outW = 0; - outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1; - outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1; + int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true); + int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true); int inWidth = imgSizeH * imgSizeW * channels; MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); diff --git a/paddle/memory/.clang-format b/paddle/memory/.clang-format deleted file mode 100644 index 29282dc87e2c499988c17d90d47d44cd5cf7f115..0000000000000000000000000000000000000000 --- a/paddle/memory/.clang-format +++ /dev/null @@ -1,5 +0,0 @@ ---- -Language: Cpp -BasedOnStyle: Google -Standard: Cpp11 -... diff --git a/paddle/memory/.clang-format b/paddle/memory/.clang-format new file mode 120000 index 0000000000000000000000000000000000000000..7d28cb3924707d39dafe20f4664fb17b5538996c --- /dev/null +++ b/paddle/memory/.clang-format @@ -0,0 +1 @@ +../framework/.clang-format \ No newline at end of file diff --git a/paddle/memory/memcpy.cc b/paddle/memory/memcpy.cc index a19a3e3675e3e2e7cc0c3594f21191f932d6379f..c96a697a7e022684688b31c05da43e52812100d8 100644 --- a/paddle/memory/memcpy.cc +++ b/paddle/memory/memcpy.cc @@ -62,6 +62,33 @@ void Copy(platform::GPUPlace dst_place, } } +template <> +void Copy(platform::CPUPlace dst_place, + void* dst, + platform::GPUPlace src_place, + const void* src, size_t num) { + platform::SetDeviceId(src_place.device); + platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost); +} + +template <> +void Copy(platform::GPUPlace dst_place, + void* dst, + platform::CPUPlace src_place, + const void* src, size_t num) { + platform::SetDeviceId(dst_place.device); + platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice); +} + +template <> +void Copy(platform::GPUPlace dst_place, + void* dst, + platform::GPUPlace src_place, + const void* src, size_t num) { + platform::SetDeviceId(dst_place.device); + platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToDevice); +} + #endif // PADDLE_ONLY_CPU } // namespace memory diff --git a/paddle/operators/.clang-format b/paddle/operators/.clang-format deleted file mode 100644 index 47b8a85206ab457e2b3cb90a68b7a82a0753d327..0000000000000000000000000000000000000000 --- a/paddle/operators/.clang-format +++ /dev/null @@ -1,5 +0,0 @@ ---- -Language: Cpp -BasedOnStyle: Google -Standard: Cpp11 -... diff --git a/paddle/operators/.clang-format b/paddle/operators/.clang-format new file mode 120000 index 0000000000000000000000000000000000000000..7d28cb3924707d39dafe20f4664fb17b5538996c --- /dev/null +++ b/paddle/operators/.clang-format @@ -0,0 +1 @@ +../framework/.clang-format \ No newline at end of file diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index f9ea25ab045a02be5ab9ed81ef9c679126d3a188..43eb4de2c1d4ff61f295c05af9dfd5f26c2ba365 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -1,5 +1,7 @@ file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc") string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}") +set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/pybind/pybind.h) +file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n") function(op_library TARGET) # op_library is a function to create op library. The interface is same as # cc_library. But it handle split GPU/CPU code and link some common library @@ -7,10 +9,11 @@ function(op_library TARGET) set(OP_LIBRARY ${TARGET} ${OP_LIBRARY} PARENT_SCOPE) set(cc_srcs) set(cu_srcs) - set(op_common_deps operator op_registry) + set(op_common_deps operator op_registry math_function) set(options "") set(oneValueArgs "") set(multiValueArgs SRCS DEPS) + set(pybind_flag 0) cmake_parse_arguments(op_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) @@ -46,22 +49,66 @@ function(op_library TARGET) cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS} ${op_common_deps}) endif() + + # net_op doesn't need pybind + if ("${TARGET}" STREQUAL "net_op") + set(pybind_flag 1) + endif() + + if ("${TARGET}" STREQUAL "pool_op") + set(pybind_flag 1) + # It's enough to just adding one operator to pybind + file(APPEND ${pybind_file} "USE_OP(pool2d);\n") + endif() + + # activation_op contains several operators + if ("${TARGET}" STREQUAL "activation_op") + set(pybind_flag 1) + # It's enough to just adding one operator to pybind + file(APPEND ${pybind_file} "USE_OP(sigmoid);\n") + endif() + + # reduce_op contains several operators + if ("${TARGET}" STREQUAL "reduce_op") + set(pybind_flag 1) + # It's enough to just adding one operator to pybind + file(APPEND ${pybind_file} "USE_OP(reduce_sum);\n") + endif() + + # pybind USE_NO_KERNEL_OP + file(READ ${TARGET}.cc TARGET_CONTENT) + string(REGEX MATCH "OperatorWithKernel" regex_result "${TARGET_CONTENT}") + string(REPLACE "_op" "" TARGET "${TARGET}") + if (${pybind_flag} EQUAL 0 AND regex_result STREQUAL "") + file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(${TARGET});\n") + set(pybind_flag 1) + endif() + + # pybind USE_CPU_ONLY_OP + list(LENGTH cu_srcs cu_srcs_len) + if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0) + file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n") + set(pybind_flag 1) + endif() + + # pybind USE_OP + if (${pybind_flag} EQUAL 0) + file(APPEND ${pybind_file} "USE_OP(${TARGET});\n") + endif() endfunction() add_subdirectory(math) set(DEPS_OPS - identity_op - minus_op - mul_op recurrent_op - scale_op) -op_library(identity_op DEPS scale_op) -op_library(minus_op DEPS scale_op) -op_library(mul_op DEPS math_function) + cond_op + cross_entropy_op + softmax_with_cross_entropy_op) op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc - DEPS framework_proto tensor operator net_op) -op_library(scale_op DEPS net_op) + DEPS framework_proto tensor net_op) +op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op) +op_library(cross_entropy_op DEPS cross_entropy) +op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) foreach(src ${GENERAL_OPS}) @@ -73,3 +120,4 @@ set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) +cc_test(strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor paddle_memory) diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..82010bfb53e58a0836c99c353590f4e32e25ac4a --- /dev/null +++ b/paddle/operators/accuracy_op.cc @@ -0,0 +1,74 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/accuracy_op.h" + +namespace paddle { +namespace operators { + +class AccuracyOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Inference"), + "Input(Inference) of AccuracyOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), + "Input(Label) of AccuracyOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Accuracy"), + "Output(Accuracy) of AccuracyOp should not be null."); + + auto inference_dim = ctx->GetInputDim("Inference"); + auto label_dim = ctx->GetInputDim("Label"); + + PADDLE_ENFORCE_EQ(label_dim.size(), 1, "label must be a vector"); + PADDLE_ENFORCE_EQ(inference_dim[0], label_dim[0], + "inference size must be the same as label size"); + + ctx->SetOutputDim("Accuracy", {1}); + ctx->ShareLoD("Inference", /*->*/ "Accuracy"); + } +}; + +class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker { + public: + AccuracyOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + // TODO(typhoonzero): support both inference value and indices. + AddInput("Inference", "topk(indices) the network output"); + AddInput("Label", "Label of the training data"); + // TODO(typhoonzero): AddInput("Weight", ... + AddOutput("Accuracy", "The accuracy of current batch"); + + AddComment(R"DOC( +Accuracy. It will print accuracy rate for classification. +The accuracy is: +.. math:: +accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples}) + +Both the input `Inference` and `Label` can carry the LoD (Level of Details) +information, or not. But the output only shares the LoD with input `Inference`. +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(accuracy, ops::AccuracyOp, ops::AccuracyOpMaker); +REGISTER_OP_CPU_KERNEL(accuracy, + ops::AccuracyKernel); diff --git a/paddle/operators/accuracy_op.cu b/paddle/operators/accuracy_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..0ca9ef941d4cb15619caea2b6baed197e4b15e5a --- /dev/null +++ b/paddle/operators/accuracy_op.cu @@ -0,0 +1,85 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include "paddle/operators/accuracy_op.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { +using platform::PADDLE_CUDA_NUM_THREADS; + +template +__global__ void AccuracyCudaKernel(const int N, const int D, const int* Xdata, + const int* labeldata, float* accuracy) { + int count = 0; + __shared__ int total[BlockSize]; + + // support only 1 block + for (int i = threadIdx.x; i < (N); i += BlockSize) { + for (int j = 0; j < D; ++j) { + if (Xdata[i * D + j] == labeldata[i]) { + ++count; + break; + } + } + } + total[threadIdx.x] = count; + __syncthreads(); + + // reduce the count with init value 0, and output accuracy. + int result = thrust::reduce(thrust::device, total, total + BlockSize, 0); + if (threadIdx.x == 0) { + *accuracy = static_cast(result) / static_cast(N); + } +} + +template +class AccuracyOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use GPUPlace."); + auto* inference = ctx.Input("Inference"); + auto* label = ctx.Input("Label"); + auto* accuracy = ctx.Output("Accuracy"); + // FIXME(typhoonzero): only support indices currently + // if add support for output values, how to detect the data type? + const int* inference_data = inference->data(); + const int* label_data = label->data(); + float* accuracy_data = accuracy->mutable_data(ctx.GetPlace()); + + size_t num_samples = inference->dims()[0]; + size_t infer_width = inference->dims()[1]; + cudaMemset((void**)&accuracy_data, 0, sizeof(float)); + + if (num_samples == 0) { + return; + } + + AccuracyCudaKernel<<< + 1, PADDLE_CUDA_NUM_THREADS, 0, + reinterpret_cast( + ctx.device_context()) + .stream()>>>(num_samples, infer_width, inference_data, label_data, + accuracy_data); + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OP_GPU_KERNEL(accuracy, + paddle::operators::AccuracyOpCUDAKernel); diff --git a/paddle/operators/accuracy_op.h b/paddle/operators/accuracy_op.h new file mode 100644 index 0000000000000000000000000000000000000000..12c6b9aac8819caedbc02017cee81b37322bb72a --- /dev/null +++ b/paddle/operators/accuracy_op.h @@ -0,0 +1,77 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +using EigenMatrix = framework::EigenMatrix; + +template +using EigenVector = framework::EigenVector; + +template +using EigenScalar = framework::EigenScalar; + +template +class AccuracyKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* inference = ctx.Input("Inference"); + auto* label = ctx.Input("Label"); + auto* accuracy = ctx.Output("Accuracy"); + + float* accuracy_data = accuracy->mutable_data(ctx.GetPlace()); + + const T* inference_data = inference->data(); + const T* label_data = label->data(); + + size_t num_samples = inference->dims()[0]; + size_t class_dim = inference->dims()[1]; + *accuracy_data = 0.0f; + + if (num_samples == 0) { + return; + } + + int num_correct = 0; + // assume inference is already the topk of the output + for (size_t i = 0; i < num_samples; ++i) { + PADDLE_ENFORCE_GE(label_data[i], 0, "label must >= 0"); + for (size_t j = 0; j < class_dim; ++j) { + if (inference_data[i * class_dim + j] == label_data[i]) { + ++num_correct; + break; + } + } + } + + // FIXME(typhoonzero): we don't accumulate the accuracy for now. + *accuracy_data = + static_cast(num_correct) / static_cast(num_samples); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/activation_op.cc b/paddle/operators/activation_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..7ae4d2f6b6c0b0f30c06adc34c811bfe34b59fa6 --- /dev/null +++ b/paddle/operators/activation_op.cc @@ -0,0 +1,262 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/activation_op.h" + +namespace paddle { +namespace operators { + +class ActivationOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + ctx->SetOutputDim("Y", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Y"); + } +}; + +class ActivationOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y")); + } +}; + +class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SigmoidOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Sigmoid operator"); + AddOutput("Y", "Output of Sigmoid operator"); + AddComment("Sigmoid activation operator, sigmoid = 1 / (1 + exp(-x))"); + } +}; + +class ExpOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ExpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Exp operator"); + AddOutput("Y", "Output of Exp operator"); + AddComment("Exp activation operator, exp(x) = e^x"); + } +}; + +class ReluOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Relu operator"); + AddOutput("Y", "Output of Relu operator"); + AddComment("Relu activation operator, relu(x) = max(x, 0)"); + } +}; + +class TanhOpMaker : public framework::OpProtoAndCheckerMaker { + public: + TanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Tanh operator"); + AddOutput("Y", "Output of Tanh operator"); + AddComment( + "Tanh activation operator, tanh = (exp(x) - exp(-x)) / (exp(x) + " + "exp(-x))"); + } +}; + +class SqrtOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SqrtOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Sqrt operator"); + AddOutput("Y", "Output of Sqrt operator"); + AddComment("Sqrt activation operator, sqrt(x) = x^(1/2)"); + } +}; + +class AbsOpMaker : public framework::OpProtoAndCheckerMaker { + public: + AbsOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Abs operator"); + AddOutput("Y", "Output of Abs operator"); + AddComment("Abs activation operator, abs(x) = |x|"); + } +}; + +class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ReciprocalOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Reciprocal operator"); + AddOutput("Y", "Output of Reciprocal operator"); + AddComment("Reciprocal activation operator, reciprocal(x) = 1 / x"); + } +}; + +class LogOpMaker : public framework::OpProtoAndCheckerMaker { + public: + LogOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Log operator"); + AddOutput("Y", "Output of Log operator"); + AddComment("Log activation operator, log(x) = natural logarithm of x"); + } +}; + +class SquareOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SquareOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Square operator"); + AddOutput("Y", "Output of Square operator"); + AddComment("Square activation operator, square(x) = x^2"); + } +}; + +class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SoftsignOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Softsign operator"); + AddOutput("Y", "Output of Softsign operator"); + AddComment("Softsign activation operator, softsign(x) = x / (1 + |x|)"); + } +}; + +template +class BReluOpMaker : public framework::OpProtoAndCheckerMaker { + public: + BReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of BRelu operator"); + AddOutput("Y", "Output of BRelu operator"); + AddComment("BRelu activation operator, brelu = max(min(x, t_min), t_max)"); + AddAttr("t_min", "The min marginal value of BRelu") + .SetDefault(static_cast(0)); + AddAttr("t_max", "The max marginal value of BRelu") + .SetDefault(static_cast(24)); + } +}; + +template +class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SoftReluOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of SoftRelu operator"); + AddOutput("Y", "Output of SoftRelu operator"); + AddComment( + "SoftRelu activation operator, soft_relu = log(1 + exp(max(min(x, " + "threshold), threshold)))"); + AddAttr("threshold", "The threshold value of SoftRelu") + .SetDefault(static_cast(40)); + } +}; + +template +class PowOpMaker : public framework::OpProtoAndCheckerMaker { + public: + PowOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Pow operator"); + AddOutput("Y", "Output of Pow operator"); + AddComment("Pow activation operator, pow(x, factor) = x^factor"); + AddAttr("factor", "The exponential factor of Pow") + .SetDefault(static_cast(1)); + } +}; + +template +class STanhOpMaker : public framework::OpProtoAndCheckerMaker { + public: + STanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of STanh operator"); + AddOutput("Y", "Output of STanh operator"); + AddComment("STanh activation operator, stanh = b * tanh(a * x)"); + AddAttr("scale_a", "The scale parameter of a for the input") + .SetDefault(static_cast(2 / 3)); + AddAttr("scale_b", "The scale parameter of b for the input") + .SetDefault(static_cast(1.7159)); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP(sigmoid, ops::ActivationOp, ops::SigmoidOpMaker, sigmoid_grad, + ops::ActivationOpGrad); + +REGISTER_OP(exp, ops::ActivationOp, ops::ExpOpMaker, exp_grad, + ops::ActivationOpGrad); + +REGISTER_OP(relu, ops::ActivationOp, ops::ReluOpMaker, relu_grad, + ops::ActivationOpGrad); + +REGISTER_OP(tanh, ops::ActivationOp, ops::TanhOpMaker, tanh_grad, + ops::ActivationOpGrad); + +REGISTER_OP(sqrt, ops::ActivationOp, ops::SqrtOpMaker, sqrt_grad, + ops::ActivationOpGrad); + +REGISTER_OP(abs, ops::ActivationOp, ops::AbsOpMaker, abs_grad, + ops::ActivationOpGrad); + +REGISTER_OP(reciprocal, ops::ActivationOp, ops::ReciprocalOpMaker, + reciprocal_grad, ops::ActivationOpGrad); + +REGISTER_OP(log, ops::ActivationOp, ops::LogOpMaker, log_grad, + ops::ActivationOpGrad); + +REGISTER_OP(square, ops::ActivationOp, ops::SquareOpMaker, square_grad, + ops::ActivationOpGrad); + +REGISTER_OP(softsign, ops::ActivationOp, ops::SoftsignOpMaker, softsign_grad, + ops::ActivationOpGrad); + +REGISTER_OP(brelu, ops::ActivationOp, ops::BReluOpMaker, brelu_grad, + ops::ActivationOpGrad); + +REGISTER_OP(soft_relu, ops::ActivationOp, ops::SoftReluOpMaker, + soft_relu_grad, ops::ActivationOpGrad); + +REGISTER_OP(pow, ops::ActivationOp, ops::PowOpMaker, pow_grad, + ops::ActivationOpGrad); + +REGISTER_OP(stanh, ops::ActivationOp, ops::STanhOpMaker, stanh_grad, + ops::ActivationOpGrad); + +#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \ + REGISTER_OP_CPU_KERNEL( \ + act_type, \ + paddle::operators::ActivationKernel>); \ + REGISTER_OP_CPU_KERNEL(act_type##_grad, \ + paddle::operators::ActivationGradKernel< \ + paddle::platform::CPUPlace, \ + paddle::operators::grad_functor>); + +FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL); diff --git a/paddle/operators/activation_op.cu b/paddle/operators/activation_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..93e9f1c694bacba48c4f8c46f90fb5b512bead99 --- /dev/null +++ b/paddle/operators/activation_op.cu @@ -0,0 +1,28 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/activation_op.h" + +#define REGISTER_ACTIVATION_GPU_KERNEL(act_type, functor, grad_functor) \ + REGISTER_OP_GPU_KERNEL( \ + act_type, \ + paddle::operators::ActivationKernel>); \ + REGISTER_OP_GPU_KERNEL(act_type##_grad, \ + paddle::operators::ActivationGradKernel< \ + paddle::platform::GPUPlace, \ + paddle::operators::grad_functor>); + +FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_GPU_KERNEL); diff --git a/paddle/operators/activation_op.h b/paddle/operators/activation_op.h new file mode 100644 index 0000000000000000000000000000000000000000..ff35c2d97e856ab76581c74512a0b451ea6fe60c --- /dev/null +++ b/paddle/operators/activation_op.h @@ -0,0 +1,382 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class ActivationKernel + : public framework::OpKernel { + public: + using T = typename Functor::ELEMENT_TYPE; + + void Compute(const framework::ExecutionContext& context) const override { + auto* X = context.Input("X"); + auto* Y = context.Output("Y"); + Y->mutable_data(context.GetPlace()); + + auto x = framework::EigenVector::Flatten(*X); + auto y = framework::EigenVector::Flatten(*Y); + auto place = context.GetEigenDevice(); + Functor functor; + + auto attrs = functor.GetAttrs(); + for (auto& attr : attrs) { + *attr.second = context.Attr(attr.first); + } + functor(place, x, y); + } +}; + +template +class ActivationGradKernel + : public framework::OpKernel { + public: + using T = typename Functor::ELEMENT_TYPE; + void Compute(const framework::ExecutionContext& context) const override { + auto* X = context.Input("X"); + auto* Y = context.Input("Y"); + auto* dY = context.Input(framework::GradVarName("Y")); + auto* dX = context.Output(framework::GradVarName("X")); + dX->mutable_data(context.GetPlace()); + + auto dy = framework::EigenVector::Flatten(*dY); + auto x = framework::EigenVector::Flatten(*X); + auto y = framework::EigenVector::Flatten(*Y); + auto dx = framework::EigenVector::Flatten(*dX); + auto place = context.GetEigenDevice(); + Functor functor; + auto attrs = functor.GetAttrs(); + for (auto& attr : attrs) { + *attr.second = context.Attr(attr.first); + } + functor(place, x, y, dy, dx); + } +}; + +template +struct BaseActivationFunctor { + using ELEMENT_TYPE = T; + + using AttrPair = std::vector>; + + AttrPair GetAttrs() { return AttrPair(); } +}; + +// sigmoid(x) = 1 / (1 + exp(-x)) +template +struct SigmoidFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = static_cast(1) / (static_cast(1) + (-x).exp()); + } +}; + +template +struct SigmoidGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * y * (static_cast(1) - y); + } +}; + +// exp(x) = e^x +template +struct ExpFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.exp(); + } +}; + +template +struct ExpGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * y; + } +}; + +// relu(x) = max(x, 0) +template +struct ReluFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.cwiseMax(static_cast(0)); + } +}; + +template +struct ReluGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * (x > static_cast(0)).template cast(); + } +}; + +// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x)) +template +struct TanhFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.tanh(); + } +}; + +template +struct TanhGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * (static_cast(1) - y * y); + } +}; + +// sqrt(x) = x^(1/2) +template +struct SqrtFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.sqrt(); + } +}; + +template +struct SqrtGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + const Y y_conj = Eigen::numext::conj(y); + dx.device(d) = static_cast(0.5) * dy / y_conj; + } +}; + +// abs(x) = |x| +template +struct AbsFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.abs(); + } +}; + +template +struct AbsGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * x.sign(); + } +}; + +// reciprocal(x) = 1 / x +template +struct ReciprocalFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = static_cast(1) / x; + } +}; + +template +struct ReciprocalGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * static_cast(-1) * y * y; + } +}; + +// log(x) = natural logarithm of x +template +struct LogFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.log(); + } +}; + +template +struct LogGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * (static_cast(1) / x); + } +}; + +// square(x) = x^2 +template +struct SquareFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.square(); + } +}; + +template +struct SquareGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * static_cast(2) * x; + } +}; + +template +struct BReluFunctor : public BaseActivationFunctor { + float t_min; + float t_max; + + // NOTE: Explicit hides the `BaseActivationFunctor::GetAttrs` + // not polymorphism for speed. + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"t_min", &t_min}, {"t_max", &t_max}}; + } + + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.cwiseMax(t_min).cwiseMin(t_max); + } +}; + +template +struct BReluGradFunctor : public BaseActivationFunctor { + float t_min; + float t_max; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"t_min", &t_min}, {"t_max", &t_max}}; + } + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * ((x > t_min) * (x < t_max)).template cast(); + } +}; + +// softsign(x) = x / (1 + |x|) +template +struct SoftsignFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y) { + y.device(d) = x / (static_cast(1) + x.abs()); + } +}; + +// d(softsign(x))/dx = 1 / (1 + |x|)^2 +// Taken from https://en.wikipedia.org/wiki/Activation_function +template +struct SoftsignGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Y y, dY dy, dX dx) { + dx.device(d) = + dy * (static_cast(1) / (static_cast(1) + x.abs()).square()); + } +}; + +template +struct SoftReluFunctor : public BaseActivationFunctor { + float threshold; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"threshold", &threshold}}; + } + + template + void operator()(Device d, X x, Y y) const { + auto temp = x.cwiseMax(-threshold).cwiseMin(threshold); + y.device(d) = (static_cast(1) + temp.exp()).log(); + } +}; + +template +struct SoftReluGradFunctor : public BaseActivationFunctor { + float threshold; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"threshold", &threshold}}; + } + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + auto temp = ((x > -threshold) * (x < threshold)).template cast().eval(); + dx.device(d) = dy * (static_cast(1) - (-y).exp()) * temp; + } +}; + +template +struct PowFunctor : public BaseActivationFunctor { + float factor; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"factor", &factor}}; + } + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x.pow(factor); + } +}; + +template +struct PowGradFunctor : public BaseActivationFunctor { + float factor; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"factor", &factor}}; + } + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + dx.device(d) = dy * factor * x.pow(factor - static_cast(1)); + } +}; + +template +struct STanhFunctor : public BaseActivationFunctor { + float scale_a; + float scale_b; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"scale_a", &scale_a}, {"scale_b", &scale_b}}; + } + + template + void operator()(Device d, X x, Y y) const { + y.device(d) = scale_b * (scale_a * x).tanh(); + } +}; + +template +struct STanhGradFunctor : public BaseActivationFunctor { + float scale_a; + float scale_b; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"scale_a", &scale_a}, {"scale_b", &scale_b}}; + } + + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + auto temp = (scale_a * x).tanh() * (scale_a * x).tanh(); + dx.device(d) = dy * scale_a * scale_b * (static_cast(1) - temp); + } +}; + +} // namespace operators +} // namespace paddle + +#define FOR_EACH_KERNEL_FUNCTOR(__macro) \ + __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \ + __macro(exp, ExpFunctor, ExpGradFunctor); \ + __macro(relu, ReluFunctor, ReluGradFunctor); \ + __macro(tanh, TanhFunctor, TanhGradFunctor); \ + __macro(sqrt, SqrtFunctor, SqrtGradFunctor); \ + __macro(abs, AbsFunctor, AbsGradFunctor); \ + __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor); \ + __macro(log, LogFunctor, LogGradFunctor); \ + __macro(square, SquareFunctor, SquareGradFunctor); \ + __macro(brelu, BReluFunctor, BReluGradFunctor); \ + __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor); \ + __macro(pow, PowFunctor, PowGradFunctor); \ + __macro(stanh, STanhFunctor, STanhGradFunctor); \ + __macro(softsign, SoftsignFunctor, SoftsignGradFunctor) diff --git a/paddle/operators/add_op.cc b/paddle/operators/add_op.cc deleted file mode 100644 index 8dbd47cf0dfbc265032a9966343eed5c7bd8692e..0000000000000000000000000000000000000000 --- a/paddle/operators/add_op.cc +++ /dev/null @@ -1,62 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/operators/add_op.h" - -namespace paddle { -namespace operators { - -class AddOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.Input("X")->dims(), - ctx.Input("Y")->dims(), - "Two input of Add Op's dimension must be same."); - ctx.Output("Out")->Resize(ctx.Input("X")->dims()); - } -}; - -class AddOpMaker : public framework::OpProtoAndCheckerMaker { - public: - AddOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of add op"); - AddInput("Y", "The second input of add op"); - AddOutput("Out", "The output of add op"); - AddComment(R"DOC( -Two Element Add Operator. - -The equation is: Out = X + Y -)DOC"); - } -}; - -class AddOpGrad : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override {} -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP(add, ops::AddOp, ops::AddOpMaker, add_grad, ops::AddOpGrad); - -REGISTER_OP_CPU_KERNEL(add, ops::AddKernel); diff --git a/paddle/operators/add_op.h b/paddle/operators/add_op.h deleted file mode 100644 index a7307b6818aa3d10ff215d06281e2b53196fd101..0000000000000000000000000000000000000000 --- a/paddle/operators/add_op.h +++ /dev/null @@ -1,48 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once -#include "paddle/framework/eigen.h" -#include "paddle/framework/op_registry.h" - -namespace paddle { -namespace operators { - -using Tensor = framework::Tensor; -template -using EigenVector = framework::EigenVector; - -template -class AddKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto* input0 = context.Input("X"); - auto* input1 = context.Input("Y"); - auto* output = context.Output("Out"); - - output->mutable_data(context.GetPlace()); - - auto X = EigenVector::Flatten(*input0); - auto Y = EigenVector::Flatten(*input1); - auto Z = EigenVector::Flatten(*output); - - auto place = context.GetEigenDevice(); - - Z.device(place) = X + Y; - } -}; - -} // namespace operators -} // namespace paddle diff --git a/paddle/operators/clip_op.cc b/paddle/operators/clip_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..b3dd060fd725fc9056b25e4affd82fdb345e77f7 --- /dev/null +++ b/paddle/operators/clip_op.cc @@ -0,0 +1,84 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/clip_op.h" + +namespace paddle { +namespace operators { + +class ClipOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of ClipOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of ClipOp should not be null."); + auto x_dims = ctx->GetInputDim("X"); + auto max = Attr("max"); + auto min = Attr("min"); + PADDLE_ENFORCE_LT(min, max, "max should be greater than min."); + ctx->SetOutputDim("Out", x_dims); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +template +class ClipOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ClipOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(Tensor)The input of clip op." + "The number of dimensions must be between [1, 9]."); + AddOutput("Out", "(Tensor)The output of clip op with shape as input(X)"); + AddAttr( + "min", "(float)Minimum value, under which element is replaced by min."); + AddAttr( + "max", "(float)Maximum value, above which element is replaced by max"); + AddComment(R"DOC( +Clip operator limits the given input within an interval. The interval is +specified with arguments 'min' and 'max'. +)DOC"); + } +}; + +class ClipOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + auto x_dims = ctx->GetInputDim("X"); + if (ctx->HasOutput(framework::GradVarName("X"))) { + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(clip, ops::ClipOp, ops::ClipOpMaker, clip_grad, + ops::ClipOpGrad); +REGISTER_OP_CPU_KERNEL(clip, + ops::ClipKernel); +REGISTER_OP_CPU_KERNEL(clip_grad, + ops::ClipGradKernel); diff --git a/paddle/operators/clip_op.cu b/paddle/operators/clip_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..ca9701298fdae3fabe234925edaf9e4d775cc66e --- /dev/null +++ b/paddle/operators/clip_op.cu @@ -0,0 +1,21 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/clip_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(clip, + ops::ClipKernel); +REGISTER_OP_GPU_KERNEL(clip_grad, + ops::ClipGradKernel); diff --git a/paddle/operators/clip_op.h b/paddle/operators/clip_op.h new file mode 100644 index 0000000000000000000000000000000000000000..ac702e9935201ba5263a80ebeb1ab22fa0bd1340 --- /dev/null +++ b/paddle/operators/clip_op.h @@ -0,0 +1,97 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/platform/transform.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; +using platform::Transform; + +template +class ClipFunctor { + public: + explicit ClipFunctor(const T min, const T max) : min_(min), max_(max) {} + HOSTDEVICE T operator()(const T& x) const { + if (x < min_) + return min_; + else if (x > max_) + return max_; + else + return x; + } + + private: + T min_; + T max_; +}; + +template +class ClipGradFunctor { + public: + explicit ClipGradFunctor(const T min, const T max) : min_(min), max_(max) {} + HOSTDEVICE T operator()(const T& x, const T& y) const { + return (y > min_ && y < max_) ? x : 0; + } + + private: + T min_; + T max_; +}; + +template +class ClipKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto max = context.Attr("max"); + auto min = context.Attr("min"); + auto* x = context.Input("X"); + auto* out = context.Output("Out"); + T* out_data = out->mutable_data(context.GetPlace()); + const T* x_data = x->data(); + int64_t numel = x->numel(); + Transform trans; + trans(context.device_context(), x_data, x_data + numel, out_data, + ClipFunctor(min, max)); + } +}; + +template +class ClipGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto max = context.Attr("max"); + auto min = context.Attr("min"); + auto* d_out = context.Input(framework::GradVarName("Out")); + auto* d_x = context.Output(framework::GradVarName("X")); + if (d_x != nullptr) { + auto* x = context.Input("X"); + int64_t numel = d_out->numel(); + auto* d_x_data = d_x->mutable_data(context.GetPlace()); + const T* d_out_data = d_out->data(); + const T* x_data = x->data(); + Transform trans; + trans(context.device_context(), d_out_data, d_out_data + numel, x_data, + d_x_data, ClipGradFunctor(min, max)); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/concat_op.cc b/paddle/operators/concat_op.cc index 0ebefbab26ec8fdf316f852fbb7f6d9f3bbc48eb..1ffa02c8f94c01a385d3ba376c1fd0dc3c1bd372 100644 --- a/paddle/operators/concat_op.cc +++ b/paddle/operators/concat_op.cc @@ -24,28 +24,32 @@ class ConcatOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto ins = ctx.MultiInput("X"); - auto *out = ctx.Output("Out"); - size_t axis = static_cast(ctx.Attr("axis")); - size_t n = ins.size(); + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL, + "Inputs(X) of ConcatOp should be empty.") + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of ConcatOp should not be null."); + + auto ins = ctx->GetInputsDim("X"); + size_t axis = static_cast(ctx->Attrs().Get("axis")); + const size_t n = ins.size(); PADDLE_ENFORCE_GT(n, 1, "Input tensors count should > 1."); - auto out_dims = ins[0]->dims(); + auto out_dims = ins[0]; size_t in_zero_dims_size = out_dims.size(); for (size_t i = 1; i < n; i++) { for (size_t j = 0; j < in_zero_dims_size; j++) { if (j == axis) { - out_dims[axis] += ins[i]->dims()[j]; + out_dims[axis] += ins[i][j]; continue; } - PADDLE_ENFORCE_EQ(out_dims[j], ins[i]->dims()[j], + PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], "Input tensors should have the same " "elements except the specify axis.") } } - out->Resize(out_dims); + ctx->SetOutputDim("Out", out_dims); } }; @@ -70,10 +74,27 @@ class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { } }; +class ConcatOpGrad : public framework::OperatorWithKernel { + public: + ConcatOpGrad(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X")); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(concat, ops::ConcatOp, ops::ConcatOpMaker) +REGISTER_OP(concat, ops::ConcatOp, ops::ConcatOpMaker, concat_grad, + ops::ConcatOpGrad) REGISTER_OP_CPU_KERNEL(concat, ops::ConcatKernel) +REGISTER_OP_CPU_KERNEL(concat_grad, + ops::ConcatGradKernel) diff --git a/paddle/operators/concat_op.cu b/paddle/operators/concat_op.cu index 38fee7473dbb2ba97fe95b6632db7a1749cf3bbe..ede832ddcd486729db56bba016683b33875f8837 100644 --- a/paddle/operators/concat_op.cu +++ b/paddle/operators/concat_op.cu @@ -12,8 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#define EIGEN_USE_GPU #include "paddle/operators/concat_op.h" - namespace ops = paddle::operators; -// TODO(Yancey1989) Add GPU kernel +REGISTER_OP_GPU_KERNEL(concat, + ops::ConcatKernel); +REGISTER_OP_GPU_KERNEL( + concat_grad, ops::ConcatGradKernel); diff --git a/paddle/operators/concat_op.h b/paddle/operators/concat_op.h index f977054fdf8aa0164db726b94a21c57f770dd674..c113f19fb5cf806709bff845ee0f1078b34014bb 100644 --- a/paddle/operators/concat_op.h +++ b/paddle/operators/concat_op.h @@ -16,46 +16,51 @@ limitations under the License. */ #include #include "paddle/framework/op_registry.h" +#include "paddle/operators/strided_memcpy.h" namespace paddle { namespace operators { template -class ConcatKernel : public framework::OpKernel { +class ConcatKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto ins = ctx.MultiInput("X"); auto* out = ctx.Output("Out"); int64_t axis = static_cast(ctx.Attr("axis")); - size_t n = ins.size(); - size_t output_axis_dim = 0; - size_t before = 1, after = 1; - for (size_t i = 0; i < n; i++) { - output_axis_dim += ins[i]->dims()[axis]; - } - auto& input_zero = ins[0]; - for (int64_t i = 0; i < input_zero->dims().size(); i++) { - if (i == axis) { - continue; - } - if (i < axis) { - before *= input_zero->dims()[i]; - } else { - after *= input_zero->dims()[i]; - } - } + const size_t n = ins.size(); size_t output_offset = 0; + out->mutable_data(ctx.GetPlace()); + auto out_stride = framework::stride(out->dims()); for (size_t i = 0; i < n; i++) { auto& in = ins[i]; auto axis_dim = in->dims()[axis]; - for (size_t j = 0; j < before; j++) { - size_t len = axis_dim * after * sizeof(T); - const T* src = in->data() + axis_dim * after * j; - T* out_data = out->mutable_data(platform::CPUPlace()); - T* dest = out_data + output_offset + output_axis_dim * after * j; - memcpy(dest, src, len); - } - output_offset += axis_dim * after; + auto in_stride = framework::stride(in->dims()); + StridedMemcpy(ctx.device_context(), in->data(), in_stride, + in->dims(), out_stride, out->data() + output_offset); + output_offset += axis_dim * in_stride[axis]; + } + } +}; + +template +class ConcatGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* in = ctx.Input(framework::GradVarName("Out")); + auto outs = ctx.MultiOutput(framework::GradVarName("X")); + int64_t axis = static_cast(ctx.Attr("axis")); + const size_t n = outs.size(); + size_t input_offset = 0; + auto in_stride = framework::stride(in->dims()); + for (size_t i = 0; i < n; i++) { + auto& out = outs[i]; + out->mutable_data(ctx.GetPlace()); + size_t axis_dim = out->dims()[axis]; + auto out_stride = framework::stride(out->dims()); + StridedMemcpy(ctx.device_context(), in->data() + input_offset, + in_stride, out->dims(), out_stride, out->data()); + input_offset += axis_dim * in_stride[axis]; } } }; diff --git a/paddle/operators/cond_op.cc b/paddle/operators/cond_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..db20b69f3fab1a5a5bfcd445536437dc4b428559 --- /dev/null +++ b/paddle/operators/cond_op.cc @@ -0,0 +1,233 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/cond_op.h" + +#include "paddle/operators/gather.h" +#include "paddle/operators/scatter.h" + +namespace paddle { +namespace operators { + +using Scope = framework::Scope; +using Variable = framework::Variable; +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; +using DDim = framework::DDim; + +framework::Scope& CondOp::AddSubScope(const Scope& scope) const { + auto sub_scopes_var = scope.FindVar("SubScopes"); + PADDLE_ENFORCE_NOT_NULL(sub_scopes_var, + "Output(SubScopes) of CondOp should not be null."); + auto sub_scopes = sub_scopes_var->GetMutable>(); + auto& sub_scope = scope.NewScope(); + sub_scopes->push_back(&sub_scope); + return sub_scope; +} + +std::vector& CondOp::GetSubScopes( + const framework::Scope& scope) const { + auto sub_scopes_var = scope.FindVar("SubScopes"); + PADDLE_ENFORCE_NOT_NULL(sub_scopes_var, + "Output(SubScopes) of CondOp should not be null."); + return *sub_scopes_var->GetMutable>(); +} + +LoDTensor& CondOp::AddIndexTensor(const Scope& scope) const { + auto index_tensors_var = scope.FindVar("IndexTensors"); + PADDLE_ENFORCE_NOT_NULL(index_tensors_var, + "Output(IndexTensors) of CondOp should not be null."); + auto& index_tensors = + *index_tensors_var->GetMutable>(); + index_tensors.push_back(LoDTensor()); + return index_tensors.back(); +} + +std::vector& CondOp::GetIndexTensors( + const framework::Scope& scope) const { + auto* index_tensors_var = scope.FindVar("IndexTensors"); + PADDLE_ENFORCE_NOT_NULL(index_tensors_var, + "Output(IndexTensors) of CondOp should not be null."); + return *index_tensors_var->GetMutable>(); +} + +void CondOp::PrepareDataForSubnet( + const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const { + PADDLE_ENFORCE(!Inputs("Xs").empty(), "Inputs(Xs) of CondOp can't be empty."); + + for (int i = 0; i < BRANCH_NUM; ++i) { + // Create two sub scopes for true and false branches + // sub_scopes[0] for the true branch + // sub_scopes[1] for the false branch + AddSubScope(scope); + // Create two tensors for true and false indices: + // index_tensors[0] for the true branch + // index_tensors[1] for the false branch + AddIndexTensor(scope); + } + + Variable* cond_var = scope.FindVar(Input("Cond")); + PADDLE_ENFORCE_NOT_NULL(cond_var, + "Input(Cond) of CondOp should not be null."); + const LoDTensor* cond = cond_var->GetMutable(); + + // get the true/false index at runtime according to cond tensor + // index_vectors[0]: vector, contains all index for cond[i] == true + // index_vectors[1]: vector, contains all index for cond[i] == false + std::vector> index_vectors; + index_vectors.resize(BRANCH_NUM); + + const int* cond_data = cond->data(); + for (int i = 0; i < cond->dims()[0]; ++i) { + if (cond_data[i]) + index_vectors[TRUE_BRANCH].push_back(i); + else + index_vectors[FALSE_BRANCH].push_back(i); + } + + // put index_vectors[0] and index_vectors[1] into two tensors: + // index_tensors[0] and index_tensors[1] + std::vector& index_tensors = GetIndexTensors(scope); + std::vector& sub_scopes = GetSubScopes(scope); + + for (int i = 0; i < BRANCH_NUM; ++i) { + DDim dim = {static_cast(index_vectors[i].size())}; + int* index_tensor_data_ptr = + index_tensors[i].mutable_data(dim, platform::CPUPlace()); + memcpy(index_tensor_data_ptr, index_vectors[i].data(), + dim[0] * sizeof(int)); + } + + // create input in subscopes according to index_vectors + for (auto& input : Inputs("Xs")) { + Variable* var_parent = scope.FindVar(input); + PADDLE_ENFORCE_NOT_NULL(var_parent); + const auto* tensor_parent = &var_parent->Get(); + + for (int i = 0; i < BRANCH_NUM; ++i) { + Variable* var_child = sub_scopes[i]->FindVar(input); + PADDLE_ENFORCE_NOT_NULL(var_child); + auto* tensor_child = var_child->GetMutable(); + + // Resize child + DDim dim = tensor_parent->dims(); + dim[0] = index_tensors[i].dims()[0]; + tensor_child->mutable_data(dim, platform::CPUPlace()); + + Gather(dev_ctx.GetPlace(), tensor_parent, &index_tensors[i], + tensor_child); + } + } + + // create output_tensors in subscope for sub_net + for (int i = 0; i < BRANCH_NUM; ++i) { + for (auto& output : (*sub_net_op_[i]).Outputs()) { + for (auto& var_name : output.second) { + sub_scopes[i]->NewVar(var_name); + } + } + } +} + +void CondOp::MergeDataFromSubnet(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const { + std::vector& sub_scopes = GetSubScopes(scope); + const std::vector& index_tensors = + GetIndexTensors(scope); + + // Infer the output dim, out_dim[0] = true_dim[0] + false_dim[0] + PADDLE_ENFORCE(!Outputs("Outs").empty(), + "Outputs(Outs) of CondOp can't be empty."); + for (auto& output : Outputs("Outs")) { + const LoDTensor* tensor_t_out = + &sub_scopes[TRUE_BRANCH]->FindVar(output)->Get(); + PADDLE_ENFORCE_NOT_NULL(tensor_t_out, "True output should not be NULL"); + const LoDTensor* tensor_f_out = + &sub_scopes[FALSE_BRANCH]->FindVar(output)->Get(); + PADDLE_ENFORCE_NOT_NULL(tensor_f_out, "False output should not be NULL"); + + auto* var_out = scope.FindVar(output); + PADDLE_ENFORCE_NOT_NULL(var_out, "Output not found"); + LoDTensor* tensor_out = var_out->GetMutable(); + PADDLE_ENFORCE_NOT_NULL(tensor_t_out, + "True output tensor should not be NULL"); + + DDim true_dim = tensor_t_out->dims(); + DDim false_dim = tensor_f_out->dims(); + true_dim[0] = 0; + false_dim[0] = 0; + PADDLE_ENFORCE_EQ(true_dim, false_dim, + "Outputs not of the same shape except the first dim"); + + DDim out_dim = tensor_t_out->dims(); + out_dim[0] = tensor_t_out->dims()[0] + tensor_f_out->dims()[0]; + tensor_out->Resize(out_dim); + tensor_out->mutable_data(platform::CPUPlace()); + } + + // merge output results: + // output_tensor = true_output_tensor + false_output_tensor + for (auto& output : Outputs("Outs")) { + Variable* var_parent = scope.FindVar(output); + PADDLE_ENFORCE_NOT_NULL(var_parent); + auto* tensor_parent = var_parent->GetMutable(); + + for (int i = 0; i < BRANCH_NUM; ++i) { + Variable* var_child = sub_scopes[i]->FindVar(output); + PADDLE_ENFORCE_NOT_NULL(var_child); + auto* tensor_child = &var_child->Get(); + ScatterUpdate(dev_ctx.GetPlace(), tensor_child, &index_tensors[i], + tensor_parent); + } + } +} + +void CondOp::Run(const Scope& scope, + const platform::DeviceContext& dev_ctx) const { + PrepareDataForSubnet(scope, dev_ctx); + std::vector& sub_scopes = GetSubScopes(scope); + for (int i = 0; i < BRANCH_NUM; ++i) { + sub_net_op_[i]->Run(*sub_scopes[i], dev_ctx); + } + MergeDataFromSubnet(scope, dev_ctx); +} + +class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker { + public: + CondOpProtoAndCheckerMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Cond", "The condition, which is a bool vector"); + AddInput("Xs", "Inputs of Subnets").AsDuplicable(); + AddOutput("Outs", "Outputs of Cond_Op after merge").AsDuplicable(); + + AddOutput("SubScopes", "sub scopes for true and false branches"); + AddOutput("IndexTensors", "Index Tensors contains indices for true/false"); + + AddComment(R"DOC( +Sample dependent Cond Operator: +Given Cond[i] as a 1/0 vector to indicate true/false +The equation is: +Out[i] = subnet_t[i], if Cond[i] == true +Out[i] = subnet_t[i], if Cond[i] == false +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OP_WITHOUT_GRADIENT(cond, paddle::operators::CondOp, + paddle::operators::CondOpProtoAndCheckerMaker); diff --git a/paddle/operators/cond_op.h b/paddle/operators/cond_op.h new file mode 100644 index 0000000000000000000000000000000000000000..93121fb31be287794249b5a62386d5a8dd268a0c --- /dev/null +++ b/paddle/operators/cond_op.h @@ -0,0 +1,94 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "glog/logging.h" +#include "paddle/framework/ddim.h" +#include "paddle/framework/eigen.h" +#include "paddle/framework/operator.h" +#include "paddle/framework/tensor.h" +#include "paddle/operators/net_op.h" + +namespace paddle { +namespace operators { + +/* + * @brief CondOp is a dynamic if-else Operator + * + * It has a input tensor named cond indicating which netop each instance will + * run. + * + * if cond == 1, it will run true_net, which is a NetOp. + * + * if cond == 0, it will run false_net, which is another NetOp. + */ +class CondOp : public framework::OperatorBase { + public: + CondOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) { + sub_net_op_.resize(BRANCH_NUM); + } + + CondOp(const CondOp& o) + : framework::OperatorBase( + static_cast(o)) { + // TODO(yuyang18): Implement copy ctor well. + PADDLE_THROW("Not implemented"); + } + + framework::Scope& AddSubScope(const framework::Scope& scope) const; + std::vector& GetSubScopes( + const framework::Scope& scope) const; + + framework::LoDTensor& AddIndexTensor(const framework::Scope& scope) const; + std::vector& GetIndexTensors( + const framework::Scope& scope) const; + + void PrepareDataForSubnet(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const; + void MergeDataFromSubnet(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const; + + /* + * Set True Block + */ + void set_truenet(std::unique_ptr&& net) { + sub_net_op_[TRUE_BRANCH] = std::move(net); + } + + /* + * Set False Block + */ + void set_falsenet(std::unique_ptr&& net) { + sub_net_op_[FALSE_BRANCH] = std::move(net); + } + + void Run(const framework::Scope& scope, + const platform::DeviceContext& dev_ctx) const override; + + private: + const int TRUE_BRANCH = 0; + const int FALSE_BRANCH = 1; + const int BRANCH_NUM = 2; + + // sub_net_op_[0]: subnet_t + // sub_net_op_[1]: subnet_f + std::vector> sub_net_op_; +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/conv2d_op.cc b/paddle/operators/conv2d_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..5cc82944bb6b9a4fc5cd94cf2233ab84fc105fe7 --- /dev/null +++ b/paddle/operators/conv2d_op.cc @@ -0,0 +1,131 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/gemm_conv2d_op.h" + +namespace paddle { +namespace operators { + +int outputSize(int input_size, int filter_size, int padding, int stride) { + int output_size = (input_size - filter_size + 2 * padding) / stride + 1; + return output_size; +} + +class Conv2DOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Input"), + "Input(Input) of Conv2DOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Filter"), + "Input(Filter) of Conv2DOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Output"), + "Output(Output) of Conv2DOp should not be null."); + + auto in_dims = ctx->GetInputDim("Input"); + auto filter_dims = ctx->GetInputDim("Filter"); + std::vector strides = ctx->Attrs().Get>("strides"); + std::vector paddings = ctx->Attrs().Get>("paddings"); + int groups = ctx->Attrs().Get("groups"); + int input_channels = in_dims[1]; + int output_channels = filter_dims[0]; + + PADDLE_ENFORCE_EQ(in_dims.size(), 4, "Conv2DOp input should be 4-D."); + PADDLE_ENFORCE_EQ(filter_dims.size(), 4, "Conv2DOp filter should be 4-D."); + PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups, + "The number of input channels should be equal to filter " + "channels * groups."); + PADDLE_ENFORCE_EQ( + output_channels % groups, 0, + "The number of output channels should be divided by groups."); + + auto output_height = + outputSize(in_dims[2], filter_dims[2], paddings[0], strides[0]); + auto output_width = + outputSize(in_dims[3], filter_dims[3], paddings[1], strides[1]); + ctx->SetOutputDim( + "Output", {in_dims[0], filter_dims[0], output_height, output_width}); + } +}; + +class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker { + public: + Conv2DOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "Input", + "The input tensor of convolution operator. " + "The format of input tensor is NCHW. Where N is batch size, C is the " + "number of channels, H and W is the height and width of image."); + AddInput( + "Filter", + "The filter tensor of convolution operator." + "The format of the filter tensor is MCHW, where M is the number of " + "output image channels, C is the number of input image channels, " + "H and W is height and width of filter. " + "If the groups attribute is greater than 1, C equal the number of " + "input image channels divided by the groups."); + AddOutput("Output", + "The output tensor of convolution operator." + "The format of output tensor is also NCHW."); + AddAttr>("strides", "strides of convolution operator.") + .SetDefault({1, 1}); + AddAttr>("paddings", "paddings of convolution operator.") + .SetDefault({0, 0}); + AddAttr( + "groups", + "group size of convolution operator. " + "Refer to grouped convolution in Alex Krizhevsky's paper: " + "when group=2, the first half of the filters are only connected to the " + "first half of the input channels, and the second half only connected " + "to the second half.") + .SetDefault(1); + AddComment(R"DOC( +The convolution operation calculates the output based on the input, filter +and strides, paddings, groups parameters. The size of each dimension of the +parameters is checked in the infer-shape. +)DOC"); + } +}; + +class Conv2DOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + auto in_dims = ctx->GetInputDim("Input"); + auto filter_dims = ctx->GetInputDim("Filter"); + if (ctx->HasOutput(framework::GradVarName("Input"))) { + ctx->SetOutputDim(framework::GradVarName("Input"), in_dims); + } + if (ctx->HasOutput(framework::GradVarName("Filter"))) { + ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(conv2d, ops::Conv2DOp, ops::Conv2DOpMaker, conv2d_grad, + ops::Conv2DOpGrad); + +REGISTER_OP_CPU_KERNEL( + conv2d, ops::GemmConv2DKernel); +REGISTER_OP_CPU_KERNEL( + conv2d_grad, ops::GemmConvGrad2DKernel); diff --git a/paddle/operators/conv2d_op.cu b/paddle/operators/conv2d_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..5df818ba0496a65502dde37fd1397ec56f8c1101 --- /dev/null +++ b/paddle/operators/conv2d_op.cu @@ -0,0 +1,22 @@ +/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/gemm_conv2d_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL( + conv2d, ops::GemmConv2DKernel); +REGISTER_OP_GPU_KERNEL( + conv2d_grad, ops::GemmConvGrad2DKernel); diff --git a/paddle/operators/cos_sim_op.cc b/paddle/operators/cos_sim_op.cc index c033af3b741ae26ad9d37b2164f87aa6e8651c6e..040546f1a6fe1af6d17a5e363a11d27de88d03c2 100644 --- a/paddle/operators/cos_sim_op.cc +++ b/paddle/operators/cos_sim_op.cc @@ -24,34 +24,71 @@ class CosSimOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null."); - PADDLE_ENFORCE_EQ(ctx.Input("X")->dims(), - ctx.Input("Y")->dims(), - "Dimensions of Input(X) and Input(Y) must be the same."); - - auto dims = ctx.Input("X")->dims(); - ctx.Output("Out")->Resize({dims[0], 1}); - ctx.Output("XNorm")->Resize({dims[0], 1}); - ctx.Output("YNorm")->Resize({dims[0], 1}); + void InferShape(framework::InferShapeContextBase* ctx) const override { + // notnull check + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of CosSimOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Y"), + "Input(Y) of CosSimOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of CosSimOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("XNorm"), + "Output(XNorm) of CosSimOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("YNorm"), + "Output(YNorm) of CosSimOp should not be null."); + + // shape check + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); + + PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(), + "Ranks of Input(X) and Input(Y) must be equal."); + PADDLE_ENFORCE_GE(x_dims.size(), 2, + "Rank of Input(X) must not be less than 2."); + PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()), + framework::slice_ddim(y_dims, 1, y_dims.size()), + "All dimensions except the 1st of Input(X) and Input(Y) " + "must be equal."); + PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1, + "The 1st dimension of Input(Y) must be equal to Input(X) or" + " just 1 (which will be broadcasted to match Input(X))."); + + // resize tensor + ctx->SetOutputDim("Out", {x_dims[0], 1}); + ctx->SetOutputDim("XNorm", {x_dims[0], 1}); + ctx->SetOutputDim("YNorm", {y_dims[0], 1}); + ctx->ShareLoD("X", /*->*/ "Out"); } }; class CosSimOpMaker : public framework::OpProtoAndCheckerMaker { public: - CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + CosSimOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of cos_sim op."); - AddInput("Y", "The second input of cos_sim op."); + AddInput("X", "The 1st input of cos_sim op."); + AddInput("Y", "The 2nd input of cos_sim op."); AddOutput("Out", "The output of cos_sim op."); - AddOutput("XNorm", "Row norm of the first input.").AsIntermediate(); - AddOutput("YNorm", "Row norm of the second input.").AsIntermediate(); + AddOutput("XNorm", + "Norm of the first input, reduced along the 1st " + "dimension.") + .AsIntermediate(); + AddOutput("YNorm", + "Norm of the second input, reduced along the 1st " + "dimension.") + .AsIntermediate(); AddComment(R"DOC( Cosine Similarity Operator. -The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)) +The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)). + +The input `X` and `Y` must have the same shape, except that the 1st dimension +of input `Y` could be just 1 (different from input `X`), which will be +broadcasted to match the shape of input `X` before computing their cosine +similarity. + +Both the input `X` and `Y` can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with input `X`. )DOC"); } }; @@ -61,37 +98,55 @@ class CosSimOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"), - "Input(XNorm) must not be null."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"), - "Input(YNorm) must not be null."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), - "Input(Out@GRAD) must not be null."); - - auto x_dims = ctx.Input("X")->dims(); - auto y_dims = ctx.Input("Y")->dims(); - auto xnorm_dims = ctx.Input("XNorm")->dims(); - auto ynorm_dims = ctx.Input("YNorm")->dims(); - auto out_dims = ctx.Input(framework::GradVarName("Out"))->dims(); - PADDLE_ENFORCE_EQ(x_dims, y_dims, - "Dimensions of Input(X) and Input(Y) must be the same."); - PADDLE_ENFORCE_EQ(xnorm_dims[0], x_dims[0], - "1st dimension of XNorm must equal that of Input(X)."); - PADDLE_ENFORCE_EQ(xnorm_dims[1], 1, "2st dimension of XNorm must be one."); - PADDLE_ENFORCE_EQ(ynorm_dims[0], y_dims[0], - "1st dimension of YNorm must equal that of Input(Y)."); - PADDLE_ENFORCE_EQ(ynorm_dims[1], 1, "2st dimension of YNorm must be one."); - PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0], - "1st dimension of Out@GRAD must equal that of Input(X)"); - PADDLE_ENFORCE_EQ(out_dims[1], 1, "1st dimension of Out@GRAD must be one."); - - auto *x_grad = ctx.Output(framework::GradVarName("X")); - auto *y_grad = ctx.Output(framework::GradVarName("Y")); - if (x_grad) x_grad->Resize(x_dims); - if (y_grad) y_grad->Resize(y_dims); + void InferShape(framework::InferShapeContextBase* ctx) const override { + // notnull check + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null."); + PADDLE_ENFORCE(ctx->HasInput("XNorm"), "Input(XNorm) must not be null."); + PADDLE_ENFORCE(ctx->HasInput("YNorm"), "Input(YNorm) must not be null."); + PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) must not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) must not be null."); + + // shape check + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); + auto xnorm_dims = ctx->GetInputDim("XNorm"); + auto ynorm_dims = ctx->GetInputDim("YNorm"); + auto out_dims = ctx->GetInputDim("Out"); + auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out")); + + PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), + "Ranks of Input(X) and Input(Y) must be equal."); + PADDLE_ENFORCE_GE(x_dims.size(), 2, + "Rank of Input(X) must not be less than 2."); + PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()), + framework::slice_ddim(y_dims, 1, y_dims.size()), + "All dimensions except the 1st of Input(X) and Input(Y) " + "must be equal."); + PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1, + "The 1st dimension of Input(Y) must be equal to Input(X) or" + " just 1 (which will be broadcasted to match Input(X))."); + auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1}); + auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1}); + PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims, + "Shape of Input(XNorm) must be [X.Dim(0), 1]."); + PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims, + "Shape of Input(YNorm) must be [Y.Dim(0), 1]."); + PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims, + "Shape of Input(Out) must be [X.Dim(0), 1]."); + PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims, + "Shape of Input(Out@Grad) must be [X.Dim(0), 1]."); + + // resize tensor + auto x_grad_name = framework::GradVarName("X"); + auto y_grad_name = framework::GradVarName("Y"); + if (ctx->HasOutput(x_grad_name)) { + ctx->SetOutputDim(x_grad_name, x_dims); + } + if (ctx->HasOutput(y_grad_name)) { + ctx->SetOutputDim(y_grad_name, y_dims); + } } }; diff --git a/paddle/operators/cos_sim_op.h b/paddle/operators/cos_sim_op.h index 0dc509952578497671a128374f77ce616a520909..68c56f531f941e1b8f66ac7ba6bf318881642c4f 100644 --- a/paddle/operators/cos_sim_op.h +++ b/paddle/operators/cos_sim_op.h @@ -28,77 +28,114 @@ template ; template -class CosSimKernel : public framework::OpKernel { +class CosSimKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* input_x = context.Input("X"); - auto* input_y = context.Input("Y"); - auto* output_z = context.Output("Out"); - auto* output_x_norm = context.Output("XNorm"); - auto* output_y_norm = context.Output("YNorm"); + // get Tensor + auto* in_x = context.Input("X"); + auto* in_y = context.Input("Y"); + auto* out_z = context.Output("Out"); + auto* out_x_norm = context.Output("XNorm"); + auto* out_y_norm = context.Output("YNorm"); + out_z->mutable_data(context.GetPlace()); + out_x_norm->mutable_data(context.GetPlace()); + out_y_norm->mutable_data(context.GetPlace()); - output_z->mutable_data(context.GetPlace()); - output_x_norm->mutable_data(context.GetPlace()); - output_y_norm->mutable_data(context.GetPlace()); - - auto dims = input_x->dims(); - int64_t size = input_x->numel(); - auto new_dims = framework::make_ddim({dims[0], size / dims[0]}); - auto x = EigenMatrix::From(*input_x, new_dims); - auto y = EigenMatrix::From(*input_y, new_dims); - auto z = EigenVector::Flatten(*output_z); - auto x_norm = EigenVector::Flatten(*output_x_norm); - auto y_norm = EigenVector::Flatten(*output_y_norm); + // convert Tensor to Eigen Tensor + int rows_x = in_x->dims()[0]; + int rows_y = in_y->dims()[0]; + auto x = EigenMatrix::Reshape(*in_x, 1); + auto y = EigenMatrix::Reshape(*in_y, 1); + auto z = EigenVector::Flatten(*out_z); + auto x_norm = EigenVector::Flatten(*out_x_norm); + auto y_norm = EigenVector::Flatten(*out_y_norm); + // compute auto place = context.GetEigenDevice(); - auto xy = (x * y).sum(Eigen::array({{1}})); - x_norm.device(place) = x.square().sum(Eigen::array({{1}})).sqrt(); - y_norm.device(place) = y.square().sum(Eigen::array({{1}})).sqrt(); - z.device(place) = xy / x_norm / y_norm; + auto row_along = Eigen::array({{1}}); + x_norm.device(place) = x.square().sum(row_along).sqrt(); + y_norm.device(place) = y.square().sum(row_along).sqrt(); + if (rows_x == rows_y) { + auto xy = (x * y).sum(Eigen::array({{1}})); + z.device(place) = xy / x_norm / y_norm; + } else { + Eigen::DSizes bcast(rows_x, 1); + auto xy = (x * y.broadcast(bcast)).sum(row_along); + z.device(place) = xy / x_norm / y_norm.broadcast(bcast); + } } }; template -class CosSimGradKernel : public framework::OpKernel { +class CosSimGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* input_x = context.Input("X"); - auto* input_y = context.Input("Y"); - auto* input_z = context.Input("Out"); - auto* input_x_norm = context.Input("XNorm"); - auto* input_y_norm = context.Input("YNorm"); - auto* output_grad_x = context.Output(framework::GradVarName("X")); - auto* output_grad_y = context.Output(framework::GradVarName("Y")); - auto* input_grad_z = context.Input(framework::GradVarName("Out")); + // get Tensor + auto* in_x = context.Input("X"); + auto* in_y = context.Input("Y"); + auto* in_z = context.Input("Out"); + auto* in_x_norm = context.Input("XNorm"); + auto* in_y_norm = context.Input("YNorm"); + auto* out_grad_x = context.Output(framework::GradVarName("X")); + auto* out_grad_y = context.Output(framework::GradVarName("Y")); + auto* in_grad_z = context.Input(framework::GradVarName("Out")); - auto dims = input_x->dims(); - int64_t size = input_x->numel(); - auto new_dims = framework::make_ddim({dims[0], size / dims[0]}); - auto x = EigenMatrix::From(*input_x, new_dims); - auto y = EigenMatrix::From(*input_y, new_dims); - auto z = EigenMatrix::From(*input_z); - auto x_norm = EigenMatrix::From(*input_x_norm); - auto y_norm = EigenMatrix::From(*input_y_norm); - auto dz = EigenMatrix::From(*input_grad_z); + // convert Tensor to Eigen Tensor + auto x = EigenMatrix::Reshape(*in_x, 1); + auto y = EigenMatrix::Reshape(*in_y, 1); + auto z = EigenMatrix::Reshape(*in_z, 1); + auto x_norm = EigenMatrix::Reshape(*in_x_norm, 1); + auto y_norm = EigenMatrix::Reshape(*in_y_norm, 1); + auto dz = EigenMatrix::Reshape(*in_grad_z, 1); - Eigen::DSizes bcast(1, new_dims[1]); - auto z_bcast = z.broadcast(bcast); - auto dz_bcast = dz.broadcast(bcast); + // compute gradident + int rows_x = in_x->dims()[0]; + int rows_y = in_y->dims()[0]; + int cols = framework::product(in_x->dims()) / rows_x; + Eigen::DSizes bcast_cols(1, cols); + auto z_bcast = z.broadcast(bcast_cols); + auto dz_bcast = dz.broadcast(bcast_cols); + auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols); auto place = context.GetEigenDevice(); - auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast); - auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast); - auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast); - if (output_grad_x) { - output_grad_x->mutable_data(context.GetPlace()); - auto dx = EigenMatrix::From(*output_grad_x, new_dims); - dx.device(place) = - dz_bcast * (y / norm_prod_bcast - z_bcast * x / x_snorm_bcast); - } - if (output_grad_y) { - output_grad_y->mutable_data(context.GetPlace()); - auto dy = EigenMatrix::From(*output_grad_y, new_dims); - dy.device(place) = - dz_bcast * (x / norm_prod_bcast - z_bcast * y / y_snorm_bcast); + if (rows_x == rows_y) { + auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols); + auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols); + // compute dx + if (out_grad_x) { + out_grad_x->mutable_data(context.GetPlace()); + auto dx = EigenMatrix::Reshape(*out_grad_x, 1); + auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast; + dx.device(place) = dz_bcast * grad; + } + // compute dy + if (out_grad_y) { + out_grad_y->mutable_data(context.GetPlace()); + auto dy = EigenMatrix::Reshape(*out_grad_y, 1); + auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast; + dy.device(place) = dz_bcast * grad; + } + } else { + Eigen::DSizes bcast_rows(rows_x, 1); + Eigen::DSizes bcast_rows_cols(rows_x, cols); + auto y_bcast = y.broadcast(bcast_rows); + auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols); + auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows)) + .eval() + .broadcast(bcast_cols); + // compute dx + if (out_grad_x) { + out_grad_x->mutable_data(context.GetPlace()); + auto dx = EigenMatrix::Reshape(*out_grad_x, 1); + auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast; + dx.device(place) = dz_bcast * grad; + } + // compute dy + if (out_grad_y) { + out_grad_y->mutable_data(context.GetPlace()); + auto dy = EigenMatrix::Reshape(*out_grad_y, 1); + auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast; + dy.device(place) = (dz_bcast * grad).sum(Eigen::array({{0}})); + } } } }; diff --git a/paddle/operators/crop_op.cc b/paddle/operators/crop_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..9b2305e90e85a6f39d4c584a3251b25f67e81aca --- /dev/null +++ b/paddle/operators/crop_op.cc @@ -0,0 +1,137 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/crop_op.h" +#include + +namespace paddle { +namespace operators { + +using framework::Tensor; + +class CropOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of CropOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of CropOp should not be null."); + auto x_dim = ctx->GetInputDim("X"); + if (!ctx->HasInput("Y")) { + auto shape = ctx->Attrs().Get>("shape"); + PADDLE_ENFORCE_EQ( + int64_t(shape.size()), x_dim.size(), + "Shape size should be equal to dimention size of input tensor."); + std::vector tensor_shape(shape.size()); + for (size_t i = 0; i < shape.size(); ++i) { + tensor_shape[i] = static_cast(shape[i]); + } + ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape)); + } else { + auto y_dim = ctx->GetInputDim("Y"); + PADDLE_ENFORCE_EQ(framework::arity(x_dim), framework::arity(y_dim), + "Tensor rank of both CropOp's " + "inputs must be same."); + ctx->SetOutputDim("Out", y_dim); + } + } +}; + +class CropOpMaker : public framework::OpProtoAndCheckerMaker { + public: + CropOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "The input of pad op. " + "The input should be a k-D tensor(k > 0 and k < 7)"); + AddInput("Y", + "The input used as reference for cropping" + " with the same dimension as X. "); + AddOutput("Out", + "The output of crop op " + "with the same dimension as X."); + AddAttr>("offsets", + "A list describing offsets to be cropped." + "The size of offsets list should be as same as " + "dimension size of input X."); + AddAttr>("shape", + "A list describing the shape of output." + "The size of shape list should be as same as " + "dimension size of input X.") + .SetDefault(std::vector()); + AddComment(R"DOC( +Crop Operator. +Crop input into output, as specified by offsets and shape. + +There are two ways to set shape: +1. referenc input: crop input X as shape as reference input. + The dimension of reference input should + be as same as input X. +2. shape list: crop input X by shape described by a list. + The size of shape list should be as same as + dimension size of input X. + +The input should be a k-D tensor(k > 0 and k < 7). As an example: + +Given: + + X = [[0, 1, 2, 0, 0] + [0, 3, 4, 0, 0] + [0, 0, 0, 0, 0]] + +and + + offsets = [0, 1] + +and + + shape = [2, 2] + +then we get + + Out = [[1, 2], + [3, 4]] + +)DOC"); + } +}; + +class CropOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + auto x_dims = ctx->GetInputDim("X"); + auto x_grad_name = framework::GradVarName("X"); + if (ctx->HasOutput(x_grad_name)) { + ctx->SetOutputDim(x_grad_name, x_dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad); +REGISTER_OP_CPU_KERNEL(crop, ops::CropKernel); +REGISTER_OP_CPU_KERNEL(crop_grad, + ops::CropGradKernel); diff --git a/paddle/operators/add_op.cu b/paddle/operators/crop_op.cu similarity index 75% rename from paddle/operators/add_op.cu rename to paddle/operators/crop_op.cu index d9c6d20a6c320b59e57ed25da3dd8b093833f8c7..f8ee18a1d6e894cbb2d71dd4b6b459abeb076817 100644 --- a/paddle/operators/add_op.cu +++ b/paddle/operators/crop_op.cu @@ -12,7 +12,10 @@ See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/operators/add_op.h" +#define EIGEN_USE_GPU +#include "paddle/operators/crop_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(add, ops::AddKernel); +REGISTER_OP_GPU_KERNEL(crop, ops::CropKernel); +REGISTER_OP_GPU_KERNEL(crop_grad, + ops::CropGradKernel); diff --git a/paddle/operators/crop_op.h b/paddle/operators/crop_op.h new file mode 100644 index 0000000000000000000000000000000000000000..2e72583d68d0acf0e2f5044637dba55de3b57209 --- /dev/null +++ b/paddle/operators/crop_op.h @@ -0,0 +1,104 @@ +/* Copyright (c) 2016 CropdleCropdle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/strided_memcpy.h" + +namespace paddle { +namespace operators { // Internal + +template +using EigenTensor = framework::EigenTensor; +using framework::Tensor; + +template +class CropKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input("X"); + auto* out = context.Output("Out"); + const T* x_data = x->data(); + T* out_data = out->mutable_data(context.GetPlace()); + auto x_stride = framework::stride(x->dims()); + auto out_stride = framework::stride(out->dims()); + auto offsets = context.Attr>("offsets"); + PADDLE_ENFORCE_EQ( + x->dims().size(), static_cast(offsets.size()), + "Offsets size should be equal to dimension size of input tensor."); + int64_t offset = 0; + for (size_t i = 0; i < offsets.size(); ++i) { + offset += (x_stride[i] * offsets[i]); + } + StridedMemcpy(context.device_context(), x_data + offset, x_stride, + out->dims(), out_stride, out_data); + } +}; + +template +void CropGradFunction(const framework::ExecutionContext& context) { + auto* d_x = context.Output(framework::GradVarName("X")); + if (d_x != nullptr) { + auto* d_out = context.Input(framework::GradVarName("Out")); + d_x->mutable_data(context.GetPlace()); + auto offsets = context.Attr>("offsets"); + Eigen::array, D> paddings; + for (size_t i = 0; i < D; ++i) { + paddings[i].first = offsets[i]; + paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i]; + } + auto d_x_tensor = EigenTensor::From(*d_x); + auto d_out_tensor = EigenTensor::From(*d_out); + d_x_tensor.device(context.GetEigenDevice()) = + d_out_tensor.pad(paddings, 0); + } +} + +template +class CropGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + size_t rank = + context.Input(framework::GradVarName("Out"))->dims().size(); + switch (rank) { + case 1: + CropGradFunction(context); + break; + case 2: + CropGradFunction(context); + break; + case 3: + CropGradFunction(context); + break; + case 4: + CropGradFunction(context); + break; + case 5: + CropGradFunction(context); + break; + case 6: + CropGradFunction(context); + break; + default: + PADDLE_THROW( + "CropOp only support tensors with no more than 6 dimensions."); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index ab1e1c101a10e09a81f7785d2f1514822e3bdf15..4b67887f3638f32a89d1a4fd1316c0596b444629 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -17,48 +17,142 @@ limitations under the License. */ namespace paddle { namespace operators { -class OnehotCrossEntropyOp : public framework::OperatorWithKernel { +class CrossEntropyOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto *X = ctx.Input("X"); - auto *label = ctx.Input("label"); - - PADDLE_ENFORCE_EQ(X->dims().size(), 2, "X's dimension must be 2."); - PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label's dimension must be 1."); - PADDLE_ENFORCE_EQ(X->dims()[0], label->dims()[0]); - ctx.Output("Y")->Resize({X->dims()[0]}); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); + PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null."); + + auto x_dims = ctx->GetInputDim("X"); + auto label_dims = ctx->GetInputDim("Label"); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); + PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2."); + PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0], + "The 1st dimension of Input(X) and Input(Label) should " + "be equal."); + if (ctx->Attrs().Get("softLabel")) { + PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1], + "If Attr(softLabel) == true, the 2nd dimension of " + "Input(X) and Input(Label) should be equal."); + } else { + PADDLE_ENFORCE_EQ(label_dims[1], 1, + "If Attr(softLabel) == false, the 2nd dimension of " + "Input(Label) should be 1."); + } + + ctx->SetOutputDim("Y", {x_dims[0], 1}); + ctx->ShareLoD("X", /*->*/ "Y"); + } + + // CrossEntropy's data type just determined by "X" + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("X")->type()); } }; -class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel { +class CrossEntropyGradientOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto dX = ctx.Output(framework::GradVarName("X")); - auto X = ctx.Input("X"); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), + "Input(Y@GRAD) shoudl be not null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Output(X@GRAD) should be not null."); + + auto x_dims = ctx->GetInputDim("X"); + auto label_dims = ctx->GetInputDim("Label"); + auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y")); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); + PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2."); + PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2."); + PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0], + "The 1st dimension of Input(X) and Input(Label) should " + "be equal."); + PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0], + "The 1st dimension of Input(X) and Input(Y@Grad) should " + "be equal."); + PADDLE_ENFORCE_EQ(dy_dims[1], 1, + "The 2nd dimension of Input(Y@Grad) should be 1."); + if (ctx->Attrs().Get("softLabel")) { + PADDLE_ENFORCE_EQ(x_dims[1], label_dims[1], + "When Attr(softLabel) == true, the 2nd dimension of " + "Input(X) and Input(Label) should be equal."); + } else { + PADDLE_ENFORCE_EQ(label_dims[1], 1, + "When Attr(softLabel) == false, the 2nd dimension of " + "Input(Label) should be 1."); + } + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + } - dX->Resize(X->dims()); + // CrossEntropy's data type just determined by "X" + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("X")->type()); } }; -class OnehotCrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { +class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { public: - OnehotCrossEntropyOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + CrossEntropyOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of OnehotCrossEntropyOp"); - AddInput("label", "The second input of OnehotCrossEntropyOp"); - AddOutput("Y", "The output of OnehotCrossEntropyOp"); + AddInput("X", + "(Tensor, default Tensor), a 2-D tensor with shape N x D, " + "where N is the batch size and D is the number of classes. " + "This input is a probability computed by the previous operator, " + "which is almost always the result of a softmax operator."); + AddInput( + "Label", + "(Tensor, default Tensor), the ground truth which is " + "a 2-D tensor. " + "When softLabel is set to false, `Label` is a Tensor with shape " + "[N x 1]. " + "When softLabel is set to true, `Label` is a Tensor " + "with shape [N x K]."); + AddOutput("Y", + "(Tensor, default Tensor), a 2-D tensor " + "with shape [N x 1]. The cross entropy loss."); + AddAttr( + "softLabel", + "(bool, default false), a flag to indicate whether to interpretate " + "the given labels as soft labels.") + .SetDefault(false); AddComment(R"DOC( -OnehotCrossEntropy Operator. +CrossEntropy Operator. + +It supports both standard cross-entropy and soft-label cross-entropy loss +computation. +1) One-hot cross-entropy: + softLabel = false, Label[i, 0] indicates the class index for sample i: + + Y[i] = -log(X[i, Label[i]]) + +2) Soft-label cross-entropy: + softLabel = true, Label[i, j] indicates the soft label of class j + for sample i: + + Y[i] = \sum_j{-Label[i, j] * log(X[i, j])} + + Please make sure that in this case the summuation of each row of Label + equals one. - Y[i] = -log(X[i][j]) +3) One-hot cross-entropy with vecterized Input(Label): + As a special case of 2), when each row of Input(Label) has only one + non-zero element (equals 1), soft-label cross-entropy degenerates to a + one-hot cross-entropy with one-hot label representation. +Both the input `X` and `Label` can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with input `X`. )DOC"); } }; @@ -66,10 +160,8 @@ OnehotCrossEntropy Operator. } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp, - ops::OnehotCrossEntropyOpMaker, onehot_cross_entropy_grad, - ops::OnehotCrossEntropyGradientOp); -REGISTER_OP_CPU_KERNEL(onehot_cross_entropy, - ops::OnehotCrossEntropyOpKernel); -REGISTER_OP_CPU_KERNEL(onehot_cross_entropy_grad, - ops::OnehotCrossEntropyGradientOpKernel); +REGISTER_OP(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker, + cross_entropy_grad, ops::CrossEntropyGradientOp); +REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel); +REGISTER_OP_CPU_KERNEL(cross_entropy_grad, + ops::CrossEntropyGradientOpKernel); diff --git a/paddle/operators/cross_entropy_op.cu b/paddle/operators/cross_entropy_op.cu index d999bfce58c8a6db5c811aad677c07094b881841..5e2024e0ea9040b758e1cec4dbaa4b329bbb727e 100644 --- a/paddle/operators/cross_entropy_op.cu +++ b/paddle/operators/cross_entropy_op.cu @@ -12,48 +12,12 @@ See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/framework/op_registry.h" -#include "paddle/platform/assert.h" +#include "paddle/operators/cross_entropy_op.h" namespace paddle { namespace operators { -using Tensor = framework::Tensor; - -template -__host__ __device__ T clipping_log(const T x) { - PADDLE_ASSERT(std::is_floating_point::value); - const T kApproInf = 1e20; - T v = log(x); - if (v == INFINITY) { - return kApproInf; - } - if (v == -INFINITY) { - return -kApproInf; - } - return v; -} - -template -__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, - const int N, const int D) { - // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file. - // CUDA_1D_KERNEL_LOOP(i, N) { - for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; - i += blockDim.x * gridDim.x) { - PADDLE_ASSERT(label[i] >= 0 && label[i] < D); - Y[i] = -clipping_log(X[i * D + label[i]]); - } -} - -// TODO(qingqing): make zero setting an common function. -template -__global__ void zero(T* X, const int N) { - for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; - i += blockDim.x * gridDim.x) { - X[i] = 0.0; - } -} +namespace { template __global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X, @@ -69,57 +33,73 @@ __global__ void CrossEntropyGradientKernel(T* dX, const T* dY, const T* X, } template -class OnehotCrossEntropyOpCUDAKernel : public framework::OpKernel { +__global__ void SoftCrossEntropyGradientKernel(T* dX, const T* dY, const T* X, + const T* label, const int N, + const int D) { + int ids = blockIdx.x * blockDim.x + threadIdx.x; + if (ids < N * D) { + int row_ids = ids / D; + dX[ids] = -label[ids] * dY[row_ids] / X[ids]; + } +} +} // namespace + +template +class CrossEntropyOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); - - auto X = ctx.Input("X"); - const T* Xdata = X->data(); - const int* label_data = ctx.Input("label")->data(); - auto Y = ctx.Output("Y"); - Y->mutable_data(ctx.GetPlace()); - T* Ydata = Y->data(); - - int N = X->dims()[0]; - int D = X->dims()[1]; - int block = 512; - int grid = (N + block - 1) / block; - // TODO(qingqing) launch kernel on specified stream - // base on ExecutionContext. - CrossEntropyKernel<<>>(Ydata, Xdata, label_data, N, D); + "This kernel only runs on GPU device."); + const Tensor* x = ctx.Input("X"); + const Tensor* label = ctx.Input("Label"); + Tensor* y = ctx.Output("Y"); + y->mutable_data(ctx.GetPlace()); + + math::CrossEntropyFunctor()( + ctx.device_context(), y, x, label, ctx.Attr("softLabel")); } }; template -class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel { +class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), - "It must use GPUPlace."); + "This kernel only runs on GPU device."); + + const Tensor* x = ctx.Input("X"); + const Tensor* label = ctx.Input("Label"); + Tensor* dx = ctx.Output(framework::GradVarName("X")); + dx->mutable_data(ctx.GetPlace()); - auto X = ctx.Input("X"); - auto dX = ctx.Output(framework::GradVarName("X")); - auto dY = ctx.Input(framework::GradVarName("Y")); - auto label = ctx.Input("label"); + const T* dy_data = + ctx.Input(framework::GradVarName("Y"))->data(); + T* dx_data = dx->mutable_data(ctx.GetPlace()); + const T* x_data = x->data(); - auto* dXdata = dX->template mutable_data(ctx.GetPlace()); - auto* dYdata = dY->template data(); - auto* Xdata = X->template data(); - auto* label_data = label->data(); + int batch_size = x->dims()[0]; + int class_num = x->dims()[1]; - int N = X->dims()[0]; - int D = X->dims()[1]; int block = 512; - int grid = (N * D + block - 1) / block; - zero<<>>(dXdata, N * D); - - grid = (N + block - 1) / block; - // TODO(qingqing): launch kernel on specified stream - // base on ExecutionContext. - CrossEntropyGradientKernel<<>>(dXdata, dYdata, Xdata, - label_data, N, D); + int grid = (batch_size * class_num + block - 1) / block; + + if (ctx.Attr("softLabel")) { + auto* label_data = label->data(); + SoftCrossEntropyGradientKernel<<< + grid, block, 0, reinterpret_cast( + ctx.device_context()) + .stream()>>>(dx_data, dy_data, x_data, label_data, + batch_size, class_num); + } else { + math::SetConstant(ctx.device_context(), dx, 0); + auto* label_data = label->data(); + grid = (batch_size + block - 1) / block; + CrossEntropyGradientKernel<<< + grid, block, 0, reinterpret_cast( + ctx.device_context()) + .stream()>>>(dx_data, dy_data, x_data, label_data, + batch_size, class_num); + } } }; @@ -127,7 +107,6 @@ class OnehotCrossEntropyGradientOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(onehot_cross_entropy, - ops::OnehotCrossEntropyOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(onehot_cross_entropy_grad, - ops::OnehotCrossEntropyGradientOpCUDAKernel); +REGISTER_OP_GPU_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel); +REGISTER_OP_GPU_KERNEL(cross_entropy_grad, + ops::CrossEntropyGradientOpCUDAKernel); diff --git a/paddle/operators/cross_entropy_op.h b/paddle/operators/cross_entropy_op.h index eb4d1348de1d940e2648c83c8ba94b289f10c5b2..d2d321aa7ed8e32cc19d5a171beea34d36195b10 100644 --- a/paddle/operators/cross_entropy_op.h +++ b/paddle/operators/cross_entropy_op.h @@ -13,83 +13,70 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/math/cross_entropy.h" +#include "paddle/operators/math/math_function.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; +template +using EigenMatrix = framework::EigenMatrix; template -inline T tolerable_value(const T x) { - static_assert(std::is_floating_point::value, - "tolerable_value works only on float, " - "double and double double."); - - const T kApproInf = 1e20; - - if (x == INFINITY) { - return kApproInf; - } - - if (x == -INFINITY) { - return -kApproInf; - } - - return x; -} - -template -class OnehotCrossEntropyOpKernel : public framework::OpKernel { +class CrossEntropyOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), - "It must use CPUPlace."); - - auto X = ctx.Input("X"); - const T* Xdata = X->data(); - const int* label_data = ctx.Input("label")->data(); - auto Y = ctx.Output("Y"); - - Y->mutable_data(ctx.GetPlace()); - - T* Ydata = Y->data(); - - int batch_size = X->dims()[0]; - int class_num = X->dims()[1]; - - for (int i = 0; i < batch_size; ++i) { - int index = i * class_num + label_data[i]; - Ydata[i] = -tolerable_value(std::log(Xdata[index])); - } + "This kernel only runs on CPU."); + const Tensor* x = ctx.Input("X"); + const Tensor* labels = ctx.Input("Label"); + Tensor* y = ctx.Output("Y"); + y->mutable_data(ctx.GetPlace()); + + math::CrossEntropyFunctor()( + ctx.device_context(), y, x, labels, ctx.Attr("softLabel")); } }; template -class OnehotCrossEntropyGradientOpKernel : public framework::OpKernel { +class CrossEntropyGradientOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), - "It must use CPUPlace."); - - auto X = ctx.Input("X"); - auto dX = ctx.Output(framework::GradVarName("X")); - auto dY = ctx.Input(framework::GradVarName("Y")); - auto label = ctx.Input("label"); - - auto* dXdata = dX->template mutable_data(ctx.GetPlace()); - auto* dYdata = dY->template data(); - auto* Xdata = X->template data(); - auto* label_data = label->data(); - - const int batch_size = X->dims()[0]; - const int class_num = X->dims()[1]; - - // TODO(qingqing): make zero setting an common function. - memset(dXdata, 0, sizeof(T) * batch_size * class_num); - for (int i = 0; i < batch_size; ++i) { - int index = i * class_num + label_data[i]; - dXdata[index] = -tolerable_value(dYdata[i] / Xdata[index]); + "This kernel only runs on CPU."); + const Tensor* x = ctx.Input("X"); + const Tensor* dy = ctx.Input(framework::GradVarName("Y")); + const Tensor* label = ctx.Input("Label"); + Tensor* dx = ctx.Output(framework::GradVarName("X")); + T* dx_data = dx->mutable_data(ctx.GetPlace()); + + int class_num = x->dims()[1]; + if (ctx.Attr("softLabel")) { + auto x_mat = EigenMatrix::From(*x); + auto dy_mat = EigenMatrix::From(*dy); + auto lbl_mat = EigenMatrix::From(*label); + auto dx_mat = EigenMatrix::From(*dx); + + dx_mat.device(ctx.GetEigenDevice()) = + -(lbl_mat * dy_mat.broadcast(Eigen::DSizes(1, class_num)) / + x_mat); + } else { + int batch_size = x->dims()[0]; + const T* dy_data = dy->data(); + const T* x_data = x->data(); + const int* label_data = label->data(); + + math::SetConstant(ctx.device_context(), dx, 0); + + for (int i = 0; i < batch_size; ++i) { + PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num); + int index = i * class_num + label_data[i]; + dx_data[index] = -dy_data[i] / x_data[index]; + } } } }; diff --git a/paddle/operators/detail/strided_memcpy.h b/paddle/operators/detail/strided_memcpy.h new file mode 100644 index 0000000000000000000000000000000000000000..b165224b37fb091c094a823179256c3dd40a37c9 --- /dev/null +++ b/paddle/operators/detail/strided_memcpy.h @@ -0,0 +1,93 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/ddim.h" +#include "paddle/memory/memcpy.h" +#include "paddle/platform/device_context.h" + +namespace paddle { +namespace operators { +namespace detail { + +template +struct StridedMemcpyFunctor; + +template +struct StridedMemcpyFunctor { + void operator()(const platform::DeviceContext& dev_ctx, const T* src, + framework::Dim<1> src_stride, framework::Dim<1> dst_dim, + framework::Dim<1> dst_stride, T* dst) const { + auto place = dev_ctx.GetPlace(); + if (platform::is_cpu_place(place)) { + auto& cpu_place = boost::get(place); + memory::Copy(cpu_place, dst, cpu_place, src, sizeof(T) * dst_dim.head); + } else { +#ifndef PADDLE_ONLY_CPU + auto& gpu_place = boost::get(place); + auto& cuda_ctx = + reinterpret_cast(dev_ctx); + memory::Copy(gpu_place, dst, gpu_place, src, sizeof(T) * dst_dim.head, + cuda_ctx.stream()); +#else + PADDLE_THROW("Paddle is not compiled with GPU"); +#endif + } + } +}; + +template +struct StridedMemcpyFunctor { + void operator()(const platform::DeviceContext& dev_ctx, const T* src, + framework::Dim src_stride, framework::Dim dst_dim, + framework::Dim dst_stride, T* dst) const { + for (int64_t i = 0; i < dst_dim.head; ++i) { + StridedMemcpyFunctor func; + func(dev_ctx, src, src_stride.tail, dst_dim.tail, dst_stride.tail, dst); + src += src_stride.head; + dst += dst_stride.head; + } + } +}; + +template +struct StridedCopyDimVisitor : public boost::static_visitor { + StridedCopyDimVisitor(const platform::DeviceContext& dev_ctx, const T* src, + const framework::DDim& src_stride, + const framework::DDim& dst_stride, T* dst) + : dev_ctx_(dev_ctx), + src_(src), + src_stride_(src_stride), + dst_stride_(dst_stride), + dst_(dst) {} + + template + void operator()(Dim dst_dim) const { + Dim src_stride = boost::get(src_stride_); + Dim dst_stride = boost::get(dst_stride_); + constexpr int dim = Dim::dimensions; + StridedMemcpyFunctor functor; + functor(dev_ctx_, src_, src_stride, dst_dim, dst_stride, dst_); + } + + const platform::DeviceContext& dev_ctx_; + const T* src_; + const framework::DDim& src_stride_; + const framework::DDim& dst_stride_; + T* dst_; +}; + +} // namespace detail +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/dropout_op.cc b/paddle/operators/dropout_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..a669b5cf00f1f4ad351486e2977bf8a76aa5bf62 --- /dev/null +++ b/paddle/operators/dropout_op.cc @@ -0,0 +1,105 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/dropout_op.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; + +class DropoutOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE_GE(ctx->Attrs().Get("dropout_prob"), 0); + PADDLE_ENFORCE_LE(ctx->Attrs().Get("dropout_prob"), 1); + + auto x_dims = ctx->GetInputDim("X"); + ctx->SetOutputDim("Out", x_dims); + if (ctx->Attrs().Get("is_training") == 1) { + ctx->SetOutputDim("Mask", x_dims); + } + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +template +class DropoutOpMaker : public framework::OpProtoAndCheckerMaker { + public: + DropoutOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddAttr("dropout_prob", "Probability of setting units to zero.") + .SetDefault(.5f); + AddAttr("is_training", "Whether in training phase.").SetDefault(true); + AddAttr("seed", "Dropout random seed.").SetDefault(0); + AddInput("X", "The input of dropout op."); + AddOutput("Out", "The output of dropout op."); + AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate(); + + AddComment(R"DOC( +Dropout Operator. + +'Dropout' refers to randomly dropping out units in a nerual network. It is a +regularization technique for reducing overfitting by preventing neuron +co-adaption during training. The dropout operator randomly set (according to +the given dropout probability) the outputs of some units to zero, while others +being set to their inputs. +)DOC"); + } +}; + +template +class DropoutOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE_EQ(ctx->Attrs().Get("is_training"), 1, + "GradOp is only callable when is_training is true"); + + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) must not be null."); + + PADDLE_ENFORCE_GE(ctx->Attrs().Get("dropout_prob"), 0); + PADDLE_ENFORCE_LE(ctx->Attrs().Get("dropout_prob"), 1); + auto x_dims = ctx->GetInputDim("X"); + auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); + PADDLE_ENFORCE_EQ(x_dims, out_dims, + "Dimensions of Input(X) and Out@Grad must be the same."); + auto mask_dims = ctx->GetInputDim("Mask"); + PADDLE_ENFORCE_EQ(x_dims, mask_dims, + "Dimensions of Input(X) and Mask must be the same."); + + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(dropout, ops::DropoutOp, ops::DropoutOpMaker, dropout_grad, + ops::DropoutOpGrad); +REGISTER_OP_CPU_KERNEL( + dropout, ops::CPUDropoutKernel); +REGISTER_OP_CPU_KERNEL( + dropout_grad, ops::DropoutGradKernel); diff --git a/paddle/operators/dropout_op.cu b/paddle/operators/dropout_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..30c769000f2b98c69eaa78a4c139630dd0956386 --- /dev/null +++ b/paddle/operators/dropout_op.cu @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include +#include +#include +#include +#include "paddle/operators/dropout_op.h" + +namespace paddle { +namespace operators { + +template +struct MaskGenerator { + AttrType dropout_prob; + int seed; + + __host__ __device__ MaskGenerator(AttrType dropout_prob, int seed) + : dropout_prob(dropout_prob), seed(seed) {} + + __host__ __device__ T operator()(const unsigned int n) const { + thrust::minstd_rand rng; + rng.seed(seed); + thrust::uniform_real_distribution dist(0, 1); + rng.discard(n); + if (dist(rng) < dropout_prob) { + return static_cast(0); + } else { + return static_cast(1); + } + } +}; + +// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT. +// Use std::random and thrust::random(thrust is a std library in CUDA) to +// implement uniform random. +template +class GPUDropoutKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input("X"); + auto* y = context.Output("Out"); + y->mutable_data(context.GetPlace()); + AttrType dropout_prob = context.Attr("dropout_prob"); + + auto X = EigenMatrix::Reshape(*x, 1); + auto Y = EigenMatrix::Reshape(*y, 1); + + auto place = context.GetEigenDevice(); + if (context.Attr("is_training")) { + auto* mask = context.Output("Mask"); + auto* mask_data = mask->mutable_data(context.GetPlace()); + int size = framework::product(mask->dims()); + int seed = context.Attr("seed"); + thrust::counting_iterator index_sequence_begin(0); + thrust::transform(index_sequence_begin, index_sequence_begin + size, + thrust::device_ptr(mask_data), + MaskGenerator(dropout_prob, seed)); + auto M = EigenMatrix::Reshape(*mask, 1); + Y.device(place) = X * M; + } else { + Y.device(place) = X * dropout_prob; + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + dropout, ops::GPUDropoutKernel); +REGISTER_OP_GPU_KERNEL( + dropout_grad, ops::DropoutGradKernel); diff --git a/paddle/operators/dropout_op.h b/paddle/operators/dropout_op.h new file mode 100644 index 0000000000000000000000000000000000000000..745525fe81dadb22cbb64d66203f5a75608d3718 --- /dev/null +++ b/paddle/operators/dropout_op.h @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenMatrix = framework::EigenMatrix; + +template +class CPUDropoutKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input("X"); + auto* y = context.Output("Out"); + const auto* x_data = x->data(); + auto* y_data = y->mutable_data(context.GetPlace()); + AttrType dropout_prob = context.Attr("dropout_prob"); + + if (context.Attr("is_training")) { + auto* mask = context.Output("Mask"); + auto* mask_data = mask->mutable_data(context.GetPlace()); + int seed = context.Attr("seed"); + std::minstd_rand engine; + engine.seed(seed); + std::uniform_real_distribution dist(0, 1); + size_t size = framework::product(mask->dims()); + for (size_t i = 0; i < size; ++i) { + if (dist(engine) < dropout_prob) { + mask_data[i] = 0; + y_data[i] = 0; + } else { + mask_data[i] = 1; + y_data[i] = x_data[i]; + } + } + } else { + auto X = EigenMatrix::Reshape(*x, 1); + auto Y = EigenMatrix::Reshape(*y, 1); + auto place = context.GetEigenDevice(); + Y.device(place) = X * dropout_prob; + } + } +}; + +template +class DropoutGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + PADDLE_ENFORCE(context.Attr("is_training"), + "GradOp is only callable when is_training is true"); + + auto* grad_x = context.Output(framework::GradVarName("X")); + auto* grad_y = context.Input(framework::GradVarName("Out")); + auto* mask = context.Input("Mask"); + grad_x->mutable_data(context.GetPlace()); + + auto M = EigenMatrix::Reshape(*mask, 1); + auto dX = EigenMatrix::Reshape(*grad_x, 1); + auto dY = EigenMatrix::Reshape(*grad_y, 1); + + auto place = context.GetEigenDevice(); + dX.device(place) = dY * M; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/elementwise_add_op.cc b/paddle/operators/elementwise_add_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..d9bc80c869c023caebf0b45ed24f2def3f0b1dd8 --- /dev/null +++ b/paddle/operators/elementwise_add_op.cc @@ -0,0 +1,40 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/elementwise_add_op.h" +#include "paddle/operators/elementwise_op.h" + +namespace paddle { +namespace operators { +class ElementwiseAddOpMaker : public ElementwiseOpMaker { + public: + ElementwiseAddOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : ElementwiseOpMaker(proto, op_checker) { + SetComment("add", "Out = X + Y"); + AddComment(comment_); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(elementwise_add, ops::ElementwiseOp, ops::ElementwiseAddOpMaker, + elementwise_add_grad, ops::ElementwiseOpGrad); +REGISTER_OP_CPU_KERNEL( + elementwise_add, + ops::ElementwiseAddKernel); +REGISTER_OP_CPU_KERNEL( + elementwise_add_grad, + ops::ElementwiseAddGradKernel); diff --git a/paddle/operators/elementwise_add_op.cu b/paddle/operators/elementwise_add_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..85d063a76b5592c716a5bdf23a0993976abc6ae4 --- /dev/null +++ b/paddle/operators/elementwise_add_op.cu @@ -0,0 +1,25 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/elementwise_add_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL( + elementwise_add, + ops::ElementwiseAddKernel); +REGISTER_OP_GPU_KERNEL( + elementwise_add_grad, + ops::ElementwiseAddGradKernel); diff --git a/paddle/operators/elementwise_add_op.h b/paddle/operators/elementwise_add_op.h new file mode 100644 index 0000000000000000000000000000000000000000..f04fe3ec6069ab1bf227be6a3a5c10ee908e4824 --- /dev/null +++ b/paddle/operators/elementwise_add_op.h @@ -0,0 +1,115 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/operators/elementwise_op_function.h" + +namespace paddle { +namespace operators { + +template +class ElementwiseAddKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseCompute(ctx); + } +}; + +template +struct ElementwiseAddGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { + auto dz_e = framework::EigenVector::Flatten(*dz); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e; + } + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = dz_e; + } + } +}; + +template +struct ElementwiseAddOneGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { + auto dz_e = framework::EigenVector::Flatten(*dz); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e; + } + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = dz_e.sum(); + } + } +}; + +template +struct ElementwiseAddBroadCastGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) { + auto dz_e = framework::EigenVector::Flatten(*dz); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = dz_e.reshape(Eigen::DSizes(pre, n)) + .sum(Eigen::array{{0}}); + } + } +}; + +template +struct ElementwiseAddBroadCast2GradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n, + Post post) { + auto dz_e = framework::EigenVector::Flatten(*dz); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = dz_e.reshape(Eigen::DSizes(pre, n, post)) + .sum(Eigen::array{{0, 2}}); + } + } +}; + +template +class ElementwiseAddGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseGradCompute, + ElementwiseAddOneGradFunctor, + ElementwiseAddBroadCastGradFunctor, + ElementwiseAddBroadCast2GradFunctor>(ctx); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/elementwise_div_op.cc b/paddle/operators/elementwise_div_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..3f56344d0007b5f14fd9b5b9b44a9b29d3c42f2a --- /dev/null +++ b/paddle/operators/elementwise_div_op.cc @@ -0,0 +1,41 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/elementwise_div_op.h" +#include "paddle/operators/elementwise_op.h" + +namespace paddle { +namespace operators { +class ElementwiseDivOpMaker : public ElementwiseOpMaker { + public: + ElementwiseDivOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : ElementwiseOpMaker(proto, op_checker) { + SetComment("Div", "Out = X / Y"); + AddComment(comment_); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(elementwise_div, ops::ElementwiseOp, ops::ElementwiseDivOpMaker, + elementwise_div_grad, ops::ElementwiseOpGrad); +REGISTER_OP_CPU_KERNEL( + elementwise_div, + ops::ElementwiseDivKernel); +REGISTER_OP_CPU_KERNEL( + elementwise_div_grad, + ops::ElementwiseDivGradKernel); diff --git a/paddle/operators/elementwise_div_op.cu b/paddle/operators/elementwise_div_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..b96aa31748c77f0d07f9bb7fb19235239983abd5 --- /dev/null +++ b/paddle/operators/elementwise_div_op.cu @@ -0,0 +1,25 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/elementwise_div_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL( + elementwise_div, + ops::ElementwiseDivKernel); +REGISTER_OP_GPU_KERNEL( + elementwise_div_grad, + ops::ElementwiseDivGradKernel); diff --git a/paddle/operators/elementwise_div_op.h b/paddle/operators/elementwise_div_op.h new file mode 100644 index 0000000000000000000000000000000000000000..8946ff3d25c2aff3dc3aa69368f0083371cd2fef --- /dev/null +++ b/paddle/operators/elementwise_div_op.h @@ -0,0 +1,117 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/operators/elementwise_op_function.h" + +namespace paddle { +namespace operators { + +template +class ElementwiseDivKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseCompute(ctx); + } +}; + +template +struct ElementwiseDivGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { + auto y_e = framework::EigenVector::Flatten(*y); + auto z_e = framework::EigenVector::Flatten(*z); + auto dz_e = framework::EigenVector::Flatten(*dz); + + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e / y_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = -1.0 * dz_e * z_e / y_e; + } + } +}; + +template +struct ElementwiseDivBroadCastGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n)) + .broadcast(Eigen::DSizes(pre, 1)) + .reshape(Eigen::DSizes(x_e.size())); + + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e / y_e_bcast; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast)) + .reshape(Eigen::DSizes(pre, n)) + .sum(Eigen::array{{0}}); + } + } +}; + +template +struct ElementwiseDivBroadCast2GradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n, + Post post) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) + .broadcast(Eigen::DSizes(pre, 1, post)) + .reshape(Eigen::DSizes(x_e.size())); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e / y_e_bcast; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast)) + .reshape(Eigen::DSizes(pre, n, post)) + .sum(Eigen::array{{0, 2}}); + } + } +}; + +template +class ElementwiseDivGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseGradCompute, + ElementwiseDivGradFunctor, + ElementwiseDivBroadCastGradFunctor, + ElementwiseDivBroadCast2GradFunctor>(ctx); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/elementwise_mul_op.cc b/paddle/operators/elementwise_mul_op.cc index 1742925545d29df5d7df719faaea3b754680ab61..da7765aa6a7a81c9e0b4f462022cad54c16aec47 100644 --- a/paddle/operators/elementwise_mul_op.cc +++ b/paddle/operators/elementwise_mul_op.cc @@ -13,97 +13,32 @@ limitations under the License. */ #include "paddle/operators/elementwise_mul_op.h" +#include "paddle/operators/elementwise_op.h" namespace paddle { namespace operators { -using Tensor = framework::Tensor; - -class ElementWiseMulOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null"); - auto x_dim = ctx.Input("X")->dims(); - auto y_dim = ctx.Input("Y")->dims(); - PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(), - "Rank of first input must >= rank of second input.") - ctx.Output("Out")->Resize(x_dim); - } -}; - -class ElementWiseMulOpMaker : public framework::OpProtoAndCheckerMaker { +class ElementwiseMulOpMaker : public ElementwiseOpMaker { public: - ElementWiseMulOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of elementwise mul op"); - AddInput("Y", "The second input of elementwise mul op"); - AddAttr("axis", - R"DOC( -When shape(Y) does not equal shape(X),Y will be broadcasted -to match the shape of X and axis should be dimension index Y in X - )DOC") - .SetDefault(-1) - .EqualGreaterThan(-1); - - AddOutput("Out", "The output of elementwise mul op"); - AddComment(R"DOC( -Limited elementwise multiple operator.The equation is: Out = X ⊙ Y. -1. The shape of Y should be same with X or -2. Y's shape is a subset of X. - Y will be broadcasted to match the shape of X and axis should be dimension index Y in X. - example: - shape(X) = (2, 3, 4, 5), shape(Y) = (,) - shape(X) = (2, 3, 4, 5), shape(Y) = (5,) - shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) - shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 - shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 -)DOC"); + ElementwiseMulOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : ElementwiseOpMaker(proto, op_checker) { + SetComment("Mul", "Out = X ⊙ Y"); + AddComment(comment_); } }; -class ElementWiseMulOpGrad : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null"); - - auto x_dims = ctx.Input("X")->dims(); - auto y_dims = ctx.Input("Y")->dims(); - auto out_dims = ctx.Input(framework::GradVarName("Out"))->dims(); - auto *x_grad = ctx.Output(framework::GradVarName("X")); - auto *y_grad = ctx.Output(framework::GradVarName("Y")); - - PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), - "Rank of first input must >= rank of second input.") - - if (x_grad) { - x_grad->Resize(x_dims); - } - - if (y_grad) { - y_grad->Resize(y_dims); - } - } -}; } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(elementwise_mul, ops::ElementWiseMulOp, ops::ElementWiseMulOpMaker, - elementwise_mul_grad, ops::ElementWiseMulOpGrad); +REGISTER_OP(elementwise_mul, ops::ElementwiseOp, ops::ElementwiseMulOpMaker, + elementwise_mul_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_mul, - ops::ElementWiseMulKernel); + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel); REGISTER_OP_CPU_KERNEL( elementwise_mul_grad, - ops::ElementWiseMulGradKernel); + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel); diff --git a/paddle/operators/elementwise_mul_op.cu b/paddle/operators/elementwise_mul_op.cu index 56f2087c22c6c599a3c5aef36eb0fe3eac295bef..056f081d3e6ac349978ff00689700c035bed8e39 100644 --- a/paddle/operators/elementwise_mul_op.cu +++ b/paddle/operators/elementwise_mul_op.cu @@ -19,7 +19,9 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( elementwise_mul, - ops::ElementWiseMulKernel); + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel); REGISTER_OP_GPU_KERNEL( elementwise_mul_grad, - ops::ElementWiseMulGradKernel); + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel); diff --git a/paddle/operators/elementwise_mul_op.h b/paddle/operators/elementwise_mul_op.h index e9ed6791799240039f9af42c1a4339be7126ee65..4469b07eaa08a3b011a88e58f1d645dd30b10ced 100644 --- a/paddle/operators/elementwise_mul_op.h +++ b/paddle/operators/elementwise_mul_op.h @@ -13,173 +13,104 @@ limitations under the License. */ #pragma once -#include -#include "paddle/framework/eigen.h" -#include "paddle/framework/op_registry.h" -#include "paddle/operators/math/math_function.h" +#include "paddle/operators/elementwise_op_function.h" namespace paddle { namespace operators { -/* - * Out = X ⊙ Y - * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 - * pre=2, n=3*4, post=5 - * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5) - * pre=2*3, n=4*5, post=1 - */ - -inline void get_mid_dims(const framework::DDim& x_dims, - const framework::DDim& y_dims, const int axis, - int& pre, int& n, int& post) { - pre = 1; - n = 1; - post = 1; - for (int i = 0; i < axis; ++i) { - pre *= x_dims[i]; - } - - for (int i = 0; i < y_dims.size(); ++i) { - PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i], - "Broadcast dimension mismatch."); - n *= y_dims[i]; - } - - for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) { - post *= x_dims[i]; - } -} template -class ElementWiseMulKernel : public framework::OpKernel { +class ElementwiseMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - using Tensor = framework::Tensor; - - auto* x = ctx.Input("X"); - auto* y = ctx.Input("Y"); - auto* z = ctx.Output("Out"); - z->mutable_data(ctx.GetPlace()); + ElementwiseCompute(ctx); + } +}; +template +struct ElementwiseMulGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { auto x_e = framework::EigenVector::Flatten(*x); auto y_e = framework::EigenVector::Flatten(*y); - auto z_e = framework::EigenVector::Flatten(*z); + auto dz_e = framework::EigenVector::Flatten(*dz); - auto x_dims = x->dims(); - auto y_dims = y->dims(); - PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), - "Rank of first input must >= rank of second input.") - - if (x_dims == y_dims || product(y_dims) == 1) { - z_e.device(ctx.GetEigenDevice()) = x_e * y_e; - return; + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e * y_e; } - int axis = ctx.Attr("axis"); - axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); - PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), - "Axis should be in range [0, x_dims)"); - - int pre, n, post; - get_mid_dims(x_dims, y_dims, axis, pre, n, post); - if (post == 1) { - auto y_bcast = y_e.reshape(Eigen::DSizes(1, n)) - .broadcast(Eigen::DSizes(pre, 1)) - .reshape(Eigen::DSizes(x_e.size())); - z_e.device(ctx.GetEigenDevice()) = x_e * y_bcast; - return; - } else { - auto y_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) - .broadcast(Eigen::DSizes(pre, 1, post)) - .reshape(Eigen::DSizes(x_e.size())); - z_e.device(ctx.GetEigenDevice()) = x_e * y_bcast; - return; + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = x_e * dz_e; } } }; -template -class ElementWiseMulGradKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& ctx) const override { - using Tensor = framework::Tensor; - - auto* x = ctx.Input("X"); - auto* y = ctx.Input("Y"); - auto* dout = ctx.Input(framework::GradVarName("Out")); - +template +struct ElementwiseMulBroadCastGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) { auto x_e = framework::EigenVector::Flatten(*x); auto y_e = framework::EigenVector::Flatten(*y); - auto dout_e = framework::EigenVector::Flatten(*dout); + auto dz_e = framework::EigenVector::Flatten(*dz); - auto x_dims = x->dims(); - auto y_dims = y->dims(); + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n)) + .broadcast(Eigen::DSizes(pre, 1)) + .reshape(Eigen::DSizes(x_e.size())); - auto* dx = ctx.Output(framework::GradVarName("X")); - auto* dy = ctx.Output(framework::GradVarName("Y")); if (dx) { - dx->mutable_data(ctx.GetPlace()); + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e * y_e_bcast; } + if (dy) { - dy->mutable_data(ctx.GetPlace()); + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (x_e * dz_e) + .reshape(Eigen::DSizes(pre, n)) + .sum(Eigen::array{{0}}); } + } +}; - if (x_dims == y_dims || product(y_dims) == 1) { - if (dx) { - auto dx_e = framework::EigenVector::Flatten(*dx); - dx_e.device(ctx.GetEigenDevice()) = dout_e * y_e; - } - - if (dy) { - auto dy_e = framework::EigenVector::Flatten(*dy); - dy_e.device(ctx.GetEigenDevice()) = x_e * dout_e; - } - return; +template +struct ElementwiseMulBroadCast2GradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n, + Post post) { + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dz_e = framework::EigenVector::Flatten(*dz); + + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) + .broadcast(Eigen::DSizes(pre, 1, post)) + .reshape(Eigen::DSizes(x_e.size())); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e * y_e_bcast; } - int axis = ctx.Attr("axis"); - axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); - - int pre, n, post; - get_mid_dims(x_dims, y_dims, axis, pre, n, post); - - // TODO(gongweibao): wrap reshape to a function. - if (post == 1) { - auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n)) - .broadcast(Eigen::DSizes(pre, 1)) - .reshape(Eigen::DSizes(x_e.size())); - if (dx) { - auto dx_e = framework::EigenVector::Flatten(*dx); - dx_e.device(ctx.GetEigenDevice()) = dout_e * y_e_bcast; - } - - if (dy) { - auto dy_e = framework::EigenVector::Flatten(*dy); - dy_e.device(ctx.GetEigenDevice()) = - (x_e * dout_e) - .reshape(Eigen::DSizes(pre, n)) - .sum(Eigen::array{{0}}); - } - return; - } else { - auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) - .broadcast(Eigen::DSizes(pre, 1, post)) - .reshape(Eigen::DSizes(x_e.size())); - if (dx) { - auto dx_e = framework::EigenVector::Flatten(*dx); - dx_e.device(ctx.GetEigenDevice()) = dout_e * y_e_bcast; - } - - if (dy) { - auto dy_e = framework::EigenVector::Flatten(*dy); - dy_e.device(ctx.GetEigenDevice()) = - (x_e * dout_e) - .reshape(Eigen::DSizes(pre, n, post)) - .sum(Eigen::array{{0, 2}}); - } - return; + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (x_e * dz_e) + .reshape(Eigen::DSizes(pre, n, post)) + .sum(Eigen::array{{0, 2}}); } } }; +template +class ElementwiseMulGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseGradCompute, + ElementwiseMulGradFunctor, + ElementwiseMulBroadCastGradFunctor, + ElementwiseMulBroadCast2GradFunctor>(ctx); + } +}; + } // namespace operators } // namespace paddle diff --git a/paddle/operators/elementwise_op.h b/paddle/operators/elementwise_op.h new file mode 100644 index 0000000000000000000000000000000000000000..3082f37422faa990bbf03c8a1a87b025d481a290 --- /dev/null +++ b/paddle/operators/elementwise_op.h @@ -0,0 +1,133 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/framework/operator.h" + +namespace paddle { +namespace operators { + +class ElementwiseOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + using Tensor = framework::Tensor; + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of elementwise op should not be null"); + PADDLE_ENFORCE(ctx->HasInput("Y"), + "Input(Y) of elementwise op should not be null"); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of elementwise op should not be null."); + + auto x_dim = ctx->GetInputDim("X"); + auto y_dim = ctx->GetInputDim("Y"); + PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(), + "Rank of first input must >= rank of second input.") + ctx->SetOutputDim("Out", x_dim); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ElementwiseOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", R"DOC( +The first input of elementwise op, it's a tensor of any dimensions. +)DOC"); + AddInput("Y", R"DOC( +The sencond input of elementwise op, it's a tensor and it's dimensions +must be small or equal to X's dimensions. +)DOC"); + AddAttr("axis", + R"DOC( +When the shape(Y) does not equal the shape(X),Y will be broadcasted +to match the shape of X and axis should be dimension index Y in X + )DOC") + .SetDefault(-1) + .EqualGreaterThan(-1); + + AddOutput("Out", "The output of elementwise op"); + comment_ = R"DOC( +Limited elementwise {name} operator.The equation is: Out = {equation}. +1. The shape of Y should be same with X or +2. Y's shape is a subset of X. + Y will be broadcasted to match the shape of X and axis should be dimension index Y in X. + + example: + shape(X) = (2, 3, 4, 5), shape(Y) = (,) + shape(X) = (2, 3, 4, 5), shape(Y) = (5,) + shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) + shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 + shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 + +Both the input X and Y can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with input X. +)DOC"; + AddComment(comment_); + } + + protected: + std::string comment_; + + void Replace(std::string& src, std::string from, std::string to) { + std::size_t len_from = std::strlen(from.c_str()); + std::size_t len_to = std::strlen(to.c_str()); + for (std::size_t pos = src.find(from); pos != std::string::npos; + pos = src.find(from, pos + len_to)) { + src.replace(pos, len_from, to); + } + } + + void SetComment(std::string name, std::string equation) { + Replace(comment_, "{name}", name); + Replace(comment_, "{equation}", equation); + } +}; + +class ElementwiseOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + using Tensor = framework::Tensor; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); + auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); + + PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), + "Rank of first input must >= rank of second input.") + + auto x_grad_name = framework::GradVarName("X"); + auto y_grad_name = framework::GradVarName("Y"); + if (ctx->HasOutput(x_grad_name)) { + ctx->SetOutputDim(x_grad_name, x_dims); + } + if (ctx->HasOutput(y_grad_name)) { + ctx->SetOutputDim(y_grad_name, y_dims); + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/elementwise_op_function.h b/paddle/operators/elementwise_op_function.h new file mode 100644 index 0000000000000000000000000000000000000000..3eb97f60b59848d23bcd15ea1e3d2f21b721f6a4 --- /dev/null +++ b/paddle/operators/elementwise_op_function.h @@ -0,0 +1,200 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/framework/operator.h" + +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +/* + * Out = X ⊙ Y + * If Y's shape does not match X' shape, they will be reshaped. + * For example: + * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 + * pre=2, n=3*4, post=5 + * x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5) + * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5) + * pre=2*3, n=4*5, post=1 + * x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20) + */ +inline void get_mid_dims(const framework::DDim& x_dims, + const framework::DDim& y_dims, const int axis, + int& pre, int& n, int& post) { + pre = 1; + n = 1; + post = 1; + for (int i = 0; i < axis; ++i) { + pre *= x_dims[i]; + } + + for (int i = 0; i < y_dims.size(); ++i) { + PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i], + "Broadcast dimension mismatch."); + n *= y_dims[i]; + } + + for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) { + post *= x_dims[i]; + } +} + +#define EIGEN_FUNCTOR(name, eigen_op) \ + struct Eigen##name##Functor { \ + template \ + inline void Run(const framework::Tensor* x, const framework::Tensor* y, \ + framework::Tensor* z, \ + const framework::ExecutionContext& ctx) { \ + auto x_e = framework::EigenVector::Flatten(*x); \ + auto y_e = framework::EigenVector::Flatten(*y); \ + auto z_e = framework::EigenVector::Flatten(*z); \ + z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_e); \ + } \ + template \ + inline void RunBroadCast(const framework::Tensor* x, \ + const framework::Tensor* y, framework::Tensor* z, \ + const framework::ExecutionContext& ctx, int pre, \ + int n) { \ + auto x_e = framework::EigenVector::Flatten(*x); \ + auto y_e = framework::EigenVector::Flatten(*y); \ + auto z_e = framework::EigenVector::Flatten(*z); \ + auto y_bcast = y_e.reshape(Eigen::DSizes(1, n)) \ + .broadcast(Eigen::DSizes(pre, 1)) \ + .reshape(Eigen::DSizes(x_e.size())); \ + z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_bcast); \ + } \ + template \ + inline void RunBroadCast2(const framework::Tensor* x, \ + const framework::Tensor* y, \ + framework::Tensor* z, \ + const framework::ExecutionContext& ctx, int pre, \ + int n, int post) { \ + auto x_e = framework::EigenVector::Flatten(*x); \ + auto y_e = framework::EigenVector::Flatten(*y); \ + auto z_e = framework::EigenVector::Flatten(*z); \ + auto y_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) \ + .broadcast(Eigen::DSizes(pre, 1, post)) \ + .reshape(Eigen::DSizes(x_e.size())); \ + z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_bcast); \ + } \ + } + +template +void ElementwiseCompute(const framework::ExecutionContext& ctx) { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + + auto x_dims = x->dims(); + auto y_dims = y->dims(); + PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), + "Rank of first input must >= rank of second input.") + + if (x_dims == y_dims || product(y_dims) == 1) { + functor f; + f.template Run(x, y, z, ctx); + return; + } + + int axis = ctx.Attr("axis"); + axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); + PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), + "Axis should be in range [0, x_dims)"); + + int pre, n, post; + get_mid_dims(x_dims, y_dims, axis, pre, n, post); + if (post == 1) { + functor f; + f.template RunBroadCast(x, y, z, ctx, pre, n); + return; + } else { + functor f; + f.template RunBroadCast2(x, y, z, ctx, pre, n, post); + return; + } +} + +#define EIGEN_ADD(x, y) ((x) + (y)) +EIGEN_FUNCTOR(Add, EIGEN_ADD); + +#define EIGEN_SUB(x, y) ((x) - (y)) +EIGEN_FUNCTOR(Sub, EIGEN_SUB); + +#define EIGEN_MUL(x, y) ((x) * (y)) +EIGEN_FUNCTOR(Mul, EIGEN_MUL); + +#define EIGEN_DIV(x, y) ((x) / (y)) +EIGEN_FUNCTOR(Div, EIGEN_DIV); + +template +void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* out = ctx.Input("Out"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + + auto place = ctx.GetEigenDevice(); + + auto x_dims = x->dims(); + auto y_dims = y->dims(); + + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + if (dx) { + dx->mutable_data(ctx.GetPlace()); + } + if (dy) { + dy->mutable_data(ctx.GetPlace()); + } + + if (x_dims == y_dims) { + functor f; + f(place, x, y, out, dx, dy, dout); + return; + } + + if (product(y_dims) == 1) { + functor1 f; + f(place, x, y, out, dx, dy, dout); + return; + } + + int axis = ctx.Attr("axis"); + axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); + + int pre, n, post; + get_mid_dims(x_dims, y_dims, axis, pre, n, post); + + if (post == 1) { + broadcastfunctor f; + f(place, x, y, out, dx, dy, dout, pre, n); + return; + } else { + broadcast2functor f; + f(place, x, y, out, dx, dy, dout, pre, n, post); + return; + } +} +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/elementwise_sub_op.cc b/paddle/operators/elementwise_sub_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..3e4f98fdb35b148931a67d511fe41958eb523f99 --- /dev/null +++ b/paddle/operators/elementwise_sub_op.cc @@ -0,0 +1,40 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/elementwise_sub_op.h" +#include "paddle/operators/elementwise_op.h" + +namespace paddle { +namespace operators { +class ElementwiseSubOpMaker : public ElementwiseOpMaker { + public: + ElementwiseSubOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : ElementwiseOpMaker(proto, op_checker) { + SetComment("Sub", "Out = X - Y"); + AddComment(comment_); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(elementwise_sub, ops::ElementwiseOp, ops::ElementwiseSubOpMaker, + elementwise_sub_grad, ops::ElementwiseOpGrad); +REGISTER_OP_CPU_KERNEL( + elementwise_sub, + ops::ElementwiseSubKernel); +REGISTER_OP_CPU_KERNEL( + elementwise_sub_grad, + ops::ElementwiseSubGradKernel); diff --git a/paddle/operators/elementwise_sub_op.cu b/paddle/operators/elementwise_sub_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..0efb92fce9975ed9fa029a3ce919589d09efb0d7 --- /dev/null +++ b/paddle/operators/elementwise_sub_op.cu @@ -0,0 +1,25 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/elementwise_sub_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL( + elementwise_sub, + ops::ElementwiseSubKernel); +REGISTER_OP_GPU_KERNEL( + elementwise_sub_grad, + ops::ElementwiseSubGradKernel); diff --git a/paddle/operators/elementwise_sub_op.h b/paddle/operators/elementwise_sub_op.h new file mode 100644 index 0000000000000000000000000000000000000000..3f40c1c5bcea5e8473765b039de4ee2a16054f0c --- /dev/null +++ b/paddle/operators/elementwise_sub_op.h @@ -0,0 +1,116 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/operators/elementwise_op_function.h" + +namespace paddle { +namespace operators { + +template +class ElementwiseSubKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseCompute(ctx); + } +}; + +template +struct ElementwiseSubGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { + auto dz_e = framework::EigenVector::Flatten(*dz); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e; + } + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (-1.0) * dz_e; + } + } +}; + +template +struct ElementwiseSubOneGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { + auto dz_e = framework::EigenVector::Flatten(*dz); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e; + } + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (-1.0) * dz_e.sum(); + } + } +}; + +template +struct ElementwiseSubBroadCastGradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) { + auto dz_e = framework::EigenVector::Flatten(*dz); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (-1.0) * + dz_e.reshape(Eigen::DSizes(pre, n)) + .sum(Eigen::array{{0}}); + } + } +}; + +template +struct ElementwiseSubBroadCast2GradFunctor { + template + void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n, + Post post) { + auto dz_e = framework::EigenVector::Flatten(*dz); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(d) = dz_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(d) = (-1.0) * + dz_e.reshape(Eigen::DSizes(pre, n, post)) + .sum(Eigen::array{{0, 2}}); + } + } +}; + +template +class ElementwiseSubGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + ElementwiseGradCompute, + ElementwiseSubOneGradFunctor, + ElementwiseSubBroadCastGradFunctor, + ElementwiseSubBroadCast2GradFunctor>(ctx); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/fc_op.cc b/paddle/operators/fc_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..7c422c81fc479fa2e317bdee1b66017096381d27 --- /dev/null +++ b/paddle/operators/fc_op.cc @@ -0,0 +1,200 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/framework/op_registry.h" +#include "paddle/operators/net_op.h" + +namespace paddle { +namespace operators { + +class FCOp : public NetOp { + public: + FCOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + PADDLE_ENFORCE(!Inputs("X").empty(), + "Inputs(X) of FCOp should not be null."); + PADDLE_ENFORCE(!Inputs("W").empty(), + "Inputs(W) of FCOp should not be null."); + PADDLE_ENFORCE(!Outputs("MulOut").empty(), + "Outputs(MulOut) of FCOp should not be null."); + PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName, + "Output(Out) of FCOp should not be null."); + + auto x = Inputs("X"); + auto w = Inputs("W"); + auto mul_out = Outputs("MulOut"); + PADDLE_ENFORCE_EQ( + x.size(), w.size(), + "The size of inputs X(%d) should be the same as that of weights W(%d).", + x.size(), w.size()); + PADDLE_ENFORCE_EQ(mul_out.size(), x.size(), + "The size of intermediate mul_out(%d) should be the same " + "as that of inputs X(%d).", + mul_out.size(), x.size()); + + size_t n = x.size(); + PADDLE_ENFORCE_GE(n, static_cast(1), + "The size of inputs X(%d) should be no less than 1.", n); + + auto x_num_col_dims = Attr>("xNumColDims"); + + // Set all values or set no values (use the default value) + if (!x_num_col_dims.empty()) { + PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n, + "The size of attribute xNumColDims(%d) should be the " + "same as that of inputs X(%d).", + x_num_col_dims.size(), n); + } else { + x_num_col_dims.resize(n); + for (size_t i = 0; i < n; i++) { + x_num_col_dims[i] = 1; + } + } + + // mul_out[i] = X[i] * W[i] + for (size_t i = 0; i < n; i++) { + framework::AttributeMap mul_attr; + mul_attr["x_num_col_dims"] = static_cast(x_num_col_dims[i]); + mul_attr["y_num_col_dims"] = static_cast(1); + AppendOp( + framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}}, + {{"Out", {mul_out[i]}}}, mul_attr)); + } + + // sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1] + auto sum_out = mul_out[0]; + if (n > 1) { + PADDLE_ENFORCE_NE(Output("SumOut"), framework::kEmptyVarName, + "Output(SumOut) of FCOp should not be null when the " + "size of Inputs(X) > 1."); + + sum_out = Output("SumOut"); + AppendOp(framework::OpRegistry::CreateOp("sum", {{"X", {mul_out}}}, + {{"Out", {sum_out}}}, {})); + } else { + if (Output("SumOut") != framework::kEmptyVarName) { + this->Rename(Output("SumOut"), framework::kEmptyVarName); + } + } + + // add_out = sum_out + b + auto b = Input("B"); + auto add_out = sum_out; + if (b != framework::kEmptyVarName) { + PADDLE_ENFORCE_NE( + Output("AddOut"), framework::kEmptyVarName, + "Output(AddOut) of FCOp should not be null when Input(B) is set."); + + add_out = Output("AddOut"); + AppendOp(framework::OpRegistry::CreateOp( + "elementwise_add", {{"X", {sum_out}}, {"Y", {Input("B")}}}, + {{"Out", {add_out}}}, {})); + } else { + if (Output("AddOut") != framework::kEmptyVarName) { + this->Rename(Output("AddOut"), framework::kEmptyVarName); + } + } + + auto activation = Attr("activation"); + AppendOp(framework::OpRegistry::CreateOp(activation, {{"X", {add_out}}}, + {{"Y", {Output("Out")}}}, {})); + CompleteAddOp(false); + } +}; + +class FCOpMaker : public framework::OpProtoAndCheckerMaker { + public: + FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(A vector of Tensors) each input Tensor can be of arbitrary " + "dimension, and will be reshaped to a 2-D matrix of size " + "(minibatch, number_of_input_features) according to attribute " + "xNumColDims.") + .AsDuplicable(); + AddInput("W", + "(A vector of Tensors) the weights of FC operator, a " + "vector of 2-D matrix of size " + "(number_of_input_features, number_of_neurons).") + .AsDuplicable(); + AddInput("B", + "(Tensor) the bias of FC operator, a 1-D vector of size " + "number_of_neurons."); + + AddOutput("Out", + "(Tensor) the activated output matrix of FC operator, a 2-D " + "matrix of size (minibatch, number_of_neurons)."); + AddOutput("MulOut", + "(A vector of Tensors) the intermediate outputs of FC operator, " + "each Tensor saving the product of X_i * W_i.") + .AsIntermediate() + .AsDuplicable(); + AddOutput( + "SumOut", + "(Tensor) the intermediate output of FC operator, " + "saving the sum of the products of X and W, that is sum{X_i * W_i}.") + .AsIntermediate(); + AddOutput("AddOut", + "(Tensor) the non-actived output of FC operator, " + "saving sum{X_i * W_i} + B.") + .AsIntermediate(); + AddAttr( + "activation", + "(string, default identity) the activation type of FC operator.") + .SetDefault("identity") + .InEnum({"identity", "sigmoid", "softmax"}); + AddAttr>( + "xNumColDims", + "(std::vector) The inputs Tensors of FC operator can be of " + "more than 2 dimensions. In that case, each input Tensor `X_i` will be " + "reshaped to a 2-D matrix. The matrix's first dimension " + "(the length of column) will be the product of `X_i`'s last " + "`xNumColDims_i` dimensions, that is " + "`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. " + "The matrix's second dimension (the length of row) will be the product " + "of `X_i`'s first `rank - xNumColDims_i` dimensions, that is " + "`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)") + .SetDefault(std::vector{}); + + AddComment(R"DOC( +Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer +in Convolutional Neural Networks. Neurons in a fully connected layer have +full connections to all activations in the previous layer. +It computes an inner product of a set of +learned weights with a matrix multiplication followed by a bias offset +(optionally). + +Equation: + Out = Act(sum_n{X_i * W_i} + B) + +where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K), +usually M is the minibatch size and K is the number of input features. +W_i is a 2-D matrix of size (K x N), where N means the number of neurons +in the fully connected layer. B is a 1-D vector of size N. +Thus, the output Out is a 2-D matrix of size (M x N). +Activation type can be set to `identity` (default), `sigmoid` or `softmax`. + +All the inputs can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with first input (`X[0]`). +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker); diff --git a/paddle/operators/fill_zeros_like_op.cc b/paddle/operators/fill_zeros_like_op.cc index 9d51f6e3a16fe96125599bb440d40237aeb9a028..e164de6584e7350283781019cc74118c2d13646e 100644 --- a/paddle/operators/fill_zeros_like_op.cc +++ b/paddle/operators/fill_zeros_like_op.cc @@ -22,9 +22,13 @@ class FillZerosLikeOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - ctx.Output("Dst")->Resize( - ctx.Input("Src")->dims()); + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of FillZerosLikeOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Y"), + "Output(Y) of FillZerosLikeOp should not be null."); + ctx->SetOutputDim("Y", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Y"); } }; @@ -33,8 +37,8 @@ class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker { FillZerosLikeOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("Src", "The input of fill-zeros-like op."); - AddOutput("Dst", "The varibale will be filled up with zeros."); + AddInput("X", "The input of fill-zeros-like op."); + AddOutput("Y", "The varibale will be filled up with zeros."); AddComment(R"DOC( Fill up a vriable with zeros. diff --git a/paddle/operators/fill_zeros_like_op.h b/paddle/operators/fill_zeros_like_op.h index 969998ce2eae02b8ad057c6259703e51559bf98a..cdf56a723b117fe7b08ef2749aa2c2978c923d44 100644 --- a/paddle/operators/fill_zeros_like_op.h +++ b/paddle/operators/fill_zeros_like_op.h @@ -20,10 +20,10 @@ namespace paddle { namespace operators { template -class FillZerosLikeKernel : public framework::OpKernel { +class FillZerosLikeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* output = context.Output("Dst"); + auto* output = context.Output("Y"); output->mutable_data(context.GetPlace()); auto t = framework::EigenVector::Flatten(*output); t.device(context.GetEigenDevice()) = t.constant(static_cast(0)); diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index 123bed296c462c30bddd3bfbd530098fdbfe4856..da22bd0c52c27d7decd10e2e2b34fa38d0620da8 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -23,12 +23,24 @@ class GatherOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - int batch_size = ctx.Input("Index")->dims()[0]; + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of GatherOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Index"), + "Input(Index) of GatherOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of GatherOp should not be null."); + + int batch_size = ctx->GetInputDim("Index")[0]; PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0"); - framework::DDim output_dims(ctx.Input("X")->dims()); + framework::DDim output_dims(ctx->GetInputDim("X")); output_dims[0] = batch_size; - ctx.Output("Out")->Resize(output_dims); + ctx->SetOutputDim("Out", output_dims); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("X")->type()); } }; @@ -37,23 +49,25 @@ class GatherGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto X_grad = ctx.Output(framework::GradVarName("X")); - auto X = ctx.Input("X"); + void InferShape(framework::InferShapeContextBase* ctx) const override { + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + } - X_grad->Resize(X->dims()); + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("X")->type()); } }; class GatherOpMaker : public framework::OpProtoAndCheckerMaker { public: - GatherOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + GatherOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The source input of gather op"); AddInput("Index", "The index input of gather op"); AddOutput("Out", "The output of add op"); AddComment(R"DOC( -Gather Operator by selecting from the first axis, +Gather Operator by selecting from the first axis, Out = X[Index] )DOC"); diff --git a/paddle/operators/gather_op.h b/paddle/operators/gather_op.h index 381854f301870beadb72d9e9b4eb17ff199960fb..073e566e8f6962d62cc1b738672843421dcb4ee5 100644 --- a/paddle/operators/gather_op.h +++ b/paddle/operators/gather_op.h @@ -24,7 +24,7 @@ namespace operators { using Tensor = framework::Tensor; template -class GatherOpKernel : public framework::OpKernel { +class GatherOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *X = ctx.Input("X"); @@ -37,7 +37,7 @@ class GatherOpKernel : public framework::OpKernel { }; template -class GatherGradientOpKernel : public framework::OpKernel { +class GatherGradientOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *Index = ctx.Input("Index"); diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index 3d76516405960c502a46997108049b2db5cab6bf..5cd2c7d2c066cd31e2d38a3c0d682f02339b4d59 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -16,7 +16,7 @@ namespace paddle { namespace operators { template -class CPUGaussianRandomKernel : public framework::OpKernel { +class CPUGaussianRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { float mean = context.Attr("mean"); @@ -43,9 +43,10 @@ class GaussianRandomOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext& context) const override { - auto* tensor = context.Output("Out"); - auto dims = Attr>("dims"); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of GaussianRandomOp should not be null."); + auto dims = ctx->Attrs().Get>("dims"); std::vector temp; temp.reserve(dims.size()); for (auto dim : dims) { @@ -53,7 +54,12 @@ class GaussianRandomOp : public framework::OperatorWithKernel { } PADDLE_ENFORCE(dims.size() > 0UL, "dims can be one int or array. dims must be set."); - tensor->Resize(framework::make_ddim(temp)); + ctx->SetOutputDim("Out", framework::make_ddim(temp)); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return static_cast(Attr("data_type")); } }; @@ -75,6 +81,8 @@ Use to initialize tensor with gaussian random generator. "Random seed of generator." "0 means use system wide seed") .SetDefault(0); + AddAttr("data_type", "output data type") + .SetDefault(framework::DataType::FP32); } }; diff --git a/paddle/operators/gaussian_random_op.cu b/paddle/operators/gaussian_random_op.cu index 2d63b3049988cfc3135a87a57dad56b970df3eab..315560bf1ba8a66b9a3b7d79510d202885e845d6 100644 --- a/paddle/operators/gaussian_random_op.cu +++ b/paddle/operators/gaussian_random_op.cu @@ -37,7 +37,7 @@ struct GaussianGenerator { }; template -class GPUGaussianRandomKernel : public framework::OpKernel { +class GPUGaussianRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* tensor = context.Output("Out"); diff --git a/paddle/operators/gemm_conv2d_op.h b/paddle/operators/gemm_conv2d_op.h new file mode 100644 index 0000000000000000000000000000000000000000..323e3f7c3bd506c6b63bf4d1152384649f5da575 --- /dev/null +++ b/paddle/operators/gemm_conv2d_op.h @@ -0,0 +1,226 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/im2col.h" +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class GemmConv2DKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* input = context.Input("Input"); + // The filter will be reshaped in the calculations, + // so here use an assignment operation, + // that avoids modifying the variable in the Scope. + Tensor filter = *context.Input("Filter"); + Tensor* output = context.Output("Output"); + output->mutable_data(context.GetPlace()); + + std::vector strides = context.Attr>("strides"); + std::vector paddings = context.Attr>("paddings"); + int groups = context.Attr("groups"); + + int batch_size = input->dims()[0]; + int input_channels = input->dims()[1]; + int filter_height = filter.dims()[filter.dims().size() - 2]; + int filter_width = filter.dims()[filter.dims().size() - 1]; + int output_channels = output->dims()[1]; + int output_height = output->dims()[2]; + int output_width = output->dims()[3]; + + paddle::operators::math::Im2ColFunctor< + paddle::operators::math::ColFormat::kCFO, Place, T> + im2col; + // use col_shape in the im2col calculation + framework::DDim col_shape = {input_channels / groups, filter_height, + filter_width, output_height, output_width}; + // use col_matrix_shape in the gemm calculation + framework::DDim col_matrix_shape = { + input_channels / groups * filter_height * filter_width, + output_height * output_width}; + Tensor col; + col.mutable_data(col_shape, context.GetPlace()); + // col_matrix shares the same piece of data with col, + // but will be reshaped into a two-dimensional matrix shape + // to call the matrix multiplication interface. + Tensor col_matrix = col; + col_matrix.Resize(col_matrix_shape); + + framework::DDim input_shape = {input->dims()[1], input->dims()[2], + input->dims()[3]}; + framework::DDim filter_matrix_shape = {filter.dims()[0], + filter.numel() / filter.dims()[0]}; + filter.Resize(filter_matrix_shape); + + framework::DDim output_matrix_shape = {output_channels, + output_height * output_width}; + + // convolution operator: im2col + gemm + int in_step = input_channels / groups; + int out_step = output_channels / groups; + for (int i = 0; i < batch_size; i++) { + Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); + Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); + for (int g = 0; g < groups; g++) { + // im2col + Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); + im2col(context.device_context(), in_slice, col, strides[0], strides[1], + paddings[0], paddings[1]); + + // gemm + Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); + math::matmul(context.device_context(), filter_slice, false, + col_matrix, false, T(1.0), &out_slice, T(0.0)); + } + } + } +}; + +template +class GemmConvGrad2DKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* input = context.Input("Input"); + const Tensor* output_grad = + context.Input(framework::GradVarName("Output")); + Tensor* input_grad = + context.Output(framework::GradVarName("Input")); + Tensor* filter_grad = + context.Output(framework::GradVarName("Filter")); + + // The filter and filter_grad will be reshaped in the calculations, + // so here use an assignment operation, + // that avoids modifying the variable in the Scope. + Tensor filter = *context.Input("Filter"); + + std::vector strides = context.Attr>("strides"); + std::vector paddings = context.Attr>("paddings"); + int groups = context.Attr("groups"); + + int batch_size = input->dims()[0]; + int input_channels = input->dims()[1]; + int filter_height = filter.dims()[filter.dims().size() - 2]; + int filter_width = filter.dims()[filter.dims().size() - 1]; + int output_channels = output_grad->dims()[1]; + int output_height = output_grad->dims()[2]; + int output_width = output_grad->dims()[3]; + + paddle::operators::math::Col2ImFunctor< + paddle::operators::math::ColFormat::kCFO, Place, T> + col2im; + paddle::operators::math::Im2ColFunctor< + paddle::operators::math::ColFormat::kCFO, Place, T> + im2col; + // use col_shape in the im2col and col2im calculation + framework::DDim col_shape = {input_channels / groups, filter_height, + filter_width, output_height, output_width}; + // use col_matrix_shape in the gemm calculation + framework::DDim col_matrix_shape = { + input_channels / groups * filter_height * filter_width, + output_height * output_width}; + Tensor col; + col.mutable_data(col_shape, context.GetPlace()); + // col_matrix shares the same piece of data with col, + // but will be reshaped into a two-dimensional matrix shape + // to call the matrix multiplication interface. + Tensor col_matrix = col; + col_matrix.Resize(col_matrix_shape); + + framework::DDim input_shape = {input->dims()[1], input->dims()[2], + input->dims()[3]}; + framework::DDim output_matrix_shape = { + output_grad->dims()[1], + output_grad->dims()[2] * output_grad->dims()[3]}; + + framework::DDim filter_matrix_shape = {filter.dims()[0], + filter.numel() / filter.dims()[0]}; + filter.Resize(filter_matrix_shape); + + // convolution backward input operator: gemm + col2im + // convolution backward weight operator: im2col + gemm + int in_step = input_channels / groups; + int out_step = output_channels / groups; + + if (input_grad) { + input_grad->mutable_data(context.GetPlace()); + auto t = framework::EigenVector::Flatten(*input_grad); + t.device(context.GetEigenDevice()) = t.constant(static_cast(0)); + + for (int i = 0; i < batch_size; i++) { + Tensor out_grad_batch = + output_grad->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor in_grad_batch = + input_grad->Slice(i, i + 1).Resize(input_shape); + for (int g = 0; g < groups; g++) { + // gemm + Tensor out_grad_slice = + out_grad_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor filter_slice = + filter.Slice(g * out_step, (g + 1) * out_step); + math::matmul(context.device_context(), filter_slice, true, + out_grad_slice, false, T(1.0), &col_matrix, + T(0.0)); + + // col2im + Tensor in_grad_slice = + in_grad_batch.Slice(g * in_step, (g + 1) * in_step); + col2im(context.device_context(), in_grad_slice, col, strides[0], + strides[1], paddings[0], paddings[1]); + } + } + } + + if (filter_grad) { + filter_grad->mutable_data(context.GetPlace()); + Tensor filter_grad_ = *filter_grad; + filter_grad_.Resize(filter_matrix_shape); + auto t = framework::EigenVector::Flatten(filter_grad_); + t.device(context.GetEigenDevice()) = t.constant(static_cast(0)); + + for (int i = 0; i < batch_size; i++) { + Tensor out_grad_batch = + output_grad->Slice(i, i + 1).Resize(output_matrix_shape); + Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); + for (int g = 0; g < groups; g++) { + // im2col + Tensor out_grad_slice = + out_grad_batch.Slice(g * out_step, (g + 1) * out_step); + Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step); + im2col(context.device_context(), in_slice, col, strides[0], + strides[1], paddings[0], paddings[1]); + + // gemm + Tensor filter_grad_slice = + filter_grad_.Slice(g * out_step, (g + 1) * out_step); + math::matmul(context.device_context(), out_grad_slice, + false, col_matrix, true, T(1.0), + &filter_grad_slice, T(1.0)); + } + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/identity_op.cc b/paddle/operators/identity_op.cc index 7d9d4fa519d1c690feacbadc5175aeab49082282..2cc632205e63abbe412b09af4b894420ac512ec5 100644 --- a/paddle/operators/identity_op.cc +++ b/paddle/operators/identity_op.cc @@ -27,7 +27,7 @@ class IdentityOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of identity operator."); - AddOutput("Out", "The output tensor of identity operator."); + AddOutput("Y", "The output tensor of identity operator."); AddComment(R"DOC( The identity operator is an alias of the scale operator with the attribute scale fixed to 1.0. @@ -42,9 +42,15 @@ class IdentityOp : public NetOp { const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : NetOp(type, inputs, outputs, attrs) { + PADDLE_ENFORCE_NE(Input("X"), framework::kEmptyVarName, + "Input(X) of IdentityOp should not be null."); + PADDLE_ENFORCE_NE(Output("Y"), framework::kEmptyVarName, + "Output(Y) of IdentityOp should not be null."); + AppendOp(framework::OpRegistry::CreateOp( - "scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}}, + "scale", {{"X", {Input("X")}}}, {{"Out", {Output("Y")}}}, {{"scale", static_cast(1)}})); + CompleteAddOp(false); } }; diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index 94d40890a765413e88a35a6ad995ca97ac84dcda..929008fbcbe03bd6591b0a02252b343c46d00b8f 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -22,19 +22,31 @@ class LookupTableOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &context) const override { - auto table_t = context.Input("W"); - auto ids_t = context.Input("Ids"); - auto output_t = context.Output("Out"); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("W"), + "Input(W) of LookupTableOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Ids"), + "Input(Ids) of LookupTableOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of LookupTableOp should not be null."); - output_t->Resize({ids_t->dims()[0], table_t->dims()[1]}); + auto table_dims = ctx->GetInputDim("W"); + auto ids_dims = ctx->GetInputDim("Ids"); + + ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]}); + ctx->ShareLoD("Ids", /*->*/ "Out"); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("W")->type()); } }; class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { public: - LookupTableOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LookupTableOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("W", "An input represents embedding tensors," @@ -43,9 +55,13 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { "An input with type int32 or int64" "contains the ids to be looked up in W."); AddOutput("Out", "The lookup results, which have the same type with W."); - AddComment( - "This operator is used to perform lookups on the parameter W," - "then concatenated into a dense tensor."); + AddComment(R"DOC( +This operator is used to perform lookups on the parameter W, +then concatenated into a dense tensor. + +The input `Ids` can carry the LoD (Level of Details) information, +or not. And the output only shares the LoD with input `Ids`. +)DOC"); } }; @@ -54,10 +70,14 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &context) const override { - auto table = context.Input("W"); - auto d_table = context.Output(framework::GradVarName("W")); - d_table->Resize(table->dims()); + void InferShape(framework::InferShapeContextBase* ctx) const override { + auto table_dims = ctx->GetInputDim("W"); + ctx->SetOutputDim(framework::GradVarName("W"), table_dims); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("W")->type()); } }; diff --git a/paddle/operators/lookup_table_op.cu b/paddle/operators/lookup_table_op.cu index 708344046760691aa2da562eb1ee3d8b130c5f18..c3808fa9a8de031fcae3ac0417e8c4330b2f5aad 100644 --- a/paddle/operators/lookup_table_op.cu +++ b/paddle/operators/lookup_table_op.cu @@ -61,7 +61,7 @@ __global__ void LookupTableGrad(T* table, const T* output, const int32_t* ids, } template -class LookupTableCUDAKernel : public framework::OpKernel { +class LookupTableCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto table_t = context.Input("W"); @@ -77,12 +77,15 @@ class LookupTableCUDAKernel : public framework::OpKernel { dim3 threads(128, 8); dim3 grids(8, 1); - LookupTable<<>>(output, table, ids, N, K, D); + LookupTable<<< + grids, threads, 0, reinterpret_cast( + context.device_context()) + .stream()>>>(output, table, ids, N, K, D); } }; template -class LookupTableGradCUDAKernel : public framework::OpKernel { +class LookupTableGradCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto ids_t = context.Input("Ids"); @@ -102,8 +105,10 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { dim3 threads(128, 8); dim3 grids(8, 1); - LookupTableGrad<<>>(d_table, d_output, ids, N, - K, D); + LookupTableGrad<<< + grids, threads, 0, reinterpret_cast( + context.device_context()) + .stream()>>>(d_table, d_output, ids, N, K, D); } }; diff --git a/paddle/operators/lookup_table_op.h b/paddle/operators/lookup_table_op.h index a1298906dd4b4209644fe06584f70169519de01c..dfead2fc5b25b9be26bb19cd74a3a94daf62cca6 100644 --- a/paddle/operators/lookup_table_op.h +++ b/paddle/operators/lookup_table_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; template -class LookupTableKernel : public framework::OpKernel { +class LookupTableKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto table_t = context.Input("W"); // float tensor @@ -44,7 +44,7 @@ class LookupTableKernel : public framework::OpKernel { }; template -class LookupTableGradKernel : public framework::OpKernel { +class LookupTableGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto ids_t = context.Input("Ids"); diff --git a/paddle/operators/lstm_unit_op.cc b/paddle/operators/lstm_unit_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..dad56731de80518e3bf9d2ec1ffdac9cb6bc92f0 --- /dev/null +++ b/paddle/operators/lstm_unit_op.cc @@ -0,0 +1,102 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/lstm_unit_op.h" + +namespace paddle { +namespace operators { + +class LstmUnitOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasInput("C_prev"), + "Input(C_prev) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("C"), + "Output(C) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("H"), + "Output(H) of LSTM should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + auto c_prev_dims = ctx->GetInputDim("C_prev"); + + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); + PADDLE_ENFORCE(x_dims[0] == c_prev_dims[0], + "Batch size of inputs and states must be equal"); + PADDLE_ENFORCE(x_dims[1] == c_prev_dims[1] * 4, + "Dimension of FC should equal to prev state * 4"); + + int b_size = c_prev_dims[0]; // batch size + int s_dim = c_prev_dims[1]; // state dim + ctx->SetOutputDim("C", {b_size, s_dim}); + ctx->SetOutputDim("H", {b_size, s_dim}); + } +}; + +class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker { + public: + LstmUnitOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "FC input before the non-linear activation."); + AddInput( + "C_prev", + "The cell state tensor of last time-step in the Lstm Unit operator."); + AddOutput("C", "The cell tensor of Lstm Unit operator."); + AddOutput("H", "The hidden state tensor of Lstm Unit operator."); + + AddComment(R"DOC(Lstm-Unit Operator + +Equation: + i, f, o, j = split(X) + C = C_prev * sigm(f + forget_bias) + sigm(i) * tanh(j) + H = C * sigm(o) + +)DOC"); + AddAttr("forget_bias", "The forget bias of Lstm Unit.") + .SetDefault(0.0); + } +}; + +class LstmUnitGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("C")), + "Input(C@GRAD) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("H")), + "Input(H@GRAD) should not be null"); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + ctx->SetOutputDim(framework::GradVarName("C_prev"), + ctx->GetInputDim("C_prev")); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(lstm_unit, ops::LstmUnitOp, ops::LstmUnitOpMaker, lstm_unit_grad, + ops::LstmUnitGradOp); +REGISTER_OP_CPU_KERNEL(lstm_unit, + ops::LstmUnitKernel, + ops::LstmUnitKernel); +REGISTER_OP_CPU_KERNEL( + lstm_unit_grad, ops::LstmUnitGradKernel, + ops::LstmUnitGradKernel); diff --git a/paddle/operators/lstm_unit_op.cu b/paddle/operators/lstm_unit_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..49ea550b6f49a13bf31d14321d7a9eb13a834d4b --- /dev/null +++ b/paddle/operators/lstm_unit_op.cu @@ -0,0 +1,175 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/op_registry.h" +#include "paddle/operators/cross_entropy_op.h" +#include "paddle/platform/assert.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { + +#define CUDA_1D_KERNEL_LOOP(i, n) \ + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ + i += blockDim.x * gridDim.x) + +template +__device__ Dtype cuda_sigmoid(const Dtype x) { + return Dtype(1) / (Dtype(1) + exp(-x)); +} + +template +__device__ Dtype cuda_tanh(const Dtype x) { + return Dtype(1 - exp(-2. * x)) / (Dtype(1) + exp(-2. * x)); +} + +template +__global__ void LSTMUnitKernel(const int nthreads, const int dim, + const T* C_prev, const T* X, T* C, T* H, + const T forget_bias) { + CUDA_1D_KERNEL_LOOP(index, nthreads) { + const int n = index / dim; + const int d = index % dim; + + const T* X_offset = X + 4 * dim * n; + const T i = cuda_sigmoid(X_offset[d]); + const T f = cuda_sigmoid(X_offset[1 * dim + d] + forget_bias); + const T o = cuda_sigmoid(X_offset[2 * dim + d]); + const T g = cuda_tanh(X_offset[3 * dim + d]); + const T c_prev = C_prev[index]; + const T c = f * c_prev + i * g; + C[index] = c; + const T tanh_c = cuda_tanh(c); + H[index] = o * tanh_c; + } +} + +template +__global__ void LSTMUnitGradientKernel(const int nthreads, const int dim, + const T* C_prev, const T* X, const T* C, + const T* H, const T* C_diff, + const T* H_diff, T* C_prev_diff, + T* X_diff, const T forget_bias) { + CUDA_1D_KERNEL_LOOP(index, nthreads) { + const int n = index / dim; + const int d = index % dim; + const T* X_offset = X + 4 * dim * n; + T* c_prev_diff = C_prev_diff + index; + T* X_diff_offset = X_diff + 4 * dim * n; + T* i_diff = X_diff_offset + d; + T* f_diff = X_diff_offset + 1 * dim + d; + T* o_diff = X_diff_offset + 2 * dim + d; + T* g_diff = X_diff_offset + 3 * dim + d; + + const T i = cuda_sigmoid(X_offset[d]); + const T f = cuda_sigmoid(X_offset[1 * dim + d] + forget_bias); + const T o = cuda_sigmoid(X_offset[2 * dim + d]); + const T g = cuda_tanh(X_offset[3 * dim + d]); + const T c_prev = C_prev[index]; + const T c = C[index]; + const T tanh_c = cuda_tanh(c); + const T c_term_diff = + C_diff[index] + H_diff[index] * o * (1 - tanh_c * tanh_c); + *c_prev_diff = c_term_diff * f; + *i_diff = c_term_diff * g * i * (1 - i); + *f_diff = c_term_diff * c_prev * f * (1 - f); + *o_diff = H_diff[index] * tanh_c * o * (1 - o); + *g_diff = c_term_diff * i * (1 - g * g); + } +} + +template +class LstmUnitOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use GPUPlace."); + + auto* x_tensor = ctx.Input("X"); + auto* c_prev_tensor = ctx.Input("C_prev"); + auto* c_tensor = ctx.Output("C"); + auto* h_tensor = ctx.Output("H"); + + auto forget_bias = static_cast(ctx.Attr("forget_bias")); + + int b_size = c_tensor->dims()[0]; + int D = c_tensor->dims()[1]; + + const T* X = x_tensor->data(); + const T* C_prev = c_prev_tensor->data(); + + T* C = c_tensor->mutable_data(ctx.GetPlace()); + T* H = h_tensor->mutable_data(ctx.GetPlace()); + + int block = 512; + int n = b_size * D; + int grid = (n + block - 1) / block; + + LSTMUnitKernel<<>>(n, D, C_prev, X, C, H, forget_bias); + } +}; + +template +class LstmUnitGradOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use GPUPlace."); + + auto x_tensor = ctx.Input("X"); + auto c_prev_tensor = ctx.Input("C_prev"); + auto c_tensor = ctx.Input("C"); + auto h_tensor = ctx.Input("H"); + + auto hdiff_tensor = ctx.Input(framework::GradVarName("H")); + auto cdiff_tensor = ctx.Input(framework::GradVarName("C")); + + auto xdiff_tensor = ctx.Output(framework::GradVarName("X")); + auto c_prev_diff_tensor = + ctx.Output(framework::GradVarName("C_prev")); + + auto* X = x_tensor->data(); + auto* C_prev = c_prev_tensor->data(); + auto* C = c_tensor->data(); + auto* H = h_tensor->data(); + + auto* H_diff = hdiff_tensor->data(); + auto* C_diff = cdiff_tensor->data(); + + auto* C_prev_diff = c_prev_diff_tensor->mutable_data(ctx.GetPlace()); + auto* X_diff = xdiff_tensor->mutable_data(ctx.GetPlace()); + + int N = c_tensor->dims()[0]; + int D = c_tensor->dims()[1]; + + auto forget_bias = static_cast(ctx.Attr("forget_bias")); + + int block = 512; + int n = N * D; + int grid = (n + block - 1) / block; + + LSTMUnitGradientKernel<<>>(n, D, C_prev, X, C, H, C_diff, + H_diff, C_prev_diff, X_diff, + forget_bias); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(lstm_unit, ops::LstmUnitOpCUDAKernel, + ops::LstmUnitOpCUDAKernel); +REGISTER_OP_GPU_KERNEL(lstm_unit_grad, ops::LstmUnitGradOpCUDAKernel, + ops::LstmUnitGradOpCUDAKernel); diff --git a/paddle/operators/lstm_unit_op.h b/paddle/operators/lstm_unit_op.h new file mode 100644 index 0000000000000000000000000000000000000000..a0ff498c1d3ed2aaa10f5473ef91de168c250649 --- /dev/null +++ b/paddle/operators/lstm_unit_op.h @@ -0,0 +1,148 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "glog/logging.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using framework::LoDTensor; +using framework::Tensor; + +template +inline T sigmoid(T x) { + return 1. / (1. + exp(-x)); +} + +template +inline T tanh(T x) { + return 2. * sigmoid(2. * x) - 1.; +} + +template +class LstmUnitKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "It must use CPUPlace."); + + auto* x_tensor = ctx.Input("X"); + auto* c_prev_tensor = ctx.Input("C_prev"); + auto* c_tensor = ctx.Output("C"); + auto* h_tensor = ctx.Output("H"); + + auto forget_bias = static_cast(ctx.Attr("forget_bias")); + + int b_size = c_tensor->dims()[0]; + int D = c_tensor->dims()[1]; + + T* C = c_tensor->mutable_data(ctx.GetPlace()); + T* H = h_tensor->mutable_data(ctx.GetPlace()); + + const T* X = x_tensor->data(); + const T* C_prev = c_prev_tensor->data(); + + for (int n = 0; n < b_size; ++n) { + for (int d = 0; d < D; ++d) { + const T i = sigmoid(X[d]); + const T f = sigmoid(X[1 * D + d] + forget_bias); + const T o = sigmoid(X[2 * D + d]); + const T g = tanh(X[3 * D + d]); + const T c_prev = C_prev[d]; + const T c = f * c_prev + i * g; + C[d] = c; + const T tanh_c = tanh(c); + H[d] = o * tanh_c; + } + C_prev += D; + X += 4 * D; + C += D; + H += D; + } + } +}; + +template +class LstmUnitGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), + "It must use CPUPlace."); + + auto x_tensor = ctx.Input("X"); + auto c_prev_tensor = ctx.Input("C_prev"); + auto c_tensor = ctx.Input("C"); + auto h_tensor = ctx.Input("H"); + + auto hdiff_tensor = ctx.Input(framework::GradVarName("H")); + auto cdiff_tensor = ctx.Input(framework::GradVarName("C")); + + auto xdiff_tensor = ctx.Output(framework::GradVarName("X")); + auto c_prev_diff_tensor = + ctx.Output(framework::GradVarName("C_prev")); + + auto* X = x_tensor->data(); + auto* C_prev = c_prev_tensor->data(); + auto* C = c_tensor->data(); + auto* H = h_tensor->data(); + + auto* H_diff = hdiff_tensor->data(); + auto* C_diff = cdiff_tensor->data(); + + auto* C_prev_diff = c_prev_diff_tensor->mutable_data(ctx.GetPlace()); + auto* X_diff = xdiff_tensor->mutable_data(ctx.GetPlace()); + + int N = c_tensor->dims()[0]; + int D = c_tensor->dims()[1]; + + auto forget_bias = static_cast(ctx.Attr("forget_bias")); + + for (int n = 0; n < N; ++n) { + for (int d = 0; d < D; ++d) { + T* c_prev_diff = C_prev_diff + d; + T* i_diff = X_diff + d; + T* f_diff = X_diff + 1 * D + d; + T* o_diff = X_diff + 2 * D + d; + T* g_diff = X_diff + 3 * D + d; + + const T i = sigmoid(X[d]); + const T f = sigmoid(X[1 * D + d] + forget_bias); + const T o = sigmoid(X[2 * D + d]); + const T g = tanh(X[3 * D + d]); + const T c_prev = C_prev[d]; + const T c = C[d]; + const T tanh_c = tanh(c); + const T c_term_diff = C_diff[d] + H_diff[d] * o * (1 - tanh_c * tanh_c); + *c_prev_diff = c_term_diff * f; + *i_diff = c_term_diff * g * i * (1 - i); + *f_diff = c_term_diff * c_prev * f * (1 - f); + *o_diff = H_diff[d] * tanh_c * o * (1 - o); + *g_diff = c_term_diff * i * (1 - g * g); + } + C_prev += D; + X += 4 * D; + C += D; + H += D; + C_diff += D; + H_diff += D; + X_diff += 4 * D; + C_prev_diff += D; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/CMakeLists.txt b/paddle/operators/math/CMakeLists.txt index f8333f34f7b4c7b0f9a0f14a7a33f9d98e1d331c..a0ceb029e3abee2fe591325ffa3100168c3aa8e3 100644 --- a/paddle/operators/math/CMakeLists.txt +++ b/paddle/operators/math/CMakeLists.txt @@ -1,10 +1,13 @@ - if(WITH_GPU) - nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc - im2col.cu DEPS cblas device_context) + nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu pooling.cc pooling.cu DEPS cblas device_context operator) + nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) + nv_library(softmax SRCS softmax.cc softmax.cu DEPS operator) + nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS operator) else() - cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context) + cc_library(math_function SRCS math_function.cc im2col.cc pooling.cc DEPS cblas device_context operator) + cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) + cc_library(softmax SRCS softmax.cc DEPS operator) + cc_library(cross_entropy SRCS cross_entropy.cc DEPS operator) endif() -nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) cc_test(im2col_test SRCS im2col_test.cc DEPS math_function tensor) diff --git a/paddle/operators/math/cross_entropy.cc b/paddle/operators/math/cross_entropy.cc new file mode 100644 index 0000000000000000000000000000000000000000..150a65f2751aaeac17f9403404d2efd990a0c72b --- /dev/null +++ b/paddle/operators/math/cross_entropy.cc @@ -0,0 +1,59 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/math/cross_entropy.h" + +namespace paddle { +namespace operators { +namespace math { + +using Tensor = framework::Tensor; +template +using EigenMatrix = framework::EigenMatrix; + +template +class CrossEntropyFunctor { + public: + void operator()(const platform::DeviceContext& ctx, framework::Tensor* out, + const framework::Tensor* prob, + const framework::Tensor* labels, const bool softLabel) { + const int batch_size = prob->dims()[0]; + if (softLabel) { + auto in = EigenMatrix::From(*prob); + auto lbl = EigenMatrix::From(*labels); + auto loss = EigenMatrix::From(*out); + + loss.device(*ctx.GetEigenDevice()) = + -((lbl * in.log().unaryExpr(math::TolerableValue())) + .sum(Eigen::DSizes(1)) + .reshape(Eigen::DSizes(batch_size, 1))); + } else { + const int class_num = prob->dims()[1]; + const T* prob_data = prob->data(); + T* loss_data = out->data(); + + const int* label_data = labels->data(); + for (int i = 0; i < batch_size; ++i) { + int index = i * class_num + label_data[i]; + loss_data[i] = -math::TolerableValue()(std::log(prob_data[index])); + } + } + } +}; + +template class CrossEntropyFunctor; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/cross_entropy.cu b/paddle/operators/math/cross_entropy.cu new file mode 100644 index 0000000000000000000000000000000000000000..367190e6b0682ec62550e869e2f04c3a2b2cbec3 --- /dev/null +++ b/paddle/operators/math/cross_entropy.cu @@ -0,0 +1,109 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/math/cross_entropy.h" + +namespace paddle { +namespace operators { +namespace math { + +namespace { +template +__global__ void CrossEntropyKernel(T* Y, const T* X, const int* label, + const int N, const int D) { + // TOOD(qingqing) define CUDA_1D_KERNEL_LOOP macro in a common file. + // CUDA_1D_KERNEL_LOOP(i, N) { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; + i += blockDim.x * gridDim.x) { + PADDLE_ASSERT(label[i] >= 0 && label[i] < D); + Y[i] = -math::TolerableValue()(log(X[i * D + label[i]])); + } +} + +template +__device__ __forceinline__ T sum_single_warp(T val) { + val += __shfl_down(val, 16); + val += __shfl_down(val, 8); + val += __shfl_down(val, 4); + val += __shfl_down(val, 2); + val += __shfl_down(val, 1); + return val; +} + +template +__global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label, + const int class_num) { + int tid = threadIdx.x; + extern __shared__ T d_sum[]; + d_sum[tid] = 0; + + int cur_idx = tid; + int next_idx = blockIdx.x * class_num + tid; + while (cur_idx < class_num) { + d_sum[tid] += + math::TolerableValue()(std::log(X[next_idx])) * label[next_idx]; + next_idx += blockDim.x; + cur_idx += blockDim.x; + } + __syncthreads(); + + for (unsigned int stride = blockDim.x >> 1; stride >= 32; stride >>= 1) { + if (tid < stride) d_sum[tid] += d_sum[tid + stride]; + __syncthreads(); + } + + T val = d_sum[tid]; + val = sum_single_warp(val); + if (tid == 0) Y[blockIdx.x] = -val; +} +} // namespace + +using Tensor = framework::Tensor; + +template +class CrossEntropyFunctor { + public: + void operator()(const platform::DeviceContext& ctx, framework::Tensor* out, + const framework::Tensor* prob, + const framework::Tensor* labels, bool softLabel) { + const T* prob_data = prob->data(); + T* loss_data = out->mutable_data(ctx.GetPlace()); + + int batch_size = prob->dims()[0]; + int class_num = prob->dims()[1]; + + if (softLabel) { + const T* label_data = labels->data(); + int block = class_num > 512 ? 512 : pow(2, int(std::log2(class_num))); + + SoftCrossEntropyKernel<<< + batch_size, block, block * sizeof(T), + reinterpret_cast(ctx).stream()>>>( + loss_data, prob_data, label_data, class_num); + } else { + const int* label_data = labels->data(); + int block = 512; + int grid = (batch_size + block - 1) / block; + CrossEntropyKernel<<< + grid, block, 0, + reinterpret_cast(ctx).stream()>>>( + loss_data, prob_data, label_data, batch_size, class_num); + } + } +}; + +template class CrossEntropyFunctor; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/cross_entropy.h b/paddle/operators/math/cross_entropy.h new file mode 100644 index 0000000000000000000000000000000000000000..0ab6827ffa8f8b90b432a801607a97206e010cf4 --- /dev/null +++ b/paddle/operators/math/cross_entropy.h @@ -0,0 +1,46 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/operator.h" +#include "paddle/framework/tensor.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { +namespace math { + +template +struct TolerableValue { + HOSTDEVICE T operator()(const T& x) const { + PADDLE_ASSERT(std::is_floating_point::value); + const T kApproInf = 1e20; + + if (x == INFINITY) return kApproInf; + if (x == -INFINITY) return -kApproInf; + return x; + } +}; + +template +class CrossEntropyFunctor { + public: + void operator()(const platform::DeviceContext& context, + framework::Tensor* out, const framework::Tensor* prob, + const framework::Tensor* labels, const bool softLabel); +}; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/im2col.cc b/paddle/operators/math/im2col.cc index 5727c1cab16c1379ffe77f5594c057e93a042785..c08a3380f042886cd400df0d840e61856274619c 100644 --- a/paddle/operators/math/im2col.cc +++ b/paddle/operators/math/im2col.cc @@ -27,9 +27,10 @@ template class Im2ColFunctor { public: - void operator()(const framework::Tensor& im, framework::Tensor& col, + void operator()(const platform::DeviceContext& context, + const framework::Tensor& im, framework::Tensor& col, int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context) { + int padding_width) { PADDLE_ENFORCE(im.dims().size() == 3); PADDLE_ENFORCE(col.dims().size() == 5); @@ -79,9 +80,9 @@ template class Col2ImFunctor { public: - void operator()(framework::Tensor& im, const framework::Tensor& col, - int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context) { + void operator()(const platform::DeviceContext& context, framework::Tensor& im, + const framework::Tensor& col, int stride_height, + int stride_width, int padding_height, int padding_width) { PADDLE_ENFORCE(im.dims().size() == 3); PADDLE_ENFORCE(col.dims().size() == 5); int input_channels = im.dims()[0]; @@ -137,9 +138,10 @@ template class Im2ColFunctor { public: - void operator()(const framework::Tensor& im, framework::Tensor& col, + void operator()(const platform::DeviceContext& context, + const framework::Tensor& im, framework::Tensor& col, int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context) { + int padding_width) { PADDLE_ENFORCE(im.dims().size() == 3); PADDLE_ENFORCE(col.dims().size() == 5); int input_channels = im.dims()[0]; @@ -197,9 +199,9 @@ template class Col2ImFunctor { public: - void operator()(framework::Tensor& im, const framework::Tensor& col, - int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context) { + void operator()(const platform::DeviceContext& context, framework::Tensor& im, + const framework::Tensor& col, int stride_height, + int stride_width, int padding_height, int padding_width) { PADDLE_ENFORCE(im.dims().size() == 3); PADDLE_ENFORCE(col.dims().size() == 5); int input_channels = im.dims()[0]; diff --git a/paddle/operators/math/im2col.cu b/paddle/operators/math/im2col.cu index 9bff7bee3c95093852305d392af0949b831e5665..01f60bfe70f844fdcfd5aa481c27d9f12ec51305 100644 --- a/paddle/operators/math/im2col.cu +++ b/paddle/operators/math/im2col.cu @@ -64,9 +64,10 @@ template class Im2ColFunctor { public: - void operator()(const framework::Tensor& im, framework::Tensor& col, + void operator()(const platform::DeviceContext& context, + const framework::Tensor& im, framework::Tensor& col, int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context) { + int padding_width) { PADDLE_ENFORCE(im.dims().size() == 3); PADDLE_ENFORCE(col.dims().size() == 5); @@ -84,9 +85,9 @@ class Im2ColFunctor<<< - grid, threads, 0, - reinterpret_cast(context)->stream()>>>( + im2col<<(context) + .stream()>>>( im.data(), num_outputs, input_height, input_width, filter_height, filter_width, stride_height, stride_width, padding_height, padding_width, output_height, output_width, col.data()); @@ -149,9 +150,9 @@ template class Col2ImFunctor { public: - void operator()(framework::Tensor& im, const framework::Tensor& col, - int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context) { + void operator()(const platform::DeviceContext& context, framework::Tensor& im, + const framework::Tensor& col, int stride_height, + int stride_width, int padding_height, int padding_width) { PADDLE_ENFORCE(im.dims().size() == 3); PADDLE_ENFORCE(col.dims().size() == 5); @@ -174,9 +175,9 @@ class Col2ImFunctor<<< - grid, threads, 0, - reinterpret_cast(context)->stream()>>>( + col2im<<(context) + .stream()>>>( num_kernels, col.data(), input_height + 2 * padding_height, input_width + 2 * padding_width, input_channels, filter_height, filter_width, stride_height, stride_width, padding_height, @@ -235,9 +236,10 @@ template class Im2ColFunctor { public: - void operator()(const framework::Tensor& im, framework::Tensor& col, + void operator()(const platform::DeviceContext& context, + const framework::Tensor& im, framework::Tensor& col, int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context) { + int padding_width) { PADDLE_ENFORCE(im.dims().size() == 3); PADDLE_ENFORCE(col.dims().size() == 5); int input_channels = im.dims()[0]; @@ -268,9 +270,9 @@ class Im2ColFunctor<<< - grid, threads, 0, - reinterpret_cast(context)->stream()>>>( + im2colOCF<<(context) + .stream()>>>( im.data(), col.data(), input_channels, input_height, input_width, filter_height, filter_width, stride_height, stride_width, padding_height, padding_width, output_height, output_width); @@ -318,9 +320,9 @@ template class Col2ImFunctor { public: - void operator()(framework::Tensor& im, const framework::Tensor& col, - int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context) { + void operator()(const platform::DeviceContext& context, framework::Tensor& im, + const framework::Tensor& col, int stride_height, + int stride_width, int padding_height, int padding_width) { PADDLE_ENFORCE(im.dims().size() == 3); PADDLE_ENFORCE(col.dims().size() == 5); int input_channels = im.dims()[0]; @@ -351,9 +353,9 @@ class Col2ImFunctor<<< - grid, threads, 0, - reinterpret_cast(context)->stream()>>>( + col2imOCF<<(context) + .stream()>>>( im.data(), col.data(), input_channels, input_height, input_width, filter_height, filter_width, stride_height, stride_width, padding_height, padding_width, output_height, output_width); diff --git a/paddle/operators/math/im2col.h b/paddle/operators/math/im2col.h index 8958c5457cc2c3034c34ca82fb2e98cc06be63c5..7b717e1603c94cd77c74cb0d86f1d23e2692f9d8 100644 --- a/paddle/operators/math/im2col.h +++ b/paddle/operators/math/im2col.h @@ -72,17 +72,18 @@ enum class ColFormat { kCFO = 0, kOCF = 1 }; template class Im2ColFunctor { public: - void operator()(const framework::Tensor& im, framework::Tensor& col, + void operator()(const platform::DeviceContext& context, + const framework::Tensor& im, framework::Tensor& col, int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context); + int padding_width); }; template class Col2ImFunctor { public: - void operator()(framework::Tensor& im, const framework::Tensor& col, - int stride_height, int stride_width, int padding_height, - int padding_width, platform::DeviceContext* context); + void operator()(const platform::DeviceContext& context, framework::Tensor& im, + const framework::Tensor& col, int stride_height, + int stride_width, int padding_height, int padding_width); }; } // namespace math diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index 4f380388b108dc173d847f027ba5c9db387a87f8..f0b8c885918afe7f80edc465c6d9be7c11ac066f 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -78,8 +78,8 @@ void testIm2col() { PADDLE_THROW("no GPU support"); #endif // PADDLE_ONLY_CPU } - im2col(input, output_cfo, stride, stride, padding, padding, context); - im2col_ocf(input, output_ocf, stride, stride, padding, padding, context); + im2col(*context, input, output_cfo, stride, stride, padding, padding); + im2col_ocf(*context, input, output_ocf, stride, stride, padding, padding); float* out_cfo_ptr; if (paddle::platform::is_cpu_place(*place)) { diff --git a/paddle/operators/math/math_function.cc b/paddle/operators/math/math_function.cc index 1e86fc3d166077265e0f433a6712b0665ea5a152..ba653afa2cb175ae2e5e21088b6dc7ba76a6018f 100644 --- a/paddle/operators/math/math_function.cc +++ b/paddle/operators/math/math_function.cc @@ -19,12 +19,13 @@ namespace operators { namespace math { template <> -void gemm(const CBLAS_TRANSPOSE transA, +void gemm(const platform::DeviceContext& context, + const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const float alpha, const float* A, - const float* B, const float beta, float* C, - platform::DeviceContext* context) { + const float* B, const float beta, + float* C) { int lda = (transA == CblasNoTrans) ? K : M; int ldb = (transB == CblasNoTrans) ? N : K; int ldc = N; @@ -33,13 +34,13 @@ void gemm(const CBLAS_TRANSPOSE transA, } template <> -void gemm(const CBLAS_TRANSPOSE transA, +void gemm(const platform::DeviceContext& context, + const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, - double* C, - platform::DeviceContext* context) { + double* C) { int lda = (transA == CblasNoTrans) ? K : M; int ldb = (transB == CblasNoTrans) ? N : K; int ldc = N; @@ -48,13 +49,36 @@ void gemm(const CBLAS_TRANSPOSE transA, } template <> -void matmul(const framework::Tensor& matrix_a, - bool trans_a, - const framework::Tensor& matrix_b, - bool trans_b, float alpha, - framework::Tensor* matrix_out, - float beta, - platform::DeviceContext* context) { +void gemm(const platform::DeviceContext& context, + const bool transA, const bool transB, + const int M, const int N, const int K, + const float alpha, const float* A, + const int lda, const float* B, + const int ldb, const float beta, float* C, + const int ldc) { + cblas_sgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, + transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, + lda, B, ldb, beta, C, ldc); +} + +template <> +void gemm(const platform::DeviceContext& context, + const bool transA, const bool transB, + const int M, const int N, const int K, + const double alpha, const double* A, + const int lda, const double* B, + const int ldb, const double beta, + double* C, const int ldc) { + cblas_dgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, + transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, + lda, B, ldb, beta, C, ldc); +} + +template <> +void matmul( + const platform::DeviceContext& context, const framework::Tensor& matrix_a, + bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha, + framework::Tensor* matrix_out, float beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); auto dim_out = matrix_out->dims(); @@ -74,18 +98,15 @@ void matmul(const framework::Tensor& matrix_a, CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; gemm( - transA, transB, M, N, K, alpha, matrix_a.data(), - matrix_b.data(), beta, matrix_out->data(), context); + context, transA, transB, M, N, K, alpha, matrix_a.data(), + matrix_b.data(), beta, matrix_out->data()); } template <> -void matmul(const framework::Tensor& matrix_a, - bool trans_a, - const framework::Tensor& matrix_b, - bool trans_b, double alpha, - framework::Tensor* matrix_out, - double beta, - platform::DeviceContext* context) { +void matmul( + const platform::DeviceContext& context, const framework::Tensor& matrix_a, + bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha, + framework::Tensor* matrix_out, double beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); auto dim_out = matrix_out->dims(); @@ -105,8 +126,8 @@ void matmul(const framework::Tensor& matrix_a, CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; gemm( - transA, transB, M, N, K, alpha, matrix_a.data(), - matrix_b.data(), beta, matrix_out->data(), context); + context, transA, transB, M, N, K, alpha, matrix_a.data(), + matrix_b.data(), beta, matrix_out->data()); } } // namespace math diff --git a/paddle/operators/math/math_function.cu b/paddle/operators/math/math_function.cu index da40b27c948918e4997f4a046d2145552296158b..649f1f352c2a4a5ebaa0cb00ffb2e4de8aa4961a 100644 --- a/paddle/operators/math/math_function.cu +++ b/paddle/operators/math/math_function.cu @@ -19,12 +19,13 @@ namespace operators { namespace math { template <> -void gemm(const CBLAS_TRANSPOSE transA, +void gemm(const platform::DeviceContext& context, + const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const float alpha, const float* A, - const float* B, const float beta, float* C, - platform::DeviceContext* context) { + const float* B, const float beta, + float* C) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. int lda = (transA == CblasNoTrans) ? K : M; @@ -35,18 +36,19 @@ void gemm(const CBLAS_TRANSPOSE transA, (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasSgemm( - reinterpret_cast(context)->cublas_handle(), + reinterpret_cast(context) + .cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); } template <> -void gemm(const CBLAS_TRANSPOSE transA, +void gemm(const platform::DeviceContext& context, + const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, - double* C, - platform::DeviceContext* context) { + double* C) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. int lda = (transA == CblasNoTrans) ? K : M; @@ -56,18 +58,52 @@ void gemm(const CBLAS_TRANSPOSE transA, cublasOperation_t cuTransB = (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasDgemm( - reinterpret_cast(context)->cublas_handle(), + reinterpret_cast(context) + .cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); } template <> -void matmul(const framework::Tensor& matrix_a, - bool trans_a, - const framework::Tensor& matrix_b, - bool trans_b, float alpha, - framework::Tensor* matrix_out, - float beta, - platform::DeviceContext* context) { +void gemm(const platform::DeviceContext& context, + const bool transA, const bool transB, + const int M, const int N, const int K, + const float alpha, const float* A, + const int lda, const float* B, + const int ldb, const float beta, float* C, + const int ldc) { + // Note that cublas follows fortran order, so the order is different from + // the cblas convention. + cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T; + cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T; + PADDLE_ENFORCE(platform::dynload::cublasSgemm( + reinterpret_cast(context) + .cublas_handle(), + cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc)); +} + +template <> +void gemm(const platform::DeviceContext& context, + const bool transA, const bool transB, + const int M, const int N, const int K, + const double alpha, const double* A, + const int lda, const double* B, + const int ldb, const double beta, + double* C, const int ldc) { + // Note that cublas follows fortran order, so the order is different from + // the cblas convention. + cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T; + cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T; + PADDLE_ENFORCE(platform::dynload::cublasDgemm( + reinterpret_cast(context) + .cublas_handle(), + cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc)); +} + +template <> +void matmul( + const platform::DeviceContext& context, const framework::Tensor& matrix_a, + bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha, + framework::Tensor* matrix_out, float beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); auto dim_out = matrix_out->dims(); @@ -87,18 +123,15 @@ void matmul(const framework::Tensor& matrix_a, CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; gemm( - transA, transB, M, N, K, alpha, matrix_a.data(), - matrix_b.data(), beta, matrix_out->data(), context); + context, transA, transB, M, N, K, alpha, matrix_a.data(), + matrix_b.data(), beta, matrix_out->data()); } template <> -void matmul(const framework::Tensor& matrix_a, - bool trans_a, - const framework::Tensor& matrix_b, - bool trans_b, double alpha, - framework::Tensor* matrix_out, - double beta, - platform::DeviceContext* context) { +void matmul( + const platform::DeviceContext& context, const framework::Tensor& matrix_a, + bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha, + framework::Tensor* matrix_out, double beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); auto dim_out = matrix_out->dims(); @@ -118,8 +151,8 @@ void matmul(const framework::Tensor& matrix_a, CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; gemm( - transA, transB, M, N, K, alpha, matrix_a.data(), - matrix_b.data(), beta, matrix_out->data(), context); + context, transA, transB, M, N, K, alpha, matrix_a.data(), + matrix_b.data(), beta, matrix_out->data()); } } // namespace math diff --git a/paddle/operators/math/math_function.h b/paddle/operators/math/math_function.h index 155589fadb3ed9f59160a750d546dd8093a56cbe..473eff4d198ca9b17b6af8eebd6dfe39d49d138d 100644 --- a/paddle/operators/math/math_function.h +++ b/paddle/operators/math/math_function.h @@ -52,6 +52,7 @@ int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda, #include +#include "paddle/framework/eigen.h" #include "paddle/framework/tensor.h" #include "paddle/platform/device_context.h" #include "paddle/platform/enforce.h" @@ -66,16 +67,30 @@ namespace math { // For more detailed info, please refer to // http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html template -void gemm(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, - const int M, const int N, const int K, const T alpha, const T* A, - const T* B, const T beta, T* C, platform::DeviceContext* context); +void gemm(const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const T alpha, const T* A, const T* B, const T beta, T* C); + +// gemm wrapper with stride args for matrix uncontinuous in memory +template +void gemm(const platform::DeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, + const T alpha, const T* A, const int lda, const T* B, const int ldb, + const T beta, T* C, const int ldc); // matrix multiply with continuous memory template -void matmul(const framework::Tensor& matrix_a, bool trans_a, +void matmul(const platform::DeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, const framework::Tensor& matrix_b, bool trans_b, T alpha, - framework::Tensor* matrix_out, T beta, - platform::DeviceContext* context); + framework::Tensor* matrix_out, T beta); + +template +void SetConstant(const platform::DeviceContext& context, + framework::Tensor* tensor, T num) { + auto t = framework::EigenVector::Flatten(*tensor); + t.device(*context.GetEigenDevice()) = t.constant(static_cast(num)); +} } // namespace math } // namespace operators diff --git a/paddle/operators/math/math_function_test.cc b/paddle/operators/math/math_function_test.cc index 6c020c4ff7285b43bc5836d80c173d3a068e72b3..22468a0c4a4b0aca343fe766c8c9d63393a338eb 100644 --- a/paddle/operators/math/math_function_test.cc +++ b/paddle/operators/math/math_function_test.cc @@ -15,8 +15,7 @@ TEST(math_function, notrans_mul_trans) { memcpy(input1_ptr, arr, 6 * sizeof(float)); auto* gpu_place = new paddle::platform::GPUPlace(0); - paddle::platform::DeviceContext* context = - new paddle::platform::CUDADeviceContext(*gpu_place); + paddle::platform::CUDADeviceContext context(*gpu_place); input1_gpu.CopyFrom(input1, *gpu_place); input2_gpu.CopyFrom(input1, *gpu_place); @@ -24,7 +23,7 @@ TEST(math_function, notrans_mul_trans) { out_gpu.mutable_data({2, 2}, *gpu_place); paddle::operators::math::matmul( - input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0, context); + context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0); out.CopyFrom(out_gpu, *cpu_place); @@ -33,6 +32,7 @@ TEST(math_function, notrans_mul_trans) { EXPECT_EQ(out_ptr[1], 14); EXPECT_EQ(out_ptr[2], 14); EXPECT_EQ(out_ptr[3], 50); + delete gpu_place; } TEST(math_function, trans_mul_notrans) { @@ -48,8 +48,7 @@ TEST(math_function, trans_mul_notrans) { memcpy(input1_ptr, arr, 6 * sizeof(float)); auto* gpu_place = new paddle::platform::GPUPlace(0); - paddle::platform::DeviceContext* context = - new paddle::platform::CUDADeviceContext(*gpu_place); + paddle::platform::CUDADeviceContext context(*gpu_place); input1_gpu.CopyFrom(input1, *gpu_place); input2_gpu.CopyFrom(input1, *gpu_place); @@ -57,7 +56,7 @@ TEST(math_function, trans_mul_notrans) { out_gpu.mutable_data({3, 3}, *gpu_place); paddle::operators::math::matmul( - input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0, context); + context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0); out.CopyFrom(out_gpu, *cpu_place); @@ -71,5 +70,197 @@ TEST(math_function, trans_mul_notrans) { EXPECT_EQ(out_ptr[6], 15); EXPECT_EQ(out_ptr[7], 22); EXPECT_EQ(out_ptr[8], 29); + delete gpu_place; +} + +TEST(math_function, gemm_notrans_cublas) { + paddle::framework::Tensor input1; + paddle::framework::Tensor input2; + paddle::framework::Tensor input3; + paddle::framework::Tensor input1_gpu; + paddle::framework::Tensor input2_gpu; + paddle::framework::Tensor input3_gpu; + + int m = 2; + int n = 3; + int k = 3; + auto* cpu_place = new paddle::platform::CPUPlace(); + float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); + float arr1[6] = {0, 1, 2, 3, 4, 5}; + memcpy(input1_ptr, arr1, 6 * sizeof(float)); + float* input2_ptr = input2.mutable_data({3, 4}, *cpu_place); + float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; + memcpy(input2_ptr, arr2, 12 * sizeof(float)); + float* input3_ptr = input3.mutable_data({2, 4}, *cpu_place); + float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; + memcpy(input3_ptr, arr3, 8 * sizeof(float)); + + auto* gpu_place = new paddle::platform::GPUPlace(0); + paddle::platform::CUDADeviceContext context(*gpu_place); + + input1_gpu.CopyFrom(input1, *gpu_place); + input2_gpu.CopyFrom(input2, *gpu_place); + input3_gpu.CopyFrom(input3, *gpu_place); + float* a = input1_gpu.data(); + float* b = input2_gpu.data(); + float* c = input3_gpu.mutable_data(*gpu_place); + + paddle::operators::math::gemm( + context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4); + + input3.CopyFrom(input3_gpu, *cpu_place); + + // numpy code: + // a = np.arange(6).reshape(2, 3) + // b = np.arange(12).reshape(3, 4)[:, 1:] + // c = np.arange(8).reshape(2, 4)[:, 1:] + // out = np.arange(8).reshape(2, 4) + // out[:, 1:] = np.dot(a, b) + c + EXPECT_EQ(input3_ptr[0], 0); + EXPECT_EQ(input3_ptr[1], 24); + EXPECT_EQ(input3_ptr[2], 28); + EXPECT_EQ(input3_ptr[3], 32); + EXPECT_EQ(input3_ptr[4], 4); + EXPECT_EQ(input3_ptr[5], 73); + EXPECT_EQ(input3_ptr[6], 86); + EXPECT_EQ(input3_ptr[7], 99); + delete gpu_place; +} + +TEST(math_function, gemm_trans_cublas) { + paddle::framework::Tensor input1; + paddle::framework::Tensor input2; + paddle::framework::Tensor input3; + paddle::framework::Tensor input1_gpu; + paddle::framework::Tensor input2_gpu; + paddle::framework::Tensor input3_gpu; + + int m = 2; + int n = 3; + int k = 3; + auto* cpu_place = new paddle::platform::CPUPlace(); + float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); + float arr1[6] = {0, 1, 2, 3, 4, 5}; + memcpy(input1_ptr, arr1, 6 * sizeof(float)); + float* input2_ptr = input2.mutable_data({4, 3}, *cpu_place); + float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11}; + memcpy(input2_ptr, arr2, 12 * sizeof(float)); + float* input3_ptr = input3.mutable_data({2, 4}, *cpu_place); + float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; + memcpy(input3_ptr, arr3, 8 * sizeof(float)); + + auto* gpu_place = new paddle::platform::GPUPlace(0); + paddle::platform::CUDADeviceContext context(*gpu_place); + + input1_gpu.CopyFrom(input1, *gpu_place); + input2_gpu.CopyFrom(input2, *gpu_place); + input3_gpu.CopyFrom(input3, *gpu_place); + float* a = input1_gpu.data(); + float* b = input2_gpu.data(); + float* c = input3_gpu.mutable_data(*gpu_place); + + paddle::operators::math::gemm( + context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4); + + input3.CopyFrom(input3_gpu, *cpu_place); + + EXPECT_EQ(input3_ptr[0], 0); + EXPECT_EQ(input3_ptr[1], 24); + EXPECT_EQ(input3_ptr[2], 28); + EXPECT_EQ(input3_ptr[3], 32); + EXPECT_EQ(input3_ptr[4], 4); + EXPECT_EQ(input3_ptr[5], 73); + EXPECT_EQ(input3_ptr[6], 86); + EXPECT_EQ(input3_ptr[7], 99); + delete gpu_place; } #endif + +TEST(math_function, gemm_notrans_cblas) { + paddle::framework::Tensor input1; + paddle::framework::Tensor input2; + paddle::framework::Tensor input3; + + int m = 2; + int n = 3; + int k = 3; + auto* cpu_place = new paddle::platform::CPUPlace(); + float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); + float arr1[6] = {0, 1, 2, 3, 4, 5}; + memcpy(input1_ptr, arr1, 6 * sizeof(float)); + float* input2_ptr = input2.mutable_data({3, 4}, *cpu_place); + float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; + memcpy(input2_ptr, arr2, 12 * sizeof(float)); + float* input3_ptr = input3.mutable_data({2, 4}, *cpu_place); + float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; + memcpy(input3_ptr, arr3, 8 * sizeof(float)); + + paddle::platform::CPUDeviceContext context(*cpu_place); + paddle::operators::math::gemm( + context, false, false, m, n, k, 1, input1_ptr, 3, input2_ptr + 1, 4, 1, + input3_ptr + 1, 4); + + EXPECT_EQ(input3_ptr[0], 0); + EXPECT_EQ(input3_ptr[1], 24); + EXPECT_EQ(input3_ptr[2], 28); + EXPECT_EQ(input3_ptr[3], 32); + EXPECT_EQ(input3_ptr[4], 4); + EXPECT_EQ(input3_ptr[5], 73); + EXPECT_EQ(input3_ptr[6], 86); + EXPECT_EQ(input3_ptr[7], 99); +} + +TEST(math_function, gemm_trans_clbas) { + paddle::framework::Tensor input1; + paddle::framework::Tensor input2; + paddle::framework::Tensor input3; + + int m = 2; + int n = 3; + int k = 3; + auto* cpu_place = new paddle::platform::CPUPlace(); + float* input1_ptr = input1.mutable_data({2, 3}, *cpu_place); + float arr1[6] = {0, 1, 2, 3, 4, 5}; + memcpy(input1_ptr, arr1, 6 * sizeof(float)); + float* input2_ptr = input2.mutable_data({4, 3}, *cpu_place); + float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11}; + memcpy(input2_ptr, arr2, 12 * sizeof(float)); + float* input3_ptr = input3.mutable_data({2, 4}, *cpu_place); + float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; + memcpy(input3_ptr, arr3, 8 * sizeof(float)); + + paddle::platform::CPUDeviceContext context(*cpu_place); + paddle::operators::math::gemm( + context, false, true, m, n, k, 1, input1_ptr, 3, input2_ptr + 3, 3, 1, + input3_ptr + 1, 4); + + EXPECT_EQ(input3_ptr[0], 0); + EXPECT_EQ(input3_ptr[1], 24); + EXPECT_EQ(input3_ptr[2], 28); + EXPECT_EQ(input3_ptr[3], 32); + EXPECT_EQ(input3_ptr[4], 4); + EXPECT_EQ(input3_ptr[5], 73); + EXPECT_EQ(input3_ptr[6], 86); + EXPECT_EQ(input3_ptr[7], 99); +} + +TEST(math_function, zero) { + paddle::framework::Tensor tensor; + auto* cpu_place = new paddle::platform::CPUPlace(); + float* t = tensor.mutable_data({2, 2}, *cpu_place); + paddle::platform::CPUDeviceContext context(*cpu_place); + paddle::operators::math::SetConstant( + context, &tensor, 0); + EXPECT_EQ(t[0], 0); + EXPECT_EQ(t[1], 0); + EXPECT_EQ(t[2], 0); + EXPECT_EQ(t[3], 0); + + paddle::operators::math::SetConstant( + context, &tensor, 1); + + EXPECT_EQ(t[0], 1); + EXPECT_EQ(t[1], 1); + EXPECT_EQ(t[2], 1); + EXPECT_EQ(t[3], 1); +} diff --git a/paddle/operators/math/pooling.cc b/paddle/operators/math/pooling.cc new file mode 100644 index 0000000000000000000000000000000000000000..3b706529d8f1ed0d673904b81047a5614bd4cf23 --- /dev/null +++ b/paddle/operators/math/pooling.cc @@ -0,0 +1,463 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/pooling.h" + +namespace paddle { +namespace operators { +namespace math { + +template +class Pool2dFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& output, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_process) { + const int batch_size = input.dims()[0]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output.dims()[1]; + const int output_height = output.dims()[2]; + const int output_width = output.dims()[3]; + const int ksize_height = ksize[0]; + const int ksize_width = ksize[1]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + + const int input_stride = input_height * input_width; + const int output_stride = output_height * output_width; + + const T* input_data = input.data(); + T* output_data = output.mutable_data(context.GetPlace()); + + for (int i = 0; i < batch_size; i++) { + for (int c = 0; c < output_channels; ++c) { + for (int ph = 0; ph < output_height; ++ph) { + int hstart = ph * stride_height - padding_height; + int hend = std::min(hstart + ksize_height, input_height); + hstart = std::max(hstart, 0); + for (int pw = 0; pw < output_width; ++pw) { + int wstart = pw * stride_width - padding_width; + int wend = std::min(wstart + ksize_width, input_width); + wstart = std::max(wstart, 0); + + T ele = pool_process.initial(); + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + pool_process.compute(ele, input_data[h * input_width + w]); + } + } + int pool_size = (hend - hstart) * (wend - wstart); + pool_process.finalize(ele, (static_cast(pool_size))); + output_data[ph * output_width + pw] = ele; + } + } + input_data += input_stride; + output_data += output_stride; + } + } + } +}; + +template +class Pool2dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings, + PoolProcess pool_grad_process) { + const int batch_size = input.dims()[0]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output.dims()[1]; + const int output_height = output.dims()[2]; + const int output_width = output.dims()[3]; + const int ksize_height = ksize[0]; + const int ksize_width = ksize[1]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + const int input_stride = input_height * input_width; + const int output_stride = output_height * output_width; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad.mutable_data(context.GetPlace()); + + for (int i = 0; i < batch_size; i++) { + for (int c = 0; c < output_channels; ++c) { + for (int ph = 0; ph < output_height; ++ph) { + int hstart = ph * stride_height - padding_height; + int hend = std::min(hstart + ksize_height, input_height); + hstart = std::max(hstart, 0); + for (int pw = 0; pw < output_width; ++pw) { + int wstart = pw * stride_width - padding_width; + int wend = std::min(wstart + ksize_width, input_width); + wstart = std::max(wstart, 0); + int pool_size = (hend - hstart) * (wend - wstart); + float scale = 1.0 / pool_size; + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + pool_grad_process.compute( + input_data[h * input_width + w], + output_data[ph * output_width + pw], + output_grad_data[ph * output_width + pw], + input_grad_data[h * input_width + w], + static_cast(scale)); + } + } + } + } + input_data += input_stride; + output_data += output_stride; + input_grad_data += input_stride; + output_grad_data += output_stride; + } + } + } +}; + +template +class MaxPool2dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings) { + const int batch_size = input.dims()[0]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output.dims()[1]; + const int output_height = output.dims()[2]; + const int output_width = output.dims()[3]; + const int ksize_height = ksize[0]; + const int ksize_width = ksize[1]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + const int input_stride = input_height * input_width; + const int output_stride = output_height * output_width; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad.mutable_data(context.GetPlace()); + + for (int i = 0; i < batch_size; i++) { + for (int c = 0; c < output_channels; ++c) { + for (int ph = 0; ph < output_height; ++ph) { + int hstart = ph * stride_height - padding_height; + int hend = std::min(hstart + ksize_height, input_height); + hstart = std::max(hstart, 0); + for (int pw = 0; pw < output_width; ++pw) { + int wstart = pw * stride_width - padding_width; + int wend = std::min(wstart + ksize_width, input_width); + wstart = std::max(wstart, 0); + + bool stop = false; + for (int h = hstart; h < hend && !stop; ++h) { + for (int w = wstart; w < wend && !stop; ++w) { + int input_idx = h * input_width + w; + int output_idx = ph * output_width + pw; + if (input_data[input_idx] == output_data[output_idx]) { + input_grad_data[input_idx] += output_grad_data[output_idx]; + stop = true; + } + } + } + } + } + input_data += input_stride; + output_data += output_stride; + input_grad_data += input_stride; + output_grad_data += output_stride; + } + } + } +}; + +template class MaxPool2dGradFunctor; +// template class MaxPool2dGradFunctor; + +template class Pool2dFunctor, float>; +template class Pool2dFunctor, float>; +template class Pool2dGradFunctor< + platform::CPUPlace, paddle::operators::math::MaxPoolGrad, float>; +template class Pool2dGradFunctor< + platform::CPUPlace, paddle::operators::math::AvgPoolGrad, float>; +template class Pool2dFunctor, double>; +template class Pool2dFunctor, double>; +template class Pool2dGradFunctor< + platform::CPUPlace, paddle::operators::math::MaxPoolGrad, double>; +template class Pool2dGradFunctor< + platform::CPUPlace, paddle::operators::math::AvgPoolGrad, double>; + +template +class Pool3dFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& output, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_process) { + const int batch_size = input.dims()[0]; + const int input_depth = input.dims()[2]; + const int input_height = input.dims()[3]; + const int input_width = input.dims()[4]; + const int output_channels = output.dims()[1]; + const int output_depth = output.dims()[2]; + const int output_height = output.dims()[3]; + const int output_width = output.dims()[4]; + const int ksize_depth = ksize[0]; + const int ksize_height = ksize[1]; + const int ksize_width = ksize[2]; + const int stride_depth = strides[0]; + const int stride_height = strides[1]; + const int stride_width = strides[2]; + const int padding_depth = paddings[0]; + const int padding_height = paddings[1]; + const int padding_width = paddings[2]; + + const int input_stride = input_depth * input_height * input_width; + const int output_stride = output_depth * output_height * output_width; + + const T* input_data = input.data(); + T* output_data = output.mutable_data(context.GetPlace()); + + for (int i = 0; i < batch_size; i++) { + for (int c = 0; c < output_channels; ++c) { + for (int pd = 0; pd < output_depth; ++pd) { + int dstart = pd * stride_depth - padding_depth; + int dend = std::min(dstart + ksize_depth, input_depth); + dstart = std::max(dstart, 0); + for (int ph = 0; ph < output_height; ++ph) { + int hstart = ph * stride_height - padding_height; + int hend = std::min(hstart + ksize_height, input_height); + hstart = std::max(hstart, 0); + for (int pw = 0; pw < output_width; ++pw) { + int wstart = pw * stride_width - padding_width; + int wend = std::min(wstart + ksize_width, input_width); + wstart = std::max(wstart, 0); + int output_idx = (pd * output_height + ph) * output_width + pw; + T ele = pool_process.initial(); + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + pool_process.compute( + ele, + input_data[(d * input_height + h) * input_width + w]); + } + } + } + int pool_size = + (dend - dstart) * (hend - hstart) * (wend - wstart); + pool_process.finalize(ele, static_cast(pool_size)); + output_data[output_idx] = ele; + } + } + } + input_data += input_stride; + output_data += output_stride; + } + } + } +}; + +template +class Pool3dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings, + PoolProcess pool_grad_process) { + const int batch_size = input.dims()[0]; + const int input_depth = input.dims()[2]; + const int input_height = input.dims()[3]; + const int input_width = input.dims()[4]; + const int output_channels = output.dims()[1]; + const int output_depth = output.dims()[2]; + const int output_height = output.dims()[3]; + const int output_width = output.dims()[4]; + const int ksize_depth = ksize[0]; + const int ksize_height = ksize[1]; + const int ksize_width = ksize[2]; + const int stride_depth = strides[0]; + const int stride_height = strides[1]; + const int stride_width = strides[2]; + const int padding_depth = paddings[0]; + const int padding_height = paddings[1]; + const int padding_width = paddings[2]; + const int input_stride = input_depth * input_height * input_width; + const int output_stride = output_depth * output_height * output_width; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad.mutable_data(context.GetPlace()); + + for (int i = 0; i < batch_size; i++) { + for (int c = 0; c < output_channels; ++c) { + for (int pd = 0; pd < output_depth; ++pd) { + int dstart = pd * stride_depth - padding_depth; + int dend = std::min(dstart + ksize_depth, input_depth); + dstart = std::max(dstart, 0); + for (int ph = 0; ph < output_height; ++ph) { + int hstart = ph * stride_height - padding_height; + int hend = std::min(hstart + ksize_height, input_height); + hstart = std::max(hstart, 0); + + for (int pw = 0; pw < output_width; ++pw) { + int wstart = pw * stride_width - padding_width; + int wend = std::min(wstart + ksize_width, input_width); + wstart = std::max(wstart, 0); + + int pool_size = + (dend - dstart) * (hend - hstart) * (wend - wstart); + float scale = 1.0 / pool_size; + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + int input_idx = (d * input_height + h) * input_width + w; + int output_idx = + (pd * output_height + ph) * output_width + pw; + pool_grad_process.compute( + input_data[input_idx], output_data[output_idx], + output_grad_data[output_idx], + input_grad_data[input_idx], static_cast(scale)); + } + } + } + } + } + } + input_data += input_stride; + output_data += output_stride; + input_grad_data += input_stride; + output_grad_data += output_stride; + } + } + } +}; + +template +class MaxPool3dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings) { + const int batch_size = input.dims()[0]; + const int input_depth = input.dims()[2]; + const int input_height = input.dims()[3]; + const int input_width = input.dims()[4]; + const int output_channels = output.dims()[1]; + const int output_depth = output.dims()[2]; + const int output_height = output.dims()[3]; + const int output_width = output.dims()[4]; + const int ksize_depth = ksize[0]; + const int ksize_height = ksize[1]; + const int ksize_width = ksize[2]; + const int stride_depth = strides[0]; + const int stride_height = strides[1]; + const int stride_width = strides[2]; + const int padding_depth = paddings[0]; + const int padding_height = paddings[1]; + const int padding_width = paddings[2]; + const int input_stride = input_depth * input_height * input_width; + const int output_stride = output_depth * output_height * output_width; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad.mutable_data(context.GetPlace()); + + for (int i = 0; i < batch_size; i++) { + for (int c = 0; c < output_channels; ++c) { + for (int pd = 0; pd < output_depth; ++pd) { + int dstart = pd * stride_depth - padding_depth; + int dend = std::min(dstart + ksize_depth, input_depth); + dstart = std::max(dstart, 0); + for (int ph = 0; ph < output_height; ++ph) { + int hstart = ph * stride_height - padding_height; + int hend = std::min(hstart + ksize_height, input_height); + hstart = std::max(hstart, 0); + for (int pw = 0; pw < output_width; ++pw) { + int wstart = pw * stride_width - padding_width; + int wend = std::min(wstart + ksize_width, input_width); + wstart = std::max(wstart, 0); + bool stop = false; + for (int d = dstart; d < dend && !stop; ++d) { + for (int h = hstart; h < hend && !stop; ++h) { + for (int w = wstart; w < wend && !stop; ++w) { + int input_idx = (d * input_height + h) * input_width + w; + int output_idx = + (pd * output_height + ph) * output_width + pw; + + if (input_data[input_idx] == output_data[output_idx]) { + input_grad_data[input_idx] += + output_grad_data[output_idx]; + stop = true; + } + } + } + } + } + } + } + input_data += input_stride; + output_data += output_stride; + input_grad_data += input_stride; + output_grad_data += output_stride; + } + } + } +}; + +template class MaxPool3dGradFunctor; +// template class MaxPool3dGradFunctor; + +template class Pool3dFunctor, float>; +template class Pool3dFunctor, float>; +template class Pool3dGradFunctor< + platform::CPUPlace, paddle::operators::math::MaxPoolGrad, float>; +template class Pool3dGradFunctor< + platform::CPUPlace, paddle::operators::math::AvgPoolGrad, float>; +template class Pool3dFunctor, double>; +template class Pool3dFunctor, double>; +template class Pool3dGradFunctor< + platform::CPUPlace, paddle::operators::math::MaxPoolGrad, double>; +template class Pool3dGradFunctor< + platform::CPUPlace, paddle::operators::math::AvgPoolGrad, double>; +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/pooling.cu b/paddle/operators/math/pooling.cu new file mode 100644 index 0000000000000000000000000000000000000000..8aeccd1f8e8855c51ad85016f0cb239b4c9c8fb0 --- /dev/null +++ b/paddle/operators/math/pooling.cu @@ -0,0 +1,635 @@ +/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/pooling.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { +namespace math { + +template +__global__ void KernelPool2D(const int nthreads, const T* input_data, + T* output_data, const int channels, + const int input_height, const int input_width, + const int output_height, const int output_width, + const int ksize_height, const int ksize_width, + const int stride_height, const int stride_width, + const int padding_height, const int padding_width, + PoolProcess pool_process) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; + index += blockDim.x * gridDim.x) { + int pw = index % output_width; + int ph = (index / output_width) % output_height; + int c = (index / output_width / output_height) % channels; + int batch_idx = index / output_width / output_height / channels; + + int hstart = ph * stride_height - padding_height; + int hend = min(hstart + ksize_height, input_height); + hstart = max(hstart, 0); + + int wstart = pw * stride_width - padding_width; + int wend = min(wstart + ksize_width, input_width); + wstart = max(wstart, 0); + + input_data += (batch_idx * channels + c) * input_height * input_width; + T ele = pool_process.initial(); + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + pool_process.compute(ele, input_data[h * input_width + w]); + } + } + int pool_size = (hend - hstart) * (wend - wstart); + pool_process.finalize(ele, (static_cast(pool_size))); + output_data[index] = ele; + } +} + +template +__global__ void KernelPool2DGrad( + const int nthreads, const T* input_data, const T* output_data, + const T* output_grad, T* input_grad, const int channels, + const int input_height, const int input_width, const int output_height, + const int output_width, const int ksize_height, const int ksize_width, + const int stride_height, const int stride_width, const int padding_height, + const int padding_width, PoolProcess pool_process) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; + index += blockDim.x * gridDim.x) { + int offsetW = index % input_width + padding_width; + int offsetH = (index / input_width) % input_height + padding_height; + int offsetC = (index / input_width / input_height) % channels; + int batch_idx = index / input_width / input_height / channels; + + int phstart = (offsetH < ksize_height) + ? 0 + : (offsetH - ksize_height) / stride_height + 1; + int pwstart = (offsetW < ksize_width) + ? 0 + : (offsetW - ksize_width) / stride_width + 1; + int phend = min(offsetH / stride_height + 1, output_height); + int pwend = min(offsetW / stride_width + 1, output_width); + T gradient = 0; + T input = input_data[index]; + int output_idx = + (batch_idx * channels + offsetC) * output_height * output_width; + output_data += output_idx; + output_grad += output_idx; + for (int ph = phstart; ph < phend; ++ph) { + for (int pw = pwstart; pw < pwend; ++pw) { + int hstart = ph * stride_height - padding_height; + int wstart = pw * stride_width - padding_width; + int hend = min(hstart + ksize_height, input_height); + int wend = min(wstart + ksize_width, input_width); + hstart = max(hstart, 0); + wstart = max(wstart, 0); + int pool_size = (hend - hstart) * (wend - wstart); + int output_sub_idx = ph * output_width + pw; + pool_process.compute(input, output_data[output_sub_idx], + output_grad[output_sub_idx], gradient, + static_cast(1.0 / pool_size)); + } + } + input_grad[index] = gradient; + } +} + +template +__global__ void KernelMaxPool2DGrad( + const int nthreads, const T* input_data, const T* output_data, + const T* output_grad, T* input_grad, const int channels, + const int input_height, const int input_width, const int output_height, + const int output_width, const int ksize_height, const int ksize_width, + const int stride_height, const int stride_width, const int padding_height, + const int padding_width) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; + index += blockDim.x * gridDim.x) { + int pw = index % output_width; + int ph = (index / output_width) % output_height; + int c = (index / output_width / output_height) % channels; + int batch_idx = index / output_width / output_height / channels; + + int hstart = ph * stride_height - padding_height; + int hend = min(hstart + ksize_height, input_height); + hstart = max(hstart, 0); + + int wstart = pw * stride_width - padding_width; + int wend = min(wstart + ksize_width, input_width); + wstart = max(wstart, 0); + + input_data += (batch_idx * channels + c) * input_height * input_width; + input_grad += (batch_idx * channels + c) * input_height * input_width; + + T ele = output_data[index]; + int maxIndex = -1; + bool stop = false; + for (int h = hstart; h < hend && !stop; ++h) { + for (int w = wstart; w < wend && !stop; ++w) { + if (ele == input_data[h * input_width + w]) { + maxIndex = h * input_width + w; + stop = true; + } + } + } + + if (maxIndex != -1) { + // atomic add + atomicAdd(input_grad + maxIndex, output_grad[index]); + } + } +} + +template +class Pool2dFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& output, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_process) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output.dims()[1]; + const int output_height = output.dims()[2]; + const int output_width = output.dims()[3]; + const int ksize_height = ksize[0]; + const int ksize_width = ksize[1]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + + const T* input_data = input.data(); + T* output_data = output.mutable_data(context.GetPlace()); + + int nthreads = batch_size * output_channels * output_height * output_width; + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelPool2D< + PoolProcess, + T><<(context) + .stream()>>>(nthreads, input_data, output_data, input_channels, + input_height, input_width, output_height, + output_width, ksize_height, ksize_width, + stride_height, stride_width, padding_height, + padding_width, pool_process); + } +}; + +template +class Pool2dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings, + PoolProcess pool_process) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_height = output.dims()[2]; + const int output_width = output.dims()[3]; + const int ksize_height = ksize[0]; + const int ksize_width = ksize[1]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad.mutable_data(context.GetPlace()); + + int nthreads = batch_size * input_channels * input_height * input_width; + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelPool2DGrad< + PoolProcess, + T><<(context) + .stream()>>>( + nthreads, input_data, output_data, output_grad_data, input_grad_data, + input_channels, input_height, input_width, output_height, output_width, + ksize_height, ksize_width, stride_height, stride_width, padding_height, + padding_width, pool_process); + } +}; + +template +class MaxPool2dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_height = input.dims()[2]; + const int input_width = input.dims()[3]; + const int output_channels = output.dims()[1]; + const int output_height = output.dims()[2]; + const int output_width = output.dims()[3]; + const int ksize_height = ksize[0]; + const int ksize_width = ksize[1]; + const int stride_height = strides[0]; + const int stride_width = strides[1]; + const int padding_height = paddings[0]; + const int padding_width = paddings[1]; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad.mutable_data(context.GetPlace()); + + int nthreads = batch_size * output_channels * output_height * output_width; + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelMaxPool2DGrad< + T><<(context) + .stream()>>>( + nthreads, input_data, output_data, output_grad_data, input_grad_data, + input_channels, input_height, input_width, output_height, output_width, + ksize_height, ksize_width, stride_height, stride_width, padding_height, + padding_width); + } +}; + +template class MaxPool2dGradFunctor; +// template class MaxPool2dGradFunctor; // The +// 64-bit floating-point version of atomicAdd() is only supported by devices of +// compute capability 6.x and higher. + +template class Pool2dFunctor, float>; +template class Pool2dFunctor, float>; +template class Pool2dGradFunctor< + platform::GPUPlace, paddle::operators::math::MaxPoolGrad, float>; +template class Pool2dGradFunctor< + platform::GPUPlace, paddle::operators::math::AvgPoolGrad, float>; +template class Pool2dFunctor, double>; +template class Pool2dFunctor, double>; +template class Pool2dGradFunctor< + platform::GPUPlace, paddle::operators::math::MaxPoolGrad, double>; +template class Pool2dGradFunctor< + platform::GPUPlace, paddle::operators::math::AvgPoolGrad, double>; + +template +__global__ void KernelPool3D( + const int nthreads, const T* input_data, T* output_data, const int channels, + const int input_depth, const int input_height, const int input_width, + const int output_depth, const int output_height, const int output_width, + const int ksize_depth, const int ksize_height, const int ksize_width, + const int stride_depth, const int stride_height, const int stride_width, + const int padding_depth, const int padding_height, const int padding_width, + PoolProcess pool_process) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; + index += blockDim.x * gridDim.x) { + int pw = index % output_width; + int ph = (index / output_width) % output_height; + int pd = (index / output_width / output_height) % output_depth; + int c = (index / output_width / output_height / output_depth) % channels; + int batch_idx = + index / output_width / output_height / output_depth / channels; + int dstart = pd * stride_depth - padding_depth; + int hstart = ph * stride_height - padding_height; + int wstart = pw * stride_width - padding_width; + int dend = min(dstart + ksize_depth, input_depth); + int hend = min(hstart + ksize_height, input_height); + int wend = min(wstart + ksize_width, input_width); + dstart = max(dstart, 0); + hstart = max(hstart, 0); + wstart = max(wstart, 0); + T ele = pool_process.initial(); + input_data += + (batch_idx * channels + c) * input_depth * input_height * input_width; + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + pool_process.compute( + ele, input_data[(d * input_height + h) * input_width + w]); + } + } + } + int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); + pool_process.finalize(ele, static_cast(pool_size)); + output_data[index] = ele; + } +} + +template +__global__ void KernelPool3DGrad( + const int nthreads, const T* input_data, const T* output_data, + const T* output_grad, T* input_grad, const int channels, + const int input_depth, const int input_height, const int input_width, + const int output_depth, const int output_height, const int output_width, + const int ksize_depth, const int ksize_height, const int ksize_width, + const int stride_depth, const int stride_height, const int stride_width, + const int padding_depth, const int padding_height, const int padding_width, + PoolProcess pool_process) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; + index += blockDim.x * gridDim.x) { + int offsetW = index % input_width + padding_width; + int offsetH = (index / input_width) % input_height + padding_height; + int offsetD = + (index / input_width / input_height) % input_depth + padding_depth; + int offsetC = (index / input_width / input_height / input_depth) % channels; + int batch_idx = index / input_width / input_height / input_depth / channels; + + int pdstart = (offsetD < ksize_depth) + ? 0 + : (offsetD - ksize_depth) / stride_depth + 1; + int phstart = (offsetH < ksize_height) + ? 0 + : (offsetH - ksize_height) / stride_height + 1; + int pwstart = (offsetW < ksize_width) + ? 0 + : (offsetW - ksize_width) / stride_width + 1; + int pdend = min((offsetD) / stride_depth + 1, output_depth); + int phend = min((offsetH) / stride_height + 1, output_height); + int pwend = min((offsetW) / stride_width + 1, output_width); + + T gradient = 0; + T input = input_data[index]; + int output_idx = (batch_idx * channels + offsetC) * output_depth * + output_height * output_width; + output_data += output_idx; + output_grad += output_idx; + + for (int pd = pdstart; pd < pdend; ++pd) { + for (int ph = phstart; ph < phend; ++ph) { + for (int pw = pwstart; pw < pwend; ++pw) { + // figure out the pooling size + int dstart = pd * stride_depth - padding_depth; + int hstart = ph * stride_height - padding_height; + int wstart = pw * stride_width - padding_width; + int dend = min(dstart + ksize_depth, input_depth); + int hend = min(hstart + ksize_height, input_height); + int wend = min(wstart + ksize_width, input_width); + dstart = max(dstart, 0); + hstart = max(hstart, 0); + wstart = max(wstart, 0); + int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); + int output_sub_idx = (pd * output_height + ph) * output_width + pw; + pool_process.compute(input, output_data[output_sub_idx], + output_grad[output_sub_idx], gradient, + static_cast(1.0 / pool_size)); + } + } + } + input_grad[index] = gradient; + } +} + +template +__global__ void KernelMaxPool3DGrad( + const int nthreads, const T* input_data, const T* output_data, + const T* output_grad, T* input_grad, const int channels, + const int input_depth, const int input_height, const int input_width, + const int output_depth, const int output_height, const int output_width, + const int ksize_depth, const int ksize_height, const int ksize_width, + const int stride_depth, const int stride_height, const int stride_width, + const int padding_depth, const int padding_height, + const int padding_width) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads; + index += blockDim.x * gridDim.x) { + int pw = index % output_width; + int ph = (index / output_width) % output_height; + int pd = (index / output_width / output_height) % output_depth; + int c = (index / output_width / output_height / output_depth) % channels; + int batch_idx = + index / output_width / output_height / output_depth / channels; + int dstart = pd * stride_depth - padding_depth; + int hstart = ph * stride_height - padding_height; + int wstart = pw * stride_width - padding_width; + int dend = min(dstart + ksize_depth, input_depth); + int hend = min(hstart + ksize_height, input_height); + int wend = min(wstart + ksize_width, input_width); + dstart = max(dstart, 0); + hstart = max(hstart, 0); + wstart = max(wstart, 0); + T ele = output_data[index]; + bool stop = false; + int maxIdx = -1; + input_data += + (batch_idx * channels + c) * input_depth * input_height * input_width; + input_grad += + (batch_idx * channels + c) * input_depth * input_height * input_width; + + for (int d = dstart; d < dend && !stop; ++d) { + for (int h = hstart; h < hend && !stop; ++h) { + for (int w = wstart; w < wend && !stop; ++w) { + if (ele == input_data[(d * input_height + h) * input_width + w]) { + stop = true; + maxIdx = (d * input_height + h) * input_width + w; + } + } + } + } + if (maxIdx != -1) { + // atomic add + atomicAdd(input_grad + maxIdx, output_grad[index]); + } + } +} + +template +class Pool3dFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& output, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_process) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_depth = input.dims()[2]; + const int input_height = input.dims()[3]; + const int input_width = input.dims()[4]; + const int output_channels = output.dims()[1]; + const int output_depth = output.dims()[2]; + const int output_height = output.dims()[3]; + const int output_width = output.dims()[4]; + const int ksize_depth = ksize[0]; + const int ksize_height = ksize[1]; + const int ksize_width = ksize[2]; + const int stride_depth = strides[0]; + const int stride_height = strides[1]; + const int stride_width = strides[2]; + const int padding_depth = paddings[0]; + const int padding_height = paddings[1]; + const int padding_width = paddings[2]; + + const T* input_data = input.data(); + T* output_data = output.mutable_data(context.GetPlace()); + + int nthreads = batch_size * output_channels * output_depth * output_height * + output_width; + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelPool3D< + PoolProcess, + T><<(context) + .stream()>>>( + nthreads, input_data, output_data, input_channels, input_depth, + input_height, input_width, output_depth, output_height, output_width, + ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, + stride_width, padding_depth, padding_height, padding_width, + pool_process); + } +}; + +template +class Pool3dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings, + PoolProcess pool_process) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_depth = input.dims()[2]; + const int input_height = input.dims()[3]; + const int input_width = input.dims()[4]; + const int output_channels = output.dims()[1]; + const int output_depth = output.dims()[2]; + const int output_height = output.dims()[3]; + const int output_width = output.dims()[4]; + const int ksize_depth = ksize[0]; + const int ksize_height = ksize[1]; + const int ksize_width = ksize[2]; + const int stride_depth = strides[0]; + const int stride_height = strides[1]; + const int stride_width = strides[2]; + const int padding_depth = paddings[0]; + const int padding_height = paddings[1]; + const int padding_width = paddings[2]; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad.mutable_data(context.GetPlace()); + + int nthreads = + batch_size * input_channels * input_depth * input_height * input_width; + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelPool3DGrad< + PoolProcess, + T><<(context) + .stream()>>>( + nthreads, input_data, output_data, output_grad_data, input_grad_data, + input_channels, input_depth, input_height, input_width, output_depth, + output_height, output_width, ksize_depth, ksize_height, ksize_width, + stride_depth, stride_height, stride_width, padding_depth, + padding_height, padding_width, pool_process); + } +}; + +template +class MaxPool3dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings) { + const int batch_size = input.dims()[0]; + const int input_channels = input.dims()[1]; + const int input_depth = input.dims()[2]; + const int input_height = input.dims()[3]; + const int input_width = input.dims()[4]; + const int output_channels = output.dims()[1]; + const int output_depth = output.dims()[2]; + const int output_height = output.dims()[3]; + const int output_width = output.dims()[4]; + const int ksize_depth = ksize[0]; + const int ksize_height = ksize[1]; + const int ksize_width = ksize[2]; + const int stride_depth = strides[0]; + const int stride_height = strides[1]; + const int stride_width = strides[2]; + const int padding_depth = paddings[0]; + const int padding_height = paddings[1]; + const int padding_width = paddings[2]; + + const T* input_data = input.data(); + const T* output_data = output.data(); + const T* output_grad_data = output_grad.data(); + T* input_grad_data = input_grad.mutable_data(context.GetPlace()); + + int nthreads = batch_size * output_channels * output_depth * output_height * + output_width; + int blocks = (nthreads + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KernelMaxPool3DGrad< + T><<(context) + .stream()>>>( + nthreads, input_data, output_data, output_grad_data, input_grad_data, + input_channels, input_depth, input_height, input_width, output_depth, + output_height, output_width, ksize_depth, ksize_height, ksize_width, + stride_depth, stride_height, stride_width, padding_depth, + padding_height, padding_width); + } +}; + +template class MaxPool3dGradFunctor; +// template class MaxPool3dGradFunctor; // The +// 64-bit floating-point version of atomicAdd() is only supported by devices of +// compute capability 6.x and higher. + +template class Pool3dFunctor, float>; +template class Pool3dFunctor, float>; +template class Pool3dGradFunctor< + platform::GPUPlace, paddle::operators::math::MaxPoolGrad, float>; +template class Pool3dGradFunctor< + platform::GPUPlace, paddle::operators::math::AvgPoolGrad, float>; +template class Pool3dFunctor, double>; +template class Pool3dFunctor, double>; +template class Pool3dGradFunctor< + platform::GPUPlace, paddle::operators::math::MaxPoolGrad, double>; +template class Pool3dGradFunctor< + platform::GPUPlace, paddle::operators::math::AvgPoolGrad, double>; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/pooling.h b/paddle/operators/math/pooling.h new file mode 100644 index 0000000000000000000000000000000000000000..d214c689235ad4233d3e4e1c2aa0fdc993bf20c6 --- /dev/null +++ b/paddle/operators/math/pooling.h @@ -0,0 +1,122 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { +namespace math { +////////////////////// +#define FLT_MAX __FLT_MAX__ // + +template +class MaxPool { + public: + DEVICE inline T initial() { return static_cast(-FLT_MAX); } + DEVICE inline void compute(T& y, const T& x) { y = y > x ? y : x; } + DEVICE inline void finalize(T& y, const T& poo_size) {} +}; + +template +class AvgPool { + public: + DEVICE inline T initial() { return static_cast(0); } + DEVICE inline void compute(T& y, const T& x) { y += x; } + DEVICE inline void finalize(T& y, const T& poo_size) { y /= poo_size; } +}; +template +class MaxPoolGrad { + public: + DEVICE inline void compute(const T& x, const T& y, const T& dy, T& dx, + T scale) { + dx += dy * (x == y); + } +}; + +template +class AvgPoolGrad { + public: + DEVICE inline void compute(const T& x, const T& y, const T& dy, T& dx, + T scale) { + dx += (scale * dy); + } +}; + +template +class Pool2dFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& output, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_compute); +}; + +template +class Pool2dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings, + PoolProcess pool_compute); +}; + +template +class MaxPool2dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings); +}; + +template +class Pool3dFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& output, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_compute); +}; + +template +class Pool3dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings, + PoolProcess pool_compute); +}; + +template +class MaxPool3dGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor& input, framework::Tensor& input_grad, + const framework::Tensor& output, + const framework::Tensor& output_grad, std::vector& ksize, + std::vector& strides, std::vector& paddings); +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/softmax.cc b/paddle/operators/math/softmax.cc new file mode 100644 index 0000000000000000000000000000000000000000..0ba8197ab8b64649c8adcf67771ba01eca7f1d10 --- /dev/null +++ b/paddle/operators/math/softmax.cc @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/math/softmax.h" + +namespace paddle { +namespace operators { +namespace math { + +template class SoftmaxFunctor; +template class SoftmaxGradFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/softmax.cu b/paddle/operators/math/softmax.cu new file mode 100644 index 0000000000000000000000000000000000000000..99f988d51e4b16c3f3bfd9c76b411bb53619603e --- /dev/null +++ b/paddle/operators/math/softmax.cu @@ -0,0 +1,28 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#define EIGEN_USE_GPU + +#include "paddle/operators/math/softmax.h" + +namespace paddle { +namespace operators { +namespace math { + +template class SoftmaxFunctor; +template class SoftmaxGradFunctor; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/math/softmax.h b/paddle/operators/math/softmax.h new file mode 100644 index 0000000000000000000000000000000000000000..b7f627eee7f8fe68a83595a3390a55d438c97afb --- /dev/null +++ b/paddle/operators/math/softmax.h @@ -0,0 +1,104 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/operator.h" +#include "paddle/framework/tensor.h" + +namespace paddle { +namespace operators { +namespace math { + +template +using EigenMatrix = framework::EigenMatrix; + +template +struct ValueClip { + HOSTDEVICE T operator()(const T& x) const { + const T kThreshold = -64.; + return x < kThreshold ? kThreshold : x; + } +}; + +template +class SoftmaxFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor* X, framework::Tensor* Y) { + auto logits = EigenMatrix::From(*X); + auto softmax = EigenMatrix::From(*Y); + + const int kBatchDim = 0; + const int kClassDim = 1; + + const int batch_size = logits.dimension(kBatchDim); + const int num_classes = logits.dimension(kClassDim); + + Eigen::DSizes along_class(kClassDim); + Eigen::DSizes batch_by_one(batch_size, 1); + Eigen::DSizes one_by_class(1, num_classes); + + auto shifted_logits = (logits - + logits.maximum(along_class) + .eval() + .reshape(batch_by_one) + .broadcast(one_by_class)) + .unaryExpr(ValueClip()); + + softmax.device(*context.GetEigenDevice()) = shifted_logits.exp(); + softmax.device(*context.GetEigenDevice()) = + (softmax * + softmax.sum(along_class) + .inverse() + .eval() + .reshape(batch_by_one) + .broadcast(one_by_class)); + } +}; + +template +class SoftmaxGradFunctor { + public: + void operator()(const platform::DeviceContext& context, + const framework::Tensor* y, const framework::Tensor* y_grad, + framework::Tensor* x_grad) { + auto softmax = EigenMatrix::From(*y); + auto softmax_grad = EigenMatrix::From(*y_grad); + auto logits_grad = EigenMatrix::From(*x_grad); + + const int kBatchDim = 0; + const int kClassDim = 1; + + const int batch_size = softmax.dimension(kBatchDim); + const int num_classes = softmax.dimension(kClassDim); + + Eigen::DSizes along_class(kClassDim); + Eigen::DSizes batch_by_one(batch_size, 1); + Eigen::DSizes one_by_class(1, num_classes); + + auto dot = (softmax * softmax_grad) + .sum(along_class) + .eval() + .reshape(batch_by_one) + .broadcast(one_by_class); + logits_grad.device(*context.GetEigenDevice()) = + (softmax_grad - dot) * softmax; + } +}; + +} // namespace math +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/mean_op.cc b/paddle/operators/mean_op.cc index d3d0e55a674587fb04f43f24d0790de4358f035a..d799239d4ed6d230578c77921a1a454b476b63fa 100644 --- a/paddle/operators/mean_op.cc +++ b/paddle/operators/mean_op.cc @@ -22,20 +22,23 @@ class MeanOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), - "Input of MeanOp must be initialized."); - ctx.Output("Out")->Resize({1}); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of MeanOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of MeanOp should not be null."); + ctx->SetOutputDim("Out", {1}); } }; class MeanOpMaker : public framework::OpProtoAndCheckerMaker { public: - MeanOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + MeanOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of mean op"); AddOutput("Out", "The output of mean op").NotInGradient(); - AddComment("Mean Operator"); + AddComment(R"DOC( Mean Operator +)DOC"); } }; @@ -44,9 +47,8 @@ class MeanGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - ctx.Output(framework::GradVarName("X")) - ->Resize(ctx.Input("X")->dims()); + void InferShape(framework::InferShapeContextBase* ctx) const override { + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; diff --git a/paddle/operators/mean_op.h b/paddle/operators/mean_op.h index ce31e178d8e375dc59be80a6c05133201308da70..c99286a5b928f1edcd845b01b21b95654c25db07 100644 --- a/paddle/operators/mean_op.h +++ b/paddle/operators/mean_op.h @@ -28,7 +28,7 @@ template ; template -class MeanKernel : public framework::OpKernel { +class MeanKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input = context.Input("X"); @@ -45,7 +45,7 @@ class MeanKernel : public framework::OpKernel { }; template -class MeanGradKernel : public framework::OpKernel { +class MeanGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto OG = context.Input(framework::GradVarName("Out")); diff --git a/paddle/operators/minus_op.cc b/paddle/operators/minus_op.cc index a4876feb2edf77bd422fa2a7687b0fa7d55dae47..ce049d4d7bd96a6758d71b381e6e6b4edbcc8b5c 100644 --- a/paddle/operators/minus_op.cc +++ b/paddle/operators/minus_op.cc @@ -26,14 +26,22 @@ class MinusOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto *left_tensor = ctx.Input("X"); - auto *right_tensor = ctx.Input("Y"); + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of MinusOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Y"), + "Input(Y) of MinusOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of MinusOp should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); PADDLE_ENFORCE_EQ( - left_tensor->numel(), right_tensor->numel(), + x_dims, y_dims, "Minus operator must take two tensor with same num of elements"); - ctx.Output("Out")->Resize(left_tensor->dims()); + ctx->SetOutputDim("Out", x_dims); + ctx->ShareLoD("X", /*->*/ "Out"); } }; @@ -47,7 +55,12 @@ class MinusOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC(Minus Operator -Equation: Out = X - Y +Equation: + + Out = X - Y + +Both the input `X` and `Y` can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with input `X`. )DOC"); } }; @@ -64,7 +77,7 @@ class MinusGradOp : public NetOp { // x_grad = out_grad AppendOp(framework::OpRegistry::CreateOp("identity", {{"X", {out_grad}}}, - {{"Out", {x_grad}}}, {})); + {{"Y", {x_grad}}}, {})); framework::AttributeMap scale_attr; scale_attr["scale"] = static_cast(-1); @@ -77,8 +90,6 @@ class MinusGradOp : public NetOp { } // namespace operators } // namespace paddle -USE_OP(scale); -USE_NO_KERNEL_OP(identity); namespace ops = paddle::operators; REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, minus_grad, ops::MinusGradOp); diff --git a/paddle/operators/minus_op.h b/paddle/operators/minus_op.h index 6310a4fd5141516cff4fc7acbe1d17913a1b5506..bd9a2790aa2b208c2d3dfc792031283eb6c42397 100644 --- a/paddle/operators/minus_op.h +++ b/paddle/operators/minus_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { template -class MinusKernel : public framework::OpKernel { +class MinusKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* left_tensor = context.Input("X"); diff --git a/paddle/operators/modified_huber_loss_op.cc b/paddle/operators/modified_huber_loss_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..84212a2b3be1ac3664ebd77c7a0ae4d86abad3a0 --- /dev/null +++ b/paddle/operators/modified_huber_loss_op.cc @@ -0,0 +1,114 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/modified_huber_loss_op.h" + +namespace paddle { +namespace operators { + +class ModifiedHuberLossOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized."); + PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized."); + + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); + + PADDLE_ENFORCE_EQ(x_dims, y_dims, "The shape of X and Y must be the same."); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "The tensor rank of X must be 2."); + PADDLE_ENFORCE_EQ(x_dims[1], 1, "The 2nd dimension of X must be 1."); + + ctx->SetOutputDim("IntermediateVal", x_dims); + ctx->SetOutputDim("Out", {x_dims[0], 1}); + } +}; + +class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ModifiedHuberLossOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "The input tensor of modified huber loss op." + "X is 2-D tensor with shape [batch_size, 1]."); + AddInput("Y", + "The target labels of modified huber loss op." + "The shape of Y is same as X. Values of Y must be 0 or 1."); + AddOutput("IntermediateVal", + "Variable to save intermediate result which will be reused in " + "backward processing.") + .AsIntermediate(); + AddOutput("Out", "Classification loss for X."); + AddComment(R"DOC( +Modified huber loss is used in binary classification problem. The shape of +input X and target Y are both [N, 1] and so is the shape of output loss. +Since target Y is not differentiable, cacluating gradient for Y is illegal. +The formulation of modified huber loss is: + +L(y, f(x)) = max(0, 1 - yf(x))^2 for yf(x) >= -1, + -4yf(x) otherwise. + +Make sure the values of target label Y are in {0, 1} here. The operator will +scale values of Y to {-1, +1} when computing losses and gradients. +)DOC"); + } +}; + +class ModifiedHuberLossGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized."); + PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized."); + PADDLE_ENFORCE(ctx->HasInput("IntermediateVal"), + "Intermediate value must not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@Grad) must not be null."); + + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); + auto intermediate_dims = ctx->GetInputDim("IntermediateVal"); + auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out")); + + PADDLE_ENFORCE_EQ( + intermediate_dims, x_dims, + "The shape of X and intermediate value must be the same."); + PADDLE_ENFORCE_EQ(out_grad_dims, x_dims, + "The shape of Input(Out@Grad) and X must be the same."); + + if (ctx->HasOutput(framework::GradVarName("X"))) { + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(modified_huber_loss, ops::ModifiedHuberLossOp, + ops::ModifiedHuberLossOpMaker, modified_huber_loss_grad, + ops::ModifiedHuberLossGradOp); + +REGISTER_OP_CPU_KERNEL( + modified_huber_loss, + ops::ModifiedHuberLossKernel); +REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad, + ops::ModifiedHuberLossGradCPUKernel); diff --git a/paddle/operators/modified_huber_loss_op.cu b/paddle/operators/modified_huber_loss_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..8854e166cd99ce914d7f9f9bcead3234b0649506 --- /dev/null +++ b/paddle/operators/modified_huber_loss_op.cu @@ -0,0 +1,78 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include +#include +#include +#include +#include "paddle/framework/op_registry.h" +#include "paddle/operators/modified_huber_loss_op.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +struct ModifiedHuberLossBackward { + template + HOSTDEVICE void operator()(Tuple t) const { + auto inter_val = thrust::get<1>(t); + auto y_val = thrust::get<2>(t); + auto out_grad = thrust::get<3>(t); + if (inter_val < -1) { + thrust::get<0>(t) = -4 * (2 * y_val - 1) * out_grad; + } else if (inter_val < 1) { + thrust::get<0>(t) = -2 * (1 - inter_val) * (2 * y_val - 1) * out_grad; + } else { + thrust::get<0>(t) = 0; + } + } +}; + +template +class ModifiedHuberLossGradGPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* in0 = context.Input("Y"); + auto* in1 = context.Input("IntermediateVal"); + auto* in2 = context.Input(framework::GradVarName("Out")); + auto* out0 = context.Output(framework::GradVarName("X")); + + if (out0) { + auto counts = framework::product(in1->dims()); + auto y_ptr = thrust::device_pointer_cast(in0->data()); + auto inter_val_ptr = thrust::device_pointer_cast(in1->data()); + auto out_grad_ptr = thrust::device_pointer_cast(in2->data()); + thrust::device_ptr x_grad_ptr( + out0->mutable_data(context.GetPlace())); + + auto iter_begin = thrust::make_zip_iterator( + thrust::make_tuple(x_grad_ptr, inter_val_ptr, y_ptr, out_grad_ptr)); + + auto iter_end = thrust::make_zip_iterator( + thrust::make_tuple(x_grad_ptr + counts, inter_val_ptr + counts, + y_ptr + counts, out_grad_ptr + counts)); + + thrust::for_each(iter_begin, iter_end, ModifiedHuberLossBackward()); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + modified_huber_loss, + ops::ModifiedHuberLossKernel); +REGISTER_OP_GPU_KERNEL(modified_huber_loss_grad, + ops::ModifiedHuberLossGradGPUKernel); diff --git a/paddle/operators/modified_huber_loss_op.h b/paddle/operators/modified_huber_loss_op.h new file mode 100644 index 0000000000000000000000000000000000000000..aba75efad9c19e3e113b4f09bc1fbd4732f4e187 --- /dev/null +++ b/paddle/operators/modified_huber_loss_op.h @@ -0,0 +1,105 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenVector = framework::EigenVector; + +template +struct CheckLabelValue { + HOSTDEVICE T operator()(const T& val) const { + PADDLE_ASSERT(val == static_cast(0) || val == static_cast(1)); + } +}; + +template +struct ModifiedHuberLossForward { + HOSTDEVICE T operator()(const T& val) const { + if (val < -1) { + return -4 * val; + } else if (val < 1) { + return (1 - val) * (1 - val); + } else { + return static_cast(0); + } + } +}; + +template +class ModifiedHuberLossKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* in0 = context.Input("X"); + auto* in1 = context.Input("Y"); + auto* out0 = context.Output("IntermediateVal"); + auto* out1 = context.Output("Out"); + + out0->mutable_data(context.GetPlace()); + out1->mutable_data(context.GetPlace()); + auto place = context.GetEigenDevice(); + + auto x = EigenVector::Flatten(*in0); + auto y = EigenVector::Flatten(*in1); + // make sure value's of Y in {0, 1} + y.unaryExpr(CheckLabelValue()); + auto inter_val = EigenVector::Flatten(*out0); + // scale y to {-1, +1} and compute x * y + inter_val.device(place) = x * (2 * y - static_cast(1)); + auto loss = EigenVector::Flatten(*out1); + loss.device(place) = inter_val.unaryExpr(ModifiedHuberLossForward()); + } +}; + +// CPU backward kernel +template +class ModifiedHuberLossGradCPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* in0 = context.Input("Y"); + auto* in1 = context.Input("IntermediateVal"); + auto* in2 = context.Input(framework::GradVarName("Out")); + auto* out0 = context.Output(framework::GradVarName("X")); + + if (out0) { + const T* y_ptr = in0->data(); + const T* inter_val_ptr = in1->data(); + const T* out_grad_ptr = in2->data(); + size_t counts = static_cast(framework::product(in1->dims())); + T* x_grad_ptr = out0->mutable_data(context.GetPlace()); + for (size_t i = 0; i < counts; ++i) { + if (inter_val_ptr[i] < -1) { + x_grad_ptr[i] = -4 * (2 * y_ptr[i] - 1) * out_grad_ptr[i]; + } else if (inter_val_ptr[i] < 1) { + x_grad_ptr[i] = -2 * (1 - inter_val_ptr[i]) * (2 * y_ptr[i] - 1) * + out_grad_ptr[i]; + } else { + x_grad_ptr[i] = 0; + } + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 710a56a0e8e2d17162d7d000df226f1537104eb9..3c8fe04d2edeccc0e0d55aa2a28d71085ccf5145 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -1,16 +1,16 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 + http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ #include "paddle/operators/mul_op.h" @@ -24,20 +24,25 @@ class MulOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto x_dims = ctx.Input("X")->dims(); - auto y_dims = ctx.Input("Y")->dims(); - int x_num_col_dims = Attr("x_num_col_dims"); - int y_num_col_dims = Attr("y_num_col_dims"); - - PADDLE_ENFORCE(x_dims.size() > x_num_col_dims, - "The rank of input tensor X(%s) should be larger than " - "`mul_op`'s `x_num_col_dims`.", - ctx.op().Input("X")); - PADDLE_ENFORCE(y_dims.size() > y_num_col_dims, - "The rank of input tensor Y(%s) should be larger than " - "`mul_op`'s `y_num_col_dims`.", - ctx.op().Input("Y")); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of MulOp should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); + int x_num_col_dims = ctx->Attrs().Get("x_num_col_dims"); + int y_num_col_dims = ctx->Attrs().Get("y_num_col_dims"); + + PADDLE_ENFORCE_GT( + x_dims.size(), x_num_col_dims, + "The input tensor X's rank of MulOp should be larger than " + "x_num_col_dims."); + PADDLE_ENFORCE_GT( + y_dims.size(), y_num_col_dims, + "The input tensor Y's rank of MulOp should be larger than " + "y_num_col_dims."); auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims); auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims); @@ -45,22 +50,23 @@ class MulOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ( x_mat_dims[1], y_mat_dims[0], "First matrix's width must be equal with second matrix's height."); - ctx.Output("Out")->Resize({x_mat_dims[0], y_mat_dims[1]}); + ctx->SetOutputDim("Out", {x_mat_dims[0], y_mat_dims[1]}); + ctx->ShareLoD("X", /*->*/ "Out"); } }; class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + MulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The first input of mul op"); AddInput("Y", "The second input of mul op"); AddOutput("Out", "The output of mul op"); AddAttr( "x_num_col_dims", - R"DOC(mul_op can take tensors with more than two dimensions as input `X`, - in that case, tensors will be reshaped to a matrix. The matrix's first - dimension(column length) will be the product of tensor's last + R"DOC(mul_op can take tensors with more than two dimensions as input `X`, + in that case, tensors will be reshaped to a matrix. The matrix's first + dimension(column length) will be the product of tensor's last `num_col_dims` dimensions, and the matrix's second dimension(row length) will be the product of tensor's first `rank - num_col_dims` dimensions. )DOC") @@ -74,9 +80,14 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker { .SetDefault(1) .EqualGreaterThan(1); AddComment(R"DOC( -Two Element Mul Operator. +Mul operator is used to perform matrix multiplication for input X and Y. -The equation is: Out = X * Y +The equation is: + + Out = X * Y + +Both the input `X` and `Y` can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with input `X`. )DOC"); } }; @@ -86,16 +97,14 @@ class MulOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null"); - auto x_dims = ctx.Input("X")->dims(); - auto y_dims = ctx.Input("Y")->dims(); - auto out_dims = ctx.Input(framework::GradVarName("Out"))->dims(); - auto *x_grad = ctx.Output(framework::GradVarName("X")); - auto *y_grad = ctx.Output(framework::GradVarName("Y")); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); + auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); auto x_mat_dims = framework::flatten_to_2d(x_dims, Attr("x_num_col_dims")); @@ -111,8 +120,15 @@ class MulOpGrad : public framework::OperatorWithKernel { "The second dimension of Out@GRAD must equal to the second " "dimension of the second operand."); - if (x_grad) x_grad->Resize(x_dims); - if (y_grad) y_grad->Resize(y_dims); + auto x_grad_name = framework::GradVarName("X"); + auto y_grad_name = framework::GradVarName("Y"); + + if (ctx->HasOutput(x_grad_name)) { + ctx->SetOutputDim(x_grad_name, x_dims); + } + if (ctx->HasOutput(y_grad_name)) { + ctx->SetOutputDim(y_grad_name, y_dims); + } } }; diff --git a/paddle/operators/mul_op.h b/paddle/operators/mul_op.h index 3c01f868bda8cba488b3403df456d63d6b082fa6..684b1ea0c0c8ddabc9809cc05ed985e0cc250955 100644 --- a/paddle/operators/mul_op.h +++ b/paddle/operators/mul_op.h @@ -28,7 +28,7 @@ template ; template -class MulKernel : public framework::OpKernel { +class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* x = context.Input("X"); @@ -46,15 +46,13 @@ class MulKernel : public framework::OpKernel { : *y; z->mutable_data(context.GetPlace()); - auto* device_context = - const_cast(context.device_context_); - math::matmul(x_matrix, false, y_matrix, false, 1, z, 0, - device_context); + math::matmul(context.device_context(), x_matrix, false, y_matrix, + false, 1, z, 0); } }; template -class MulGradKernel : public framework::OpKernel { +class MulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { int x_num_col_dims = ctx.template Attr("x_num_col_dims"); @@ -71,16 +69,14 @@ class MulGradKernel : public framework::OpKernel { Tensor* dx = ctx.Output(framework::GradVarName("X")); Tensor* dy = ctx.Output(framework::GradVarName("Y")); - auto* device_context = - const_cast(ctx.device_context_); if (dx) { dx->mutable_data(ctx.GetPlace()); Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix( *dx, x_num_col_dims) : *dx; // dx = dout * y'. dx: M x K, dout : M x N, y : K x N - math::matmul(*dout, false, y_matrix, true, 1, &dx_matrix, 0, - device_context); + math::matmul(ctx.device_context(), *dout, false, y_matrix, true, + 1, &dx_matrix, 0); } if (dy) { dy->mutable_data(ctx.GetPlace()); @@ -88,8 +84,8 @@ class MulGradKernel : public framework::OpKernel { *dy, y_num_col_dims) : *dy; // dy = x' * dout. dy K x N, dout : M x N, x : M x K - math::matmul(x_matrix, true, *dout, false, 1, &dy_matrix, 0, - device_context); + math::matmul(ctx.device_context(), x_matrix, true, *dout, false, + 1, &dy_matrix, 0); } } }; diff --git a/paddle/operators/multiplex_op.cc b/paddle/operators/multiplex_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..a069127a19a1d0ba4eaa2b3450a1c46262ace3ed --- /dev/null +++ b/paddle/operators/multiplex_op.cc @@ -0,0 +1,124 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/multiplex_op.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +class MultiplexOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null."); + PADDLE_ENFORCE(!ctx->Inputs("X").empty(), + "MultiInput(X) shouldn't be empty."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null."); + auto ids_dim = ctx->GetInputDim("Ids"); + PADDLE_ENFORCE( + ids_dim.size() == 2 && ids_dim[1] == 1, + "The index tensor must be a vector with size batchSize x 1."); + + auto ins_dims = ctx->GetInputsDim("X"); + auto num_ins = ins_dims.size(); + PADDLE_ENFORCE(num_ins > 1, + "multiplex operator should have more than " + "one candidate input tensors."); + + auto in_dim = ins_dims[0]; + PADDLE_ENFORCE(in_dim.size() >= 2, + "The rank of candidate tensors must be not less than 2."); + for (size_t i = 1; i < num_ins; i++) { + auto dim = ins_dims[i]; + PADDLE_ENFORCE(in_dim == dim, + "All the candidate tensors must have the same size."); + } + ctx->SetOutputDim("Out", in_dim); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.MultiInput("X")[0]->type()); + } +}; + +class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MultiplexOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Ids", "The index tensor of multiplex operator."); + AddInput("X", "The candidate tensors of multiplex operator.") + .AsDuplicable(); + AddOutput("Out", "The output tensor of multiplex operator."); + AddComment(R"DOC(Multiplex operator + +Multiplex multiple tensors according to the index provided by the index tensor. + +Ids: the index tensor. +X[0 : N - 1]: the candidate tensors for output (N >= 2). +For each index i from 0 to batchSize - 1, the output is the i-th row of the +the (Ids[i])-th tensor. + +For i-th row of the output tensor: + +y[i] = x_{k}[i] + +where y is the output tensor. `x_{k}` is the k-th input tensor +and `k = Ids[i]`. +)DOC"); + } +}; + +class MultiplexGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null."); + PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(), + "Output(X@Grad) should not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null."); + std::vector d_ins; + auto ins = ctx->GetInputsDim("X"); + // No need to compute gradient for Input(Ids) + for (size_t i = 0; i < ins.size(); i++) { + d_ins.push_back(ins[i]); + } + ctx->SetOutputsDim(framework::GradVarName("X"), d_ins); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.MultiInput("X")[0]->type()); + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; + +REGISTER_OP(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, multiplex_grad, + ops::MultiplexGradOp); +REGISTER_OP_CPU_KERNEL( + multiplex, ops::MultiplexCPUKernel); +REGISTER_OP_CPU_KERNEL( + multiplex_grad, + ops::MultiplexGradCPUKernel); diff --git a/paddle/operators/multiplex_op.cu b/paddle/operators/multiplex_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..72b1f96eafde37976b4b067b534112b17e02b807 --- /dev/null +++ b/paddle/operators/multiplex_op.cu @@ -0,0 +1,98 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/op_registry.h" +#include "paddle/operators/multiplex_op.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class MultiplexGPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto ins = ctx.MultiInput("X"); + auto* ids = ctx.Input("Ids"); + auto* out = ctx.Output("Out"); + out->mutable_data(ctx.GetPlace()); + + auto rows = ins[0]->dims()[0]; + auto cols = ins[0]->numel() / rows; + // copy index to cpu + Tensor index_t_cpu; + index_t_cpu.CopyFrom(*ids, platform::CPUPlace()); + auto* index = index_t_cpu.data(); + auto stream = reinterpret_cast( + ctx.device_context()) + .stream(); + Place place = boost::get(ctx.GetPlace()); + for (auto i = 0; i < rows; i++) { + int32_t k = index[i]; + PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative."); + PADDLE_ENFORCE_LT((size_t)k, ins.size(), + "index exceeds the number of candidate tensors."); + memory::Copy(place, out->data() + i * cols, place, + ins[k]->data() + i * cols, cols * sizeof(T), stream); + } + } +}; + +template +class MultiplexGradGPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* d_out = ctx.Input(framework::GradVarName("Out")); + auto ins = ctx.MultiInput("X"); + auto* ids = ctx.Input("Ids"); + auto d_ins = ctx.MultiOutput(framework::GradVarName("X")); + for (size_t i = 0; i < d_ins.size(); i++) { + if (d_ins[i]) { + d_ins[i]->mutable_data(ctx.GetPlace()); + auto t = framework::EigenVector::Flatten(*d_ins[i]); + t.device(ctx.GetEigenDevice()) = t.constant(static_cast(0)); + } + } + + auto rows = ins[0]->dims()[0]; + auto cols = ins[0]->numel() / rows; + // copy index to cpu + Tensor index_t_cpu; + index_t_cpu.CopyFrom(*ids, platform::CPUPlace()); + auto* index = index_t_cpu.data(); + + auto stream = reinterpret_cast( + ctx.device_context()) + .stream(); + Place place = boost::get(ctx.GetPlace()); + for (auto i = 0; i < rows; i++) { + size_t k = static_cast(index[i]); + if (d_ins[k]) { + memory::Copy(place, d_ins[k]->data() + i * cols, place, + d_out->data() + i * cols, cols * sizeof(T), stream); + } + } + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL( + multiplex, ops::MultiplexGPUKernel); +REGISTER_OP_GPU_KERNEL( + multiplex_grad, + ops::MultiplexGradGPUKernel); diff --git a/paddle/operators/multiplex_op.h b/paddle/operators/multiplex_op.h new file mode 100644 index 0000000000000000000000000000000000000000..ab3cafaa324a29d6f249cf1f73db92e1364eebc8 --- /dev/null +++ b/paddle/operators/multiplex_op.h @@ -0,0 +1,81 @@ + +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/memory/memcpy.h" + +namespace paddle { +namespace operators { + +template +class MultiplexCPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto ins = ctx.MultiInput("X"); + auto ids = ctx.Input("Ids"); + auto* out = ctx.Output("Out"); + + out->mutable_data(ctx.GetPlace()); + + auto rows = ins[0]->dims()[0]; + auto cols = ins[0]->numel() / rows; + auto index = ids->data(); + Place place = boost::get(ctx.GetPlace()); + for (auto i = 0; i < rows; i++) { + int32_t k = index[i]; + PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative."); + PADDLE_ENFORCE_LT(static_cast(k), ins.size(), + "index exceeds the number of candidate tensors."); + memory::Copy(place, out->data() + i * cols, place, + ins[k]->data() + i * cols, cols * sizeof(T)); + } + } +}; + +template +class MultiplexGradCPUKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* d_out = ctx.Input(framework::GradVarName("Out")); + auto* ids = ctx.Input("Ids"); + auto ins = ctx.MultiInput("X"); + auto d_ins = + ctx.MultiOutput(framework::GradVarName("X")); + for (size_t i = 0; i < d_ins.size(); i++) { + if (d_ins[i]) { + d_ins[i]->mutable_data(ctx.GetPlace()); + auto t = framework::EigenVector::Flatten(*d_ins[i]); + t.device(ctx.GetEigenDevice()) = t.constant(static_cast(0)); + } + } + + auto rows = ins[0]->dims()[0]; + auto cols = ins[0]->numel() / rows; + auto* index = ids->data(); + Place place = boost::get(ctx.GetPlace()); + for (auto i = 0; i < rows; i++) { + size_t k = static_cast(index[i]); + if (d_ins[k]) { + memory::Copy(place, d_ins[k]->data() + i * cols, place, + d_out->data() + i * cols, cols * sizeof(T)); + } + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/name_convention.md b/paddle/operators/name_convention.md index a090e0b5450509affdd739f63df618595f204f97..379385dc5d914101c7b5c9494f9383b6cf6a9b79 100644 --- a/paddle/operators/name_convention.md +++ b/paddle/operators/name_convention.md @@ -38,9 +38,11 @@ public: AccumulateOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "(Tensor) The input tensor that has to be accumulated to the output tensor. If the output size is not the same as input size, the output tensor is first reshaped and initialized to zero, and only then, accumulation is done."); + AddInput("X", "(Tensor) The input tensor that has to be accumulated to the output tensor. + If the output size is not the same as input size, + the output tensor is first reshaped and initialized to zero, and only then, accumulation is done."); AddOutput("Out", "(Tensor) Accumulated output tensor"); - AddAttr("gamma", "(float, default 1.0) Accumulation multiplier"); + AddAttr("gamma", "(float, default 1.0) Accumulation multiplier").SetDefault(1.0f); AddComment(R"DOC( Accumulate operator accumulates the input tensor to the output tensor. If the output tensor already has the right size, we add to it; otherwise, we first @@ -51,7 +53,7 @@ Accumulation is done as shown: Out = 1*X + gamma*Out -where X is the input tensor, Y is the output tensor and gamma is the multiplier +where X is the input tensor, Out is the output tensor and gamma is the multiplier argument. )DOC"); } diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index fcd8134b2c19cae6a4d006a4cd6fe32d2d627c34..2388b094d228562a4c9bfd1ad6840ef1c2068533 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -53,16 +53,6 @@ class NetOp : public framework::OperatorBase { this->CompleteAddOp(); } - /** - * Infer all the operators' input and output variables' shapes, will be called - * before every mini-batch - */ - void InferShape(const framework::Scope& scope) const override { - for (auto& op : ops_) { - op->InferShape(scope); - } - } - /** * @brief Run the network. * diff --git a/paddle/operators/net_op_test.cc b/paddle/operators/net_op_test.cc index f2e98ee7a1e14ee739abba01e97608845ce557f4..63bebd5b44719868a38ddf2b023955d1ab05245c 100644 --- a/paddle/operators/net_op_test.cc +++ b/paddle/operators/net_op_test.cc @@ -7,14 +7,12 @@ namespace operators { using Scope = framework::Scope; using DeviceContext = platform::DeviceContext; -static int infer_shape_cnt = 0; static int run_cnt = 0; class TestOp : public framework::OperatorBase { public: using framework::OperatorBase::OperatorBase; DEFINE_OP_CLONE_METHOD(TestOp); - void InferShape(const Scope& scope) const override { ++infer_shape_cnt; } void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override { ++run_cnt; diff --git a/paddle/operators/pad_op.cc b/paddle/operators/pad_op.cc index 7e78b6ec133981494a65b5e16316ae8fdbd61a60..04ebb14f6ee6c73f48aa2f75811a22f9b8a25006 100644 --- a/paddle/operators/pad_op.cc +++ b/paddle/operators/pad_op.cc @@ -24,9 +24,13 @@ class PadOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto x_dim = ctx.Input("X")->dims(); - auto paddings = Attr>("paddings"); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of PadOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of PadOp should not be null."); + + auto x_dim = ctx->GetInputDim("X"); + auto paddings = ctx->Attrs().Get>("paddings"); PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()), "Size of paddings should be equal to 2 * dimension size " "of input tensor."); @@ -34,13 +38,18 @@ class PadOp : public framework::OperatorWithKernel { for (int i = 0; i < x_dim.size(); ++i) { out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1]; } - ctx.Output("Out")->Resize(framework::make_ddim(out_dims)); + ctx->SetOutputDim("Out", framework::make_ddim(out_dims)); + if (out_dims[0] == x_dim[0]) { + // Only pass LoD when the first dimension is equal between + // output and input. + ctx->ShareLoD("X", /*->*/ "Out"); + } } }; class PadOpMaker : public framework::OpProtoAndCheckerMaker { public: - PadOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + PadOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of pad op. " @@ -57,15 +66,15 @@ Given: X = [[1, 2], [3, 4]] -and +and paddings = [0, 1, 1, 2] and - -pad_value = 0 -then we get +pad_value = 0 + +then we get Out = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] @@ -90,14 +99,14 @@ class PadOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null"); - auto x_dims = ctx.Input("X")->dims(); - auto *x_grad = ctx.Output(framework::GradVarName("X")); - if (x_grad != nullptr) { - x_grad->Resize(x_dims); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + auto x_dims = ctx->GetInputDim("X"); + auto x_grad_name = framework::GradVarName("X"); + if (ctx->HasOutput(x_grad_name)) { + ctx->SetOutputDim(x_grad_name, x_dims); } } }; diff --git a/paddle/operators/pad_op.h b/paddle/operators/pad_op.h index 2cc3b945ae5b2e2e93d8531c7f99e4c215d1d806..9534dbf54529e3b9ae2b6640d51fe291e9521927 100644 --- a/paddle/operators/pad_op.h +++ b/paddle/operators/pad_op.h @@ -47,7 +47,7 @@ void PadFunction(const framework::ExecutionContext& context) { } template -class PadKernel : public framework::OpKernel { +class PadKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { int rank = context.Input("X")->dims().size(); @@ -97,7 +97,7 @@ void PadGradFunction(const framework::ExecutionContext& context) { } template -class PadGradKernel : public framework::OpKernel { +class PadGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { size_t rank = diff --git a/paddle/operators/pool_op.cc b/paddle/operators/pool_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..c29f51f05613832c838400eb114465c81290ea58 --- /dev/null +++ b/paddle/operators/pool_op.cc @@ -0,0 +1,195 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/pool_op.h" + +namespace paddle { +namespace operators { + +int OutputSizePool(int input_size, int filter_size, int padding, int stride) { + int output_size = (input_size - filter_size + 2 * padding) / stride + 1; + return output_size; +} + +class PoolOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "X(Input) of Pooling should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Out(Output) of Pooling should not be null."); + + auto in_x_dims = ctx->GetInputDim("X"); + + std::string pooling_type = ctx->Attrs().Get("poolingType"); + std::vector ksize = ctx->Attrs().Get>("ksize"); + std::vector strides = ctx->Attrs().Get>("strides"); + std::vector paddings = ctx->Attrs().Get>("paddings"); + + PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg", + "pooling_type should be 'max' or 'avg'"); + PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5, + "Pooling intput should be 4-D or 5-D"); + + if (ctx->Attrs().Get("globalPooling")) { + ksize.resize(static_cast(in_x_dims.size()) - 2); + for (size_t i = 0; i < ksize.size(); ++i) + ksize[i] = static_cast(in_x_dims[i + 2]); + } + + PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U, + "Input size and Pooling size should be consistent."); + PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3, + "Pooling size should be 2 elements. or 3 elements."); + PADDLE_ENFORCE_EQ(ksize.size(), strides.size(), + "strides size and pooling size should be the same."); + PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(), + "paddings size and pooling size should be the same."); + + std::vector output_shape({in_x_dims[0], in_x_dims[1]}); + for (size_t i = 0; i < ksize.size(); ++i) { + output_shape.push_back( + OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i])); + } + ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); + } +}; + +class PoolOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "X(Input) of Pooling should not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Input@Grad of Pooling should not be null."); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + } +}; + +class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker { + public: + Pool2dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "X", + "The input tensor of pooling operator. " + "The format of input tensor is NCHW. Where N is batch size, C is the " + "number of channels, H and W is the height and width of feature."); + AddOutput("Out", + "The output tensor of pooling operator." + "The format of output tensor is also NCHW."); + + AddAttr("poolingType", + "PoolingType of pooling operator." + "Str constant equal to 'max' or 'avg'.") + .InEnum({"max", "avg"}); + AddAttr>( + "ksize", + "Pooling size(depth, height, width) of pooling operator." + "If globalPooling = true, ksize is ignored and need not be " + "specified."); // TODO(Add checker) + AddAttr( + "globalPooling", + "Whether to use the globalPooling." + "Bool constant equal to false or true." + "Default false." + "If globalPooling = true, ksize is ignored and need not be specified.") + .SetDefault(false); + AddAttr>("strides", + "Strides(height, width) of pooling operator." + "Default {1,1}") + .SetDefault({1, 1}); // TODO(Add checker) + AddAttr>("paddings", + "Paddings(height, width) of pooling operator." + "Default {0,0}.") + .SetDefault({0, 0}); // TODO(Add checker) + AddComment(R"DOC( +The pooling2d operation calculates the output based on +the input, poolingType and ksize, strides, paddings parameters. +)DOC"); + } +}; + +class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker { + public: + Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "The input tensor of pooling operator. " + "The format of input tensor is NCDHW. Where N is batch size, C is " + "the " + "number of channels, D, H and W is the depth, height and width of " + "feature."); + AddOutput("Out", + "The output tensor of pooling operator." + "The format of output tensor is also NCDHW."); + + AddAttr("poolingType", + "PoolingType of pooling operator." + "str constant equal to 'max' or 'avg'.") + .InEnum({"max", "avg"}); + AddAttr>( + "ksize", + "Pooling size(depth, height, width) of pooling operator." + "If globalPooling = true, ksize is ignored and need not be " + "specified."); // TODO(Add checker) + AddAttr( + "globalPooling", + "Whether to use the globalPooling." + "Bool constant equal to false or true." + "Default false." + "If globalPooling = true, ksize is ignored and need not be specified.") + .SetDefault(false); + AddAttr>( + "strides", + "Strides(depth, height, width) of pooling operator." + "Default {1,1,1}.") + .SetDefault({1, 1, 1}); // TODO(Add checker) + AddAttr>( + "paddings", + "Paddings(depth, height, width) of pooling operator." + "Default {0,0,0}.") + .SetDefault({0, 0, 0}); // TODO(Add checker) + AddComment(R"DOC( +The pooling3d operation calculates the output based on +the input, poolingType and ksize, strides, paddings parameters. +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad, + ops::PoolOpGrad); + +REGISTER_OP_CPU_KERNEL(pool2d, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL(pool2d_grad, + ops::PoolGradKernel) + +REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad, + ops::PoolOpGrad); + +REGISTER_OP_CPU_KERNEL(pool3d, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL(pool3d_grad, + ops::PoolGradKernel); diff --git a/paddle/operators/pool_op.cu b/paddle/operators/pool_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..0e3b80868f7b9d1697d619889160856d65ad59a3 --- /dev/null +++ b/paddle/operators/pool_op.cu @@ -0,0 +1,27 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/pool_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL(pool2d, + ops::PoolKernel); +REGISTER_OP_GPU_KERNEL(pool2d_grad, + ops::PoolGradKernel); + +REGISTER_OP_GPU_KERNEL(pool3d, + ops::PoolKernel); +REGISTER_OP_GPU_KERNEL(pool3d_grad, + ops::PoolGradKernel); diff --git a/paddle/operators/pool_op.h b/paddle/operators/pool_op.h new file mode 100644 index 0000000000000000000000000000000000000000..c2bc358def42959f2cc8f61cb00436fae1b7514b --- /dev/null +++ b/paddle/operators/pool_op.h @@ -0,0 +1,147 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/pooling.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class PoolKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* in_x = context.Input("X"); + Tensor* out = context.Output("Out"); + + std::string pooling_type = context.Attr("poolingType"); + std::vector ksize = context.Attr>("ksize"); + std::vector strides = context.Attr>("strides"); + std::vector paddings = context.Attr>("paddings"); + if (context.Attr("globalPooling")) { + for (size_t i = 0; i < ksize.size(); ++i) { + ksize[i] = static_cast(in_x->dims()[i + 2]); + } + } + + switch (ksize.size()) { + case 2: { + if (pooling_type == "max") { + paddle::operators::math::Pool2dFunctor< + Place, paddle::operators::math::MaxPool, T> + pool2d_forward; + paddle::operators::math::MaxPool pool_process; + pool2d_forward(context.device_context(), *in_x, *out, ksize, strides, + paddings, pool_process); + + } else if (pooling_type == "avg") { + paddle::operators::math::Pool2dFunctor< + Place, paddle::operators::math::AvgPool, T> + pool2d_forward; + paddle::operators::math::AvgPool pool_process; + pool2d_forward(context.device_context(), *in_x, *out, ksize, strides, + paddings, pool_process); + } + } break; + case 3: { + if (pooling_type == "max") { + paddle::operators::math::Pool3dFunctor< + Place, paddle::operators::math::MaxPool, T> + pool3d_forward; + paddle::operators::math::MaxPool pool_process; + pool3d_forward(context.device_context(), *in_x, *out, ksize, strides, + paddings, pool_process); + } else if (pooling_type == "avg") { + paddle::operators::math::Pool3dFunctor< + Place, paddle::operators::math::AvgPool, T> + pool3d_forward; + paddle::operators::math::AvgPool pool_process; + pool3d_forward(context.device_context(), *in_x, *out, ksize, strides, + paddings, pool_process); + } + } break; + } + } +}; + +template +class PoolGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* in_x = context.Input("X"); + const Tensor* out = context.Input("Out"); + const Tensor* out_grad = + context.Input(framework::GradVarName("Out")); + Tensor* in_x_grad = context.Output(framework::GradVarName("X")); + + std::string pooling_type = context.Attr("poolingType"); + std::vector ksize = context.Attr>("ksize"); + std::vector strides = context.Attr>("strides"); + std::vector paddings = context.Attr>("paddings"); + + if (context.Attr("globalPooling")) { + for (size_t i = 0; i < ksize.size(); ++i) + ksize[i] = static_cast(in_x->dims()[i + 2]); + } + + if (in_x_grad) { + in_x_grad->mutable_data(context.GetPlace()); + auto temp = framework::EigenVector::Flatten(*in_x_grad); + temp.device(context.GetEigenDevice()) = + temp.constant(static_cast(0)); + + switch (ksize.size()) { + case 2: { + if (pooling_type == "max") { + paddle::operators::math::MaxPool2dGradFunctor + pool2d_backward; + pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out, + *out_grad, ksize, strides, paddings); + } else if (pooling_type == "avg") { + paddle::operators::math::Pool2dGradFunctor< + Place, paddle::operators::math::AvgPoolGrad, T> + pool2d_backward; + paddle::operators::math::AvgPoolGrad pool_process; + pool2d_backward(context.device_context(), *in_x, *in_x_grad, *out, + *out_grad, ksize, strides, paddings, pool_process); + } + } break; + case 3: { + if (pooling_type == "max") { + paddle::operators::math::MaxPool3dGradFunctor + pool3d_backward; + pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out, + *out_grad, ksize, strides, paddings); + } else if (pooling_type == "avg") { + paddle::operators::math::Pool3dGradFunctor< + Place, paddle::operators::math::AvgPoolGrad, T> + pool3d_backward; + paddle::operators::math::AvgPoolGrad pool_process; + pool3d_backward(context.device_context(), *in_x, *in_x_grad, *out, + *out_grad, ksize, strides, paddings, pool_process); + } + } break; + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/prelu_op.cc b/paddle/operators/prelu_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..1692464f2833a59243ccc1598422180262a59282 --- /dev/null +++ b/paddle/operators/prelu_op.cc @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/prelu_op.h" +#include "paddle/operators/net_op.h" + +namespace paddle { +namespace operators { + +class PReluOp : public framework::OperatorWithKernel { + public: + PReluOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasInput("Alpha"), "Input(Alpha) should not be null"); + PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == 1, + "Size of weight Alpha must be one."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null"); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +class PReluOpMaker : public framework::OpProtoAndCheckerMaker { + public: + PReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input tensor of prelu operator."); + AddInput("Alpha", "The alpha weight of PRelu operator."); + AddOutput("Out", "The output tensor of PRelu operator."); + AddComment(R"DOC(PRelu operator + +The equation is: + + f(x) = alpha * x , for x < 0 + f(x) = x , for x >= 0 + +The input `X` can carry the LoD (Level of Details) information, +or not. And the output shares the LoD with input `X`. +)DOC"); + } +}; + +// The operator to calculate gradients of a prelu operator. +class PReluGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + ctx->SetOutputDim(framework::GradVarName("Alpha"), + ctx->GetInputDim("Alpha")); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP(prelu, ops::PReluOp, ops::PReluOpMaker, prelu_grad, + ops::PReluGradOp); +REGISTER_OP_CPU_KERNEL(prelu, + ops::PReluKernel); +REGISTER_OP_CPU_KERNEL(prelu_grad, + ops::PReluGradKernel); diff --git a/paddle/operators/prelu_op.cu b/paddle/operators/prelu_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..9e391dabae735cc8a740b46b50d31d271f99b65d --- /dev/null +++ b/paddle/operators/prelu_op.cu @@ -0,0 +1,21 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/prelu_op.h" + +REGISTER_OP_GPU_KERNEL( + prelu, paddle::operators::PReluKernel); +REGISTER_OP_GPU_KERNEL( + prelu_grad, + paddle::operators::PReluGradKernel); diff --git a/paddle/operators/prelu_op.h b/paddle/operators/prelu_op.h new file mode 100644 index 0000000000000000000000000000000000000000..5ad31c2203ae6c9bf6f48bb9ecf9a714597e7da8 --- /dev/null +++ b/paddle/operators/prelu_op.h @@ -0,0 +1,104 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/platform/transform.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using platform::Transform; + +template +class PReluFunctor { + public: + explicit PReluFunctor(const T* alpha) : alpha_(alpha) {} + + HOSTDEVICE T operator()(const T& x) const { + if (x > 0) + return x; + else + return x * (*alpha_); + } + + private: + const T* alpha_; +}; + +template +class PReluKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input("X"); + auto* alpha = context.Input("Alpha"); + auto* out = context.Output("Out"); + + const T* x_ptr = x->data(); + T* o_ptr = out->mutable_data(context.GetPlace()); + + auto* alpha_ptr = alpha->data(); + + int numel = x->numel(); + + Transform trans; + trans(context.device_context(), x_ptr, x_ptr + numel, o_ptr, + PReluFunctor(alpha_ptr)); + } +}; + +template +class PReluGradFunctor { + public: + explicit PReluGradFunctor(const T* alpha) : alpha_(alpha) {} + + HOSTDEVICE T operator()(const T& out, const T& dout) const { + if (out > 0) + return dout; + else + return dout * (*alpha_); + } + + private: + const T* alpha_; +}; + +template +class PReluGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* dx = context.Output(framework::GradVarName("X")); + auto* dout = context.Input(framework::GradVarName("Out")); + + auto* out = context.Input("Out"); + auto* alpha = context.Input("Alpha"); + auto* alpha_ptr = alpha->data(); + + T* dx_ptr = dx->mutable_data(context.GetPlace()); + const T* dout_ptr = dout->data(); + const T* out_ptr = out->data(); + int numel = dx->numel(); + + Transform trans; + trans(context.device_context(), out_ptr, out_ptr + numel, dout_ptr, dx_ptr, + PReluGradFunctor(alpha_ptr)); + + // TODO(Zhuoyuan): add dalpha upgrade when GPU kernels ready + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/rank_loss_op.cc b/paddle/operators/rank_loss_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..1ba22006f27abc963e7f161636a964863513a40c --- /dev/null +++ b/paddle/operators/rank_loss_op.cc @@ -0,0 +1,122 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/rank_loss_op.h" + +namespace paddle { +namespace operators { + +class RankLossOp : public framework::OperatorWithKernel { + public: + RankLossOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + // input check + PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null"); + PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null"); + PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null"); + + auto label_dims = ctx->GetInputDim("Label"); + auto left_dims = ctx->GetInputDim("Left"); + auto right_dims = ctx->GetInputDim("Right"); + + PADDLE_ENFORCE((label_dims == left_dims) && (left_dims == right_dims), + "All inputs must have the same size"); + PADDLE_ENFORCE((label_dims.size() == 2) && (label_dims[1] == 1), + "All inputs must be row vector with size batch_size x 1."); + ctx->SetOutputDim("Out", label_dims); + } +}; + +class RankLossOpMaker : public framework::OpProtoAndCheckerMaker { + public: + RankLossOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Label", + "The label indicating A ranked higher than B or not, row vector."); + AddInput("Left", "The output of RankNet for doc A, vector."); + AddInput("Right", "The output of RankNet for doc B, vetor"); + AddOutput("Out", "The output loss of RankLoss operator, vector."); + AddComment(R"DOC(RankLoss operator + +Rank loss operator for RankNet[1]. RankNet is a pairwise ranking model with +one training sample consisting of a pair of doc A and B, and the label P +indicating that A is ranked higher than B or not: + +P = {0, 1} or {0, 0.5, 1}, where 0.5 means no information about the rank of +the input pair. + +The RankLoss operator contains three inputs: Left (o_i), Right (o_j) and Label +(P_{i,j}), which represent the output of RankNet for two docs and the label +respectively, and yields the rank loss C_{i,j} by following the expression + +\f[ + C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) \\ + o_{i,j} = o_i - o_j \\ + \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \} +\f] + +The operator can take inputs of one sample or in batch. + +[1]. Chris Burges, Tal Shaked, Erin Renshaw, et al. Learning to + Rank using Gradient Descent. + http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf +)DOC"); + } +}; + +class RankLossGradOp : public framework::OperatorWithKernel { + public: + RankLossGradOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasInput("Left"), "Input(Left) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasInput("Right"), "Input(Right) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) shouldn't be null."); + auto dims = ctx->GetInputDim("Left"); + auto left_grad_name = framework::GradVarName("Left"); + auto right_grad_name = framework::GradVarName("Right"); + + if (ctx->HasOutput(left_grad_name)) { + ctx->SetOutputDim(left_grad_name, dims); + } + + if (ctx->HasOutput(right_grad_name)) { + ctx->SetOutputDim(right_grad_name, dims); + } + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; + +REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad, + ops::RankLossGradOp); +REGISTER_OP_CPU_KERNEL(rank_loss, + ops::RankLossKernel); +REGISTER_OP_CPU_KERNEL( + rank_loss_grad, ops::RankLossGradKernel); diff --git a/paddle/operators/rank_loss_op.cu b/paddle/operators/rank_loss_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..779588ff36c792b8925a535d60f1cfbbe3c66d86 --- /dev/null +++ b/paddle/operators/rank_loss_op.cu @@ -0,0 +1,22 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/rank_loss_op.h" + +REGISTER_OP_GPU_KERNEL( + rank_loss, + paddle::operators::RankLossKernel); +REGISTER_OP_GPU_KERNEL( + rank_loss_grad, + paddle::operators::RankLossGradKernel); diff --git a/paddle/operators/rank_loss_op.h b/paddle/operators/rank_loss_op.h new file mode 100644 index 0000000000000000000000000000000000000000..f184d6efcb496a1d7f38540712b6c431f816482e --- /dev/null +++ b/paddle/operators/rank_loss_op.h @@ -0,0 +1,80 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class RankLossKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* out_t = ctx.Output("Out"); + auto* label_t = ctx.Input("Label"); + auto* left_t = ctx.Input("Left"); + auto* right_t = ctx.Input("Right"); + out_t->mutable_data(ctx.GetPlace()); + + auto out = framework::EigenVector::Flatten(*out_t); + auto label = framework::EigenVector::Flatten(*label_t); + auto left = framework::EigenVector::Flatten(*left_t); + auto right = framework::EigenVector::Flatten(*right_t); + + auto& dev = ctx.GetEigenDevice(); + out.device(dev) = + (1. + (left - right).exp()).log() - label * (left - right); + } +}; + +template +class RankLossGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* d_left_t = + ctx.Output(framework::GradVarName("Left")); + auto* d_right_t = + ctx.Output(framework::GradVarName("Right")); + + auto* d_out_t = ctx.Input(framework::GradVarName("Out")); + auto* label_t = ctx.Input("Label"); + auto* left_t = ctx.Input("Left"); + auto* right_t = ctx.Input("Right"); + + auto& dev = ctx.GetEigenDevice(); + auto d_out = framework::EigenVector::Flatten(*d_out_t); + auto label = framework::EigenVector::Flatten(*label_t); + auto left = framework::EigenVector::Flatten(*left_t); + auto right = framework::EigenVector::Flatten(*right_t); + + // compute d_left + if (d_left_t) { + d_left_t->mutable_data(ctx.GetPlace()); + auto d_left = framework::EigenVector::Flatten(*d_left_t); + d_left.device(dev) = d_out * (1. / (1. + (right - left).exp()) - label); + } + // compute d_right + if (d_right_t) { + d_right_t->mutable_data(ctx.GetPlace()); + auto d_right = framework::EigenVector::Flatten(*d_right_t); + d_right.device(dev) = + -d_out * (1.0 / (1. + (right - left).exp()) - label); + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index e826703c60ca82e1fe690eb78c3d4f92981ef3a2..80de229c333f645fb3098b97fa076c6b77bb7ca9 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -26,27 +26,7 @@ namespace operators { using Scope = framework::Scope; using Variable = framework::Variable; using Tensor = framework::Tensor; - -void RecurrentAlgorithm::InferShape(const Scope& scope) const { - seq_len_ = scope.FindVar((arg_->inlinks[0]).external) - ->GetMutable() - ->dims()[0]; - CreateScopes(scope); - auto step_scopes = GetStepScopes(scope); - rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_, - true /*infer_shape_mode*/); - InitMemories(step_scopes[0], true /*infer_shape_mode*/); - - for (size_t i = 0; i < seq_len_; i++) { - if (i > 0) { - rnn::LinkMemories(step_scopes, arg_->memories, i, -1, - true /*infer_shape_mode*/); - } - (*stepnet_)->InferShape(*step_scopes[i]); - } - rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_, - true /*infer_shape_mode*/); -} +using LoDTensor = framework::LoDTensor; void RecurrentAlgorithm::Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const { @@ -77,7 +57,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { // Now all variables in scope must be created outside of op. PADDLE_ENFORCE_NOT_NULL(stepnet_); PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs"); - PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs"); if (seq_len_ > step_scopes->size()) { for (size_t i = step_scopes->size(); i < seq_len_; ++i) { @@ -88,7 +67,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { // the weight are located in parent scope for (auto& var_name : input.second) { if (!step_scope.FindVar(var_name)) { - step_scope.NewVar(var_name)->GetMutable(); + step_scope.NewVar(var_name)->GetMutable(); } } } @@ -106,11 +85,12 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { void RecurrentAlgorithm::InitMemories(Scope* step_scope, bool infer_shape_mode) const { for (auto& attr : arg_->memories) { - Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable(); + auto* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable(); PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, "memory [%s]'s boot variable [%s] not exists", attr.var, attr.boot_var); - Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable(); + auto* boot_mem = + step_scope->FindVar(attr.boot_var)->GetMutable(); if (infer_shape_mode) { pre_mem->Resize(boot_mem->dims()); PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2); @@ -121,14 +101,12 @@ void RecurrentAlgorithm::InitMemories(Scope* step_scope, } const rnn::ArgumentName RecurrentOp::kArgName{ - "step_net", "step_scopes", "inlinks", - "outlinks", "inlink_alias", "outlink_alias", + "step_net", "step_scopes", "inlinks", "outlinks", "memories", "pre_memories", "boot_memories"}; const rnn::ArgumentName RecurrentGradientOp::kArgName{ - "step_net", "step_scopes", "outlink@grad", - "inlink@grad", "inlink_alias", "outlink_alias", - "memories", "pre_memories", "boot_memories@grad"}; + "step_net", "step_scopes@GRAD", "outlinks@GRAD", "inlinks@GRAD", + "memories", "pre_memories", "boot_memories@GRAD"}; RecurrentOp::RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs, @@ -158,8 +136,6 @@ class RecurrentAlgorithmProtoAndCheckerMaker AddOutput(name.step_scopes, "step scopes"); // Attributes stored in AttributeMap - AddAttr>(name.inlink_alias, "alias of inlinks"); - AddAttr>(name.outlink_alias, "alias of outlinks"); AddAttr>(name.pre_memories, "names of pre-memories"); AddAttr>(name.memories, "names of memories"); @@ -192,9 +168,9 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients( "memory variable [%s] does not exists", attr.var); PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr, "boot variable [%s] does not exists", attr.boot_var); - Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable(); - Tensor* boot_mem_grad = - step_scope->NewVar(attr.boot_var)->GetMutable(); + auto* mem_grad = step_scope->NewVar(attr.var)->GetMutable(); + auto* boot_mem_grad = + step_scope->NewVar(attr.boot_var)->GetMutable(); if (infer_shape_mode) { boot_mem_grad->Resize(mem_grad->dims()); } else { @@ -203,37 +179,18 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients( } } -void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { - seq_len_ = scope.FindVar((arg_->inlinks[0]).external) - ->GetMutable() - ->dims()[0]; - auto step_scopes = GetStepScopes(scope); - rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_, - true /*infer_shape_mode*/); - for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) { - if (static_cast(step_id) != seq_len_ - 1) { - rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1, - true /*infer_shape_mode*/); - } - (*stepnet_)->InferShape(*step_scopes[step_id]); - } - rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_, - true /*infer_shape_mode*/); - LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/); -} - RecurrentGradientOp::RecurrentGradientOp( const std::string& type, const framework::VariableNameMap& inputs, const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) { - rnn::InitArgument(kArgName, &arg_, *this); + rnn::InitArgument(kArgName, &arg_, *this, true /*is grad*/); alg_.Init(&arg_, &stepnet_); } } // namespace operators } // namespace paddle -REGISTER_OP_WITHOUT_GRADIENT( - recurrent, paddle::operators::RecurrentOp, - paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker); +REGISTER_OP(recurrent, paddle::operators::RecurrentOp, + paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker, + recurrent_grad, paddle::operators::RecurrentGradientOp); diff --git a/paddle/operators/recurrent_op.h b/paddle/operators/recurrent_op.h index 1033d657a3a8f96c8b3dae8dd93d3f1f6840b59b..c6b9a5533eece9057449b5c875ddcb3cefe716f0 100644 --- a/paddle/operators/recurrent_op.h +++ b/paddle/operators/recurrent_op.h @@ -22,7 +22,7 @@ namespace paddle { namespace operators { // The sequence format in RecurrentOp is Tensor now. -// TODO(Yan Chunwei): +// TODO(Superjom) // 1. No-padding computing for sequences with indifinite length in one batch. // 2. Hierarchical RNN for sequence with sub-sequence. // 3. Internal Memory. @@ -41,11 +41,6 @@ class RecurrentAlgorithm { stepnet_ = stepnet; } - /** - * InferShape must be called before Run. - */ - void InferShape(const framework::Scope& scope) const; - protected: /* * The step scopes will be stored in the father scope as a variable. @@ -94,11 +89,6 @@ class RecurrentGradientAlgorithm { void LinkBootMemoryGradients(framework::Scope* step_scopes, bool infer_shape_mode) const; - /** - * InferShape must be called before Run. - */ - void InferShape(const framework::Scope& scope) const; - protected: inline const std::vector& GetStepScopes( const framework::Scope& scope) const { @@ -124,12 +114,6 @@ class RecurrentOp : public framework::OperatorBase { // TODO(yuyang18): Implement copy ctor well. PADDLE_THROW("Not implemented"); } - /** - * InferShape must be called before Run. - */ - void InferShape(const framework::Scope& scope) const override { - alg_.InferShape(scope); - } void Run(const framework::Scope& scope, const platform::DeviceContext& dev_ctx) const override { @@ -163,13 +147,6 @@ class RecurrentGradientOp : public framework::OperatorBase { PADDLE_THROW("Not Implemented"); } - /** - * InferShape must be called before Run. - */ - void InferShape(const framework::Scope& scope) const override { - alg_.InferShape(scope); - } - void Run(const framework::Scope& scope, const platform::DeviceContext& dev_ctx) const override { alg_.Run(scope, dev_ctx); @@ -177,6 +154,9 @@ class RecurrentGradientOp : public framework::OperatorBase { static const rnn::ArgumentName kArgName; + /* + * set a stepnet that is created according to a RecurrentOp's stepnet. + */ void set_stepnet(std::unique_ptr net) { stepnet_ = std::move(net); } diff --git a/paddle/operators/reduce_op.cc b/paddle/operators/reduce_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..3ef443d1c7f475cbd578078db02fb5e0d500d060 --- /dev/null +++ b/paddle/operators/reduce_op.cc @@ -0,0 +1,203 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/reduce_op.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; + +class ReduceOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of ReduceOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of ReduceOp should not be null."); + auto x_dims = ctx->GetInputDim("X"); + auto x_rank = x_dims.size(); + PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported."); + int dim = ctx->Attrs().Get("dim"); + if (dim < 0) dim = x_rank + dim; + PADDLE_ENFORCE_LT( + dim, x_rank, + "The dim should be in the range [-rank(input), rank(input))."); + bool keep_dim = ctx->Attrs().Get("keep_dim"); + auto dims_vector = vectorize(x_dims); + if (keep_dim || x_rank == 1) { + dims_vector[dim] = 1; + } else { + dims_vector.erase(dims_vector.begin() + dim); + } + auto out_dims = framework::make_ddim(dims_vector); + ctx->SetOutputDim("Out", out_dims); + if (dim != 0) { + // Only pass LoD when not reducing on the first dim. + ctx->ShareLoD("X", /*->*/ "Out"); + } + } +}; + +class ReduceGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null."); + auto x_dims = ctx->GetInputDim("X"); + auto x_rank = x_dims.size(); + PADDLE_ENFORCE_LE(x_rank, 6, "Tensors with rank at most 6 are supported."); + int dim = ctx->Attrs().Get("dim"); + if (dim < 0) dim = x_rank + dim; + PADDLE_ENFORCE_LT( + dim, x_rank, + "The dim should be in the range [-rank(input), rank(input))."); + auto x_grad_name = framework::GradVarName("X"); + if (ctx->HasOutput(x_grad_name)) { + ctx->SetOutputDim(x_grad_name, x_dims); + } + } +}; + +class ReduceOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ReduceOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "X", + "(Tensor) The input tensor. Tensors with rank at most 6 are supported"); + AddOutput("Out", "(Tensor) The result tensor."); + AddAttr( + "dim", + "(int, default 1) The dimension to reduce. " + "Must be in the range [-rank(input), rank(input)). " + "If `dim < 0`, the dim to reduce is `rank + dim`. " + "Noting that reducing on the first dim will make the LoD info lost.") + .SetDefault(0); + AddAttr("keep_dim", + "(bool, default false) " + "If true, retain the reduced dimension with length 1.") + .SetDefault(false); + comment_ = R"DOC( +{ReduceOP} operator computes the {reduce} of input tensor along the given dimension. +The result tensor has 1 fewer dimension than the input unless `keep_dim` is true. +)DOC"; + AddComment(comment_); + } + + protected: + std::string comment_; + + void Replace(std::string &src, std::string from, std::string to) { + std::size_t len_from = std::strlen(from.c_str()); + std::size_t len_to = std::strlen(to.c_str()); + for (std::size_t pos = src.find(from); pos != std::string::npos; + pos = src.find(from, pos + len_to)) { + src.replace(pos, len_from, to); + } + } + + void SetComment(std::string name, std::string op) { + Replace(comment_, "{ReduceOP}", name); + Replace(comment_, "{reduce}", op); + } +}; + +class ReduceSumOpMaker : public ReduceOpMaker { + public: + ReduceSumOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : ReduceOpMaker(proto, op_checker) { + SetComment("ReduceSum", "sum"); + AddComment(comment_); + } +}; + +class ReduceMeanOpMaker : public ReduceOpMaker { + public: + ReduceMeanOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : ReduceOpMaker(proto, op_checker) { + SetComment("ReduceMean", "mean"); + AddComment(comment_); + } +}; + +class ReduceMaxOpMaker : public ReduceOpMaker { + public: + ReduceMaxOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : ReduceOpMaker(proto, op_checker) { + SetComment("ReduceMax", "max"); + AddComment(comment_); + } +}; + +class ReduceMinOpMaker : public ReduceOpMaker { + public: + ReduceMinOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : ReduceOpMaker(proto, op_checker) { + SetComment("ReduceMin", "min"); + AddComment(comment_); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP(reduce_sum, ops::ReduceOp, ops::ReduceSumOpMaker, reduce_sum_grad, + ops::ReduceGradOp); +REGISTER_OP_CPU_KERNEL( + reduce_sum, + ops::ReduceKernel); +REGISTER_OP_CPU_KERNEL(reduce_sum_grad, + ops::ReduceGradKernel); + +REGISTER_OP(reduce_mean, ops::ReduceOp, ops::ReduceMeanOpMaker, + reduce_mean_grad, ops::ReduceGradOp); +REGISTER_OP_CPU_KERNEL( + reduce_mean, + ops::ReduceKernel); +REGISTER_OP_CPU_KERNEL(reduce_mean_grad, + ops::ReduceGradKernel); + +REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad, + ops::ReduceGradOp); +REGISTER_OP_CPU_KERNEL( + reduce_max, + ops::ReduceKernel); +REGISTER_OP_CPU_KERNEL(reduce_max_grad, + ops::ReduceGradKernel); + +REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_min_grad, + ops::ReduceGradOp); +REGISTER_OP_CPU_KERNEL( + reduce_min, + ops::ReduceKernel); +REGISTER_OP_CPU_KERNEL(reduce_min_grad, + ops::ReduceGradKernel); diff --git a/paddle/operators/reduce_op.cu b/paddle/operators/reduce_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..595127b858ea8eb41281f92e92c6467e4d90ff1a --- /dev/null +++ b/paddle/operators/reduce_op.cu @@ -0,0 +1,46 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/reduce_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL( + reduce_sum, + ops::ReduceKernel); +REGISTER_OP_GPU_KERNEL(reduce_sum_grad, + ops::ReduceGradKernel); + +REGISTER_OP_GPU_KERNEL( + reduce_mean, + ops::ReduceKernel); +REGISTER_OP_GPU_KERNEL(reduce_mean_grad, + ops::ReduceGradKernel); + +REGISTER_OP_GPU_KERNEL( + reduce_max, + ops::ReduceKernel); +REGISTER_OP_GPU_KERNEL(reduce_max_grad, + ops::ReduceGradKernel); + +REGISTER_OP_GPU_KERNEL( + reduce_min, + ops::ReduceKernel); +REGISTER_OP_GPU_KERNEL(reduce_min_grad, + ops::ReduceGradKernel); diff --git a/paddle/operators/reduce_op.h b/paddle/operators/reduce_op.h new file mode 100644 index 0000000000000000000000000000000000000000..ba3f3db81dc6251a063d27e597fd7e486e7b6c14 --- /dev/null +++ b/paddle/operators/reduce_op.h @@ -0,0 +1,200 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using DDim = framework::DDim; +template +using EigenTensor = framework::EigenTensor; + +struct SumFunctor { + template + void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + y.device(place) = x.sum(dim); + } +}; + +struct SumGradFunctor { + template + void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + const Dim& dim, int size) { + dx.device(place) = dy.broadcast(dim); + } +}; + +struct MeanFunctor { + template + void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + y.device(place) = x.mean(dim); + } +}; + +struct MeanGradFunctor { + template + void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + const Dim& dim, int size) { + dx.device(place) = dy.broadcast(dim) / dx.constant(size); + } +}; + +struct MaxFunctor { + template + void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + y.device(place) = x.maximum(dim); + } +}; + +struct MinFunctor { + template + void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + y.device(place) = x.minimum(dim); + } +}; + +struct MaxOrMinGradFunctor { + template + void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + const Dim& dim, int size) { + auto equals = x == y.broadcast(dim); + auto ones = dx.constant(1); + auto zeros = dx.constant(0); + // If there are multiple minimum or maximum elements, the subgradient of + // each is the set [0, 1], and we pass gradient to all of them here. + dx.device(place) = dy.broadcast(dim) * equals.select(ones, zeros); + } +}; + +template +class ReduceKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + int rank = context.Input("X")->dims().size(); + switch (rank) { + case 1: + ReduceCompute<1>(context); + break; + case 2: + ReduceCompute<2>(context); + break; + case 3: + ReduceCompute<3>(context); + break; + case 4: + ReduceCompute<4>(context); + break; + case 5: + ReduceCompute<5>(context); + break; + case 6: + ReduceCompute<6>(context); + break; + } + } + + private: + template + void ReduceCompute(const framework::ExecutionContext& context) const { + auto* input = context.Input("X"); + auto* output = context.Output("Out"); + output->mutable_data(context.GetPlace()); + + auto x = EigenTensor::From(*input); + auto x_rank = static_cast(x.dimensions().size()); + int dim = static_cast(context.Attr("dim")); + if (dim < 0) dim = x_rank + dim; + auto reduce_dim = Eigen::array({{dim}}); + // construct the squeezed output tensor + bool keep_dim = context.Attr("keep_dim"); + DDim dims = output->dims(); + auto dims_vector = vectorize(dims); + if (keep_dim && x_rank > 1) { + dims_vector.erase(dims_vector.begin() + dim); + dims = framework::make_ddim(dims_vector); + } + auto out = EigenTensor < T, D == 1 ? 1 : (D - 1) > ::From(*output, dims); + auto& place = context.GetEigenDevice(); + Functor functor; + functor(place, x, out, reduce_dim); + } +}; + +template +class ReduceGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + int rank = context.Input("X")->dims().size(); + switch (rank) { + case 1: + ReduceGradCompute<1>(context); + break; + case 2: + ReduceGradCompute<2>(context); + break; + case 3: + ReduceGradCompute<3>(context); + break; + case 4: + ReduceGradCompute<4>(context); + break; + case 5: + ReduceGradCompute<5>(context); + break; + case 6: + ReduceGradCompute<6>(context); + break; + } + } + + private: + template + void ReduceGradCompute(const framework::ExecutionContext& context) const { + auto* input0 = context.Input("X"); + auto* input1 = context.Input("Out"); + auto* input2 = context.Input(framework::GradVarName("Out")); + auto* output = context.Output(framework::GradVarName("X")); + + output->mutable_data(context.GetPlace()); + auto x = EigenTensor::From(*input0); + auto x_grad = EigenTensor::From(*output); + auto x_rank = static_cast(x.dimensions().size()); + int dim = static_cast(context.Attr("dim")); + if (dim < 0) dim = x_rank + dim; + DDim dims = input0->dims(); + dims[dim] = 1; + auto x_reduce = EigenTensor::From(*input1, dims); + auto x_reduce_grad = EigenTensor::From(*input2, dims); + + Eigen::array braodcast_dim; + for (size_t i = 0; i < D; ++i) braodcast_dim[i] = 1; + braodcast_dim[dim] = input0->dims()[dim]; + auto& place = context.GetEigenDevice(); + Functor functor; + functor(place, x, x_reduce, x_grad, x_reduce_grad, braodcast_dim, + braodcast_dim[dim]); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/reshape_op.cc b/paddle/operators/reshape_op.cc index b7061153d2bf13982f14f233e87a87daeeebf5fd..a3c3fa2716ad9f6487e3eff2d98b2c76d964ddef 100644 --- a/paddle/operators/reshape_op.cc +++ b/paddle/operators/reshape_op.cc @@ -26,10 +26,14 @@ class ReshapeOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(const framework::InferShapeContext &ctx) const override { + void InferShape(framework::InferShapeContextBase *ctx) const override { // input check - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null"); - auto shape = ctx.Attr>("shape"); + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of ReshapeOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of ReshapeOp should not be null."); + + auto shape = ctx->Attrs().Get>("shape"); PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty."); for (auto dim : shape) { PADDLE_ENFORCE(dim > 0, "Each dimension of shape must be positive."); @@ -37,8 +41,8 @@ class ReshapeOp : public framework::OperatorWithKernel { // capacity check int64_t capacity = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()); - auto *in = ctx.Input("X"); - int64_t in_size = framework::product(in->dims()); + auto x_dims = ctx->GetInputDim("X"); + int64_t in_size = framework::product(x_dims); PADDLE_ENFORCE_EQ(capacity, in_size, "The size of Input(X) mismatches with Attr(shape)."); // resize output @@ -46,7 +50,12 @@ class ReshapeOp : public framework::OperatorWithKernel { std::transform(shape.begin(), shape.end(), shape_int64.begin(), [](int a) { return static_cast(a); }); auto out_dims = framework::make_ddim(shape_int64); - ctx.Output("Out")->Resize(out_dims); + ctx->SetOutputDim("Out", out_dims); + if (shape[0] == x_dims[0]) { + // Only pass LoD when the first dimension is equal between + // output and input. + ctx->ShareLoD("X", /*->*/ "Out"); + } } }; @@ -67,7 +76,7 @@ Given a 2-D tensor X with 2 rows and 2 columns [[1, 2], [3, 4]] -with target shape = [1, 4], the reshape operator will transform +with target shape = [1, 4], the reshape operator will transform the tensor X into a 1-D tensor: [1, 2, 3, 4] @@ -85,13 +94,11 @@ class ReshapeGradOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), - "Input(Out@GRAD) shouldn't be null."); - auto dims = ctx.Input("X")->dims(); - auto *d_in = ctx.Output(framework::GradVarName("X")); - d_in->Resize(dims); + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) shouldn't be null."); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; diff --git a/paddle/operators/reshape_op.h b/paddle/operators/reshape_op.h index 873acf30782d390cdca5e7e864c76e1f743f9a7c..628dfe4c0fadcfeec188d8ae5049a994e3281bc1 100644 --- a/paddle/operators/reshape_op.h +++ b/paddle/operators/reshape_op.h @@ -21,7 +21,7 @@ namespace paddle { namespace operators { template -class ReshapeKernel : public framework::OpKernel { +class ReshapeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { auto* out = ctx.Output("Out"); @@ -39,7 +39,7 @@ class ReshapeKernel : public framework::OpKernel { }; template -class ReshapeGradKernel : public framework::OpKernel { +class ReshapeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { auto* d_out = ctx.Input(framework::GradVarName("Out")); diff --git a/paddle/operators/rnn/recurrent_op_utils.cc b/paddle/operators/rnn/recurrent_op_utils.cc index 97872c67ac99fbf6c9c177d52f1d4069163e8548..a767009d2366e20d2ebd35f562b8df7d408f2d4e 100644 --- a/paddle/operators/rnn/recurrent_op_utils.cc +++ b/paddle/operators/rnn/recurrent_op_utils.cc @@ -21,25 +21,29 @@ namespace rnn { namespace f = paddle::framework; using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; void SegmentInputs(const std::vector& step_scopes, - const std::vector& inlinks, const size_t seq_len, - bool infer_shape_mode) { + const std::vector& inlinks, + const size_t seq_len, bool infer_shape_mode) { PADDLE_ENFORCE(!inlinks.empty(), "no in links are provided."); for (size_t i = 0; i < inlinks.size(); ++i) { - auto input_var = step_scopes[0]->FindVar(inlinks[i].external); - PADDLE_ENFORCE(input_var != nullptr, "input link [%s] is not in scope.", - inlinks[i].external); + // global inputs + auto input_var = step_scopes[0]->parent().FindVar(inlinks[i]); + PADDLE_ENFORCE_NOT_NULL(input_var, "input link [%s] is not in scope.", + inlinks[i]); - Tensor* input = input_var->GetMutable(); + LoDTensor* input = input_var->GetMutable(); f::DDim dims = input->dims(); - PADDLE_ENFORCE(static_cast(dims[0]) == seq_len, - "all the inlinks must have same length"); + PADDLE_ENFORCE_EQ(static_cast(dims[0]), seq_len, + "all the inlinks be the same length"); f::DDim step_dims = slice_ddim(dims, 1, dims.size()); for (size_t j = 0; j < seq_len; j++) { Tensor* step_input = - step_scopes[j]->NewVar(inlinks[i].internal)->GetMutable(); + step_scopes[j]->NewVar(inlinks[i])->GetMutable(); if (!infer_shape_mode) { + // The input of operators of each step is Tensor here. + // Maybe need to modify Slice function. *step_input = input->Slice(j, j + 1); } step_input->Resize(step_dims); @@ -48,27 +52,27 @@ void SegmentInputs(const std::vector& step_scopes, } void ConcatOutputs(const std::vector& step_scopes, - const std::vector& outlinks, const size_t seq_len, - bool infer_shape_mode) { + const std::vector& outlinks, + const size_t seq_len, bool infer_shape_mode) { for (size_t i = 0; i < outlinks.size(); i++) { - auto output_var = step_scopes[0]->FindVar(outlinks[i].external); - PADDLE_ENFORCE(output_var != nullptr, "output link [%s] is not in scope.", - outlinks[i].external); - Tensor* output = output_var->GetMutable(); + auto output_var = step_scopes[0]->parent().FindVar(outlinks[i]); + PADDLE_ENFORCE_NOT_NULL(output_var, "output link [%s] is not in scope.", + outlinks[i]); + LoDTensor* output = output_var->GetMutable(); if (infer_shape_mode) { - auto step_scope_var = step_scopes[0]->FindVar(outlinks[i].internal); - PADDLE_ENFORCE(step_scope_var != nullptr, "%s not in scope", - outlinks[i].internal); - f::DDim step_dims = step_scope_var->template GetMutable()->dims(); + auto step_scope_var = step_scopes[0]->FindVar(outlinks[i]); + PADDLE_ENFORCE_NOT_NULL(step_scope_var, "%s not in scope", outlinks[i]); + f::DDim step_dims = + step_scope_var->template GetMutable()->dims(); std::vector dims_vec = vectorize(step_dims); dims_vec.insert(dims_vec.begin(), seq_len); output->Resize(f::make_ddim(dims_vec)); } else { output->mutable_data(platform::CPUPlace()); for (size_t j = 0; j < seq_len; j++) { - Tensor* step_output = - step_scopes[j]->FindVar(outlinks[i].internal)->GetMutable(); + LoDTensor* step_output = + step_scopes[j]->FindVar(outlinks[i])->GetMutable(); // TODO(luotao02) data type and platform::DeviceContext() should set // correctly (output->Slice(j, j + 1)) @@ -94,8 +98,8 @@ void LinkMemories(const std::vector& scopes, auto scope = scopes[step_id]; auto linked_scope = scopes[step_id + offset]; for (auto& attr : memories) { - auto mem = scope->FindVar(attr.pre_var)->GetMutable(); - auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable(); + auto mem = scope->FindVar(attr.pre_var)->GetMutable(); + auto linked_mem = linked_scope->FindVar(attr.var)->GetMutable(); if (infer_shape_mode) { mem->Resize(linked_mem->dims()); } else { @@ -105,35 +109,14 @@ void LinkMemories(const std::vector& scopes, } void InitArgument(const ArgumentName& name, Argument* arg, - const framework::OperatorBase& op) { - arg->step_scopes = op.Output(name.step_scopes); - - auto inlinks = op.Inputs(name.inlinks); - auto inlink_alias = op.Attr>(name.inlink_alias); - PADDLE_ENFORCE(inlinks.size() == inlink_alias.size(), - "the size of inlinks and inlink_alias don't match:%d,%d", - inlinks.size(), inlink_alias.size()); - for (size_t i = 0; i < inlinks.size(); ++i) { - rnn::Link link; - link.external = inlinks[i]; - link.internal = inlink_alias[i]; - (arg->inlinks).push_back(link); - } - - auto outlinks = op.Outputs(name.outlinks); - auto outlink_alias = op.Attr>(name.outlink_alias); - PADDLE_ENFORCE(outlinks.size() == outlink_alias.size(), - "the size of outlinks and outlink_alias don't match:%d,%d", - outlinks.size(), outlink_alias.size()); - for (size_t i = 0; i < outlinks.size(); ++i) { - rnn::Link link; - link.external = outlinks[i]; - link.internal = outlink_alias[i]; - (arg->outlinks).push_back(link); - } - - auto boot_memories = op.Inputs(name.boot_memories); - + const framework::OperatorBase& op, bool is_grad) { + arg->step_scopes = + is_grad ? op.Input(name.step_scopes) : op.Output(name.step_scopes); + arg->inlinks = op.Inputs(name.inlinks); + arg->outlinks = op.Outputs(name.outlinks); + + auto boot_memories = + is_grad ? op.Outputs(name.boot_memories) : op.Inputs(name.boot_memories); // attributes auto memories = op.Attr>(name.memories); auto pre_memories = op.Attr>(name.pre_memories); diff --git a/paddle/operators/rnn/recurrent_op_utils.h b/paddle/operators/rnn/recurrent_op_utils.h index 17941c503cfcc83415b8bc635623a2c2ce2981c3..9c777f1e9067a3e2ceb9d23f7bf7d3c73343c91f 100644 --- a/paddle/operators/rnn/recurrent_op_utils.h +++ b/paddle/operators/rnn/recurrent_op_utils.h @@ -41,18 +41,11 @@ struct MemoryAttr { std::string boot_var; }; -struct Link { - // input or output links name. - std::string internal; - // alias to avoid duplicate keys in scopes. - std::string external; -}; - struct Argument { std::string step_net; std::string step_scopes; - std::vector inlinks; - std::vector outlinks; + std::vector inlinks; + std::vector outlinks; std::vector memories; }; @@ -61,8 +54,6 @@ struct ArgumentName { std::string step_scopes; std::string inlinks; std::string outlinks; - std::string inlink_alias; // the alias of inlinks in step net. - std::string outlink_alias; // the alias of outlinks in step net. std::string memories; // the memory name std::string pre_memories; // the previous memory name std::string boot_memories; // the boot memory name @@ -72,22 +63,22 @@ struct ArgumentName { * Prepare inputs for each step net. */ void SegmentInputs(const std::vector& step_scopes, - const std::vector& inlinks, const size_t seq_len, - bool infer_shape_mode); + const std::vector& inlinks, + const size_t seq_len, bool infer_shape_mode); /** * Process outputs of step nets and merge to variables. */ void ConcatOutputs(const std::vector& step_scopes, - const std::vector& outlinks, const size_t seq_len, - bool infer_shape_mode); + const std::vector& outlinks, + const size_t seq_len, bool infer_shape_mode); void LinkMemories(const std::vector& step_scopes, const std::vector& memories, const size_t step_id, const int offset, bool infer_shape_mode); void InitArgument(const ArgumentName& name, Argument* arg, - const framework::OperatorBase& op); + const framework::OperatorBase& op, bool is_grad = false); } // namespace rnn } // namespace operators diff --git a/paddle/operators/rowwise_add_op.cc b/paddle/operators/rowwise_add_op.cc deleted file mode 100644 index fa8f0ff1a858143af427b51025279c726f1628e0..0000000000000000000000000000000000000000 --- a/paddle/operators/rowwise_add_op.cc +++ /dev/null @@ -1,96 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/operators/rowwise_add_op.h" - -namespace paddle { -namespace operators { - -using framework::Tensor; - -class RowwiseAddOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto x_dims = ctx.Input("X")->dims(); - auto b_dims = ctx.Input("b")->dims(); - PADDLE_ENFORCE_GT( - x_dims.size(), b_dims.size(), - "The rank of input `X` must be larger than the one of input `b`."); - - int num_col_dims = x_dims.size() - b_dims.size(); - - PADDLE_ENFORCE_EQ( - framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims, - "The width of two operands must be same"); - PADDLE_ENFORCE_EQ(ctx.OutputSize("Out"), 1, "The output size must be 1"); - ctx.Output("Out")->Resize(x_dims); - } -}; - -class RowwiseAddOpMaker : public framework::OpProtoAndCheckerMaker { - public: - RowwiseAddOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The left input of row-wise add op, must be matrix"); - AddInput("b", "The right input of row-wise add op, must be vector"); - AddOutput("Out", "The output of row-wise add op"); - AddComment(R"DOC(Row-wise Add operator - -for i in xrange(X.shape[0]): - Out = X[i] + b -)DOC"); - } -}; -class RowwiseAddGradOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X should not be null"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"), "b should not be null"); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null"); - auto x_dims = ctx.Input("X")->dims(); - auto b_dims = ctx.Input("b")->dims(); - PADDLE_ENFORCE_GT( - x_dims.size(), b_dims.size(), - "The rank of input `X` must be larger than the one of input `b`."); - - int num_col_dims = x_dims.size() - b_dims.size(); - PADDLE_ENFORCE_EQ( - framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims, - "The width of two operands must be same"); - auto *dx = ctx.Output(framework::GradVarName("X")); - auto *db = ctx.Output(framework::GradVarName("b")); - if (dx) dx->Resize(x_dims); - if (db) db->Resize(b_dims); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP(rowwise_add, ops::RowwiseAddOp, ops::RowwiseAddOpMaker, - rowwise_add_grad, ops::RowwiseAddGradOp); -REGISTER_OP_CPU_KERNEL( - rowwise_add, ops::RowwiseAddKernel); -REGISTER_OP_CPU_KERNEL( - rowwise_add_grad, - ops::RowwiseAddGradKernel); diff --git a/paddle/operators/rowwise_add_op.h b/paddle/operators/rowwise_add_op.h deleted file mode 100644 index 35774b940926f77167b8f19597027e74d3477e5b..0000000000000000000000000000000000000000 --- a/paddle/operators/rowwise_add_op.h +++ /dev/null @@ -1,80 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#pragma once -#include "paddle/framework/eigen.h" -#include "paddle/framework/op_registry.h" - -namespace paddle { -namespace operators { - -using Tensor = framework::Tensor; -template -using EigenVector = framework::EigenVector; -template -using EigenMatrix = framework::EigenMatrix; - -template -class RowwiseAddKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto out = context.Output("Out"); - out->mutable_data(context.GetPlace()); - int num_col_dims = context.Input("X")->dims().size() - - context.Input("b")->dims().size(); - auto input = - EigenMatrix::Reshape(*context.Input("X"), num_col_dims); - auto bias = EigenVector::Flatten(*context.Input("b")); - auto output = EigenMatrix::Reshape(*out, num_col_dims); - - const int bias_size = bias.dimension(0); - const int rest_size = input.size() / bias_size; - Eigen::DSizes one_d(input.size()); - Eigen::DSizes bcast(rest_size); - output.reshape(one_d).device(context.GetEigenDevice()) = - input.reshape(one_d) + bias.broadcast(bcast).reshape(one_d); - } -}; - -template -class RowwiseAddGradKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto* dout = context.Input(framework::GradVarName("Out")); - auto* dx = context.Output(framework::GradVarName("X")); - auto* db = context.Output(framework::GradVarName("b")); - int num_col_dims = context.Input("X")->dims().size() - - context.Input("b")->dims().size(); - - auto out_grad = EigenMatrix::Reshape(*dout, num_col_dims); - auto place = context.GetEigenDevice(); - - if (dx) { - dx->mutable_data(context.GetPlace()); - EigenMatrix::Reshape(*dx, num_col_dims).device(place) = out_grad; - } - - if (db) { - db->mutable_data(context.GetPlace()); - // https://eigen.tuxfamily.org/dox/unsupported/TensorBase_8h_source.html - // colwise add - Eigen::array dims{{0}}; /* dimension to reduce */ - EigenVector::Flatten(*db).device(place) = out_grad.sum(dims); - } - } -}; -} // namespace operators -} // namespace paddle diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc index ea991f683d841b3dc4624a0d8aa3c88367fd3c6d..e92501e12834b92875f494de401672344f50e3b5 100644 --- a/paddle/operators/scale_op.cc +++ b/paddle/operators/scale_op.cc @@ -26,10 +26,13 @@ class ScaleOp : public framework::OperatorWithKernel { : OperatorWithKernel(type, inputs, outputs, attrs) {} protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto *in = ctx.Input("X"); - auto *out = ctx.Output("Out"); - out->Resize(in->dims()); + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of ScaleOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of ScaleOp should not be null."); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Out"); } }; diff --git a/paddle/operators/scale_op.h b/paddle/operators/scale_op.h index 02fbdc52bbf89c9f2acc5eeaa1197e4ccbca9d31..dc6bc768997f4fdd049bb63bdc11252ab52fcda9 100644 --- a/paddle/operators/scale_op.h +++ b/paddle/operators/scale_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { template -class ScaleKernel : public framework::OpKernel { +class ScaleKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& context) const { auto* tensor = context.Output("Out"); diff --git a/paddle/operators/scatter.h b/paddle/operators/scatter.h index 6b542675c291607b35f180123cf42fee6a783a85..fec1046a9748637ac41aa35143a8c2cf5528913f 100644 --- a/paddle/operators/scatter.h +++ b/paddle/operators/scatter.h @@ -78,10 +78,6 @@ void ScatterUpdate(const platform::Place& place, for (int i = 1; i < src_dims.size(); i++) PADDLE_ENFORCE(src_dims[i] == dst_dims[i]); - // slice size - size_t slice_size = 1; - for (int i = 0; i < src_dims.size(); ++i) slice_size *= src_dims[i]; - if (platform::is_cpu_place(place)) { CPUScatterUpdate(src, index->data(), index_size, output); } else { diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc index f901edefa22dc9a252e87116df756d04767a7162..cadd8841b6ab3a3674054240265eb6d4b474db1e 100644 --- a/paddle/operators/scatter_op.cc +++ b/paddle/operators/scatter_op.cc @@ -23,19 +23,35 @@ class ScatterOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_EQ(ctx.Input("Index")->dims().size(), 1, + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Ref"), + "Input(Ref) of ScatterOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Index"), + "Input(Index) of ScatterOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Updates"), + "Input(Updates) of ScatterOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of ScatterOp should not be null."); + + auto updates_dims = ctx->GetInputDim("Updates"); + auto ref_dims = ctx->GetInputDim("Ref"); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Index").size(), 1, "Update Index should be 1-D."); - PADDLE_ENFORCE_EQ(ctx.Input("Ref")->dims().size(), - ctx.Input("Updates")->dims().size(), + PADDLE_ENFORCE_EQ(ref_dims.size(), updates_dims.size(), "Reference and Updates should have the same shape size"); - PADDLE_ENFORCE_EQ(ctx.Input("Updates")->dims()[0], - ctx.Input("Index")->dims()[0], + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Updates")[0], + ctx->GetInputDim("Index")[0], "Updates and Index should have same batch-size."); - framework::DDim data_dim(ctx.Input("Updates")->dims()); - for (int i = 1; i < data_dim.size(); ++i) - PADDLE_ENFORCE_EQ(data_dim[i], ctx.Input("Updates")->dims()[i]); - ctx.Output("Out")->Resize(ctx.Input("Ref")->dims()); + framework::DDim data_dim(updates_dims); + for (int i = 1; i < data_dim.size(); ++i) { + PADDLE_ENFORCE_EQ(data_dim[i], updates_dims[i]); + } + ctx->SetOutputDim("Out", ref_dims); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("Ref")->type()); } }; @@ -44,21 +60,22 @@ class ScatterGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto *dUpdates = ctx.Output(framework::GradVarName("Updates")); - auto *Updates = ctx.Input("Updates"); - auto *dRef = ctx.Output(framework::GradVarName("Ref")); - auto *Ref = ctx.Input("Ref"); - - dRef->Resize(Ref->dims()); - dUpdates->Resize(Updates->dims()); + void InferShape(framework::InferShapeContextBase* ctx) const override { + ctx->SetOutputDim(framework::GradVarName("Updates"), + ctx->GetInputDim("Updates")); + ctx->SetOutputDim(framework::GradVarName("Ref"), ctx->GetInputDim("Ref")); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("Ref")->type()); } }; class ScatterOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScatterOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ScatterOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Ref", "The source input of scatter op"); AddInput("Index", @@ -66,13 +83,14 @@ class ScatterOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("Updates", "The updated value of updates op"); AddOutput("Out", "The output of add op"); AddComment(R"DOC( -Scatter Operator by selecting from the first axis, +Scatter Operator by selecting from the first axis, Out = Ref Out[Index] = Ref[Index] + Updates )DOC"); } }; + } // namespace operators } // namespace paddle diff --git a/paddle/operators/scatter_op.h b/paddle/operators/scatter_op.h index e9595638a86a4a4536ddad4e6f20fd80a54b1608..a8eb54399a932913de208e1ddc90a6ff0dfaa452 100644 --- a/paddle/operators/scatter_op.h +++ b/paddle/operators/scatter_op.h @@ -24,7 +24,7 @@ namespace operators { using Tensor = framework::Tensor; template -class ScatterOpKernel : public framework::OpKernel { +class ScatterOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *Ref = ctx.Input("Ref"); @@ -40,7 +40,7 @@ class ScatterOpKernel : public framework::OpKernel { }; template -class ScatterGradientOpKernel : public framework::OpKernel { +class ScatterGradientOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { auto *dRef = ctx.Output(framework::GradVarName("Ref")); diff --git a/paddle/operators/sequence_pool_op.cc b/paddle/operators/sequence_pool_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..bc4af2f70427e684dfb531b8c61d68f28ae20794 --- /dev/null +++ b/paddle/operators/sequence_pool_op.cc @@ -0,0 +1,102 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/sequence_pool_op.h" + +namespace paddle { +namespace operators { + +class SequencePoolOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SequencePoolOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SequencePoolOp should not be null."); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + } +}; + +class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SequencePoolOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "A float LoDTensor, the variable-length input of SequencePoolOp"); + AddOutput( + "Out", + "A float LoDTensor, the variable-length output of SequencePoolOp."); + AddAttr( + "strategy", + "(int, default AVERAGE) the pooling strategy of SequencePoolOp.") + .SetDefault(AVERAGE) + .InEnum({AVERAGE, SUM, SQRT, MAX, LAST, FIRST}); + AddComment(R"DOC( + SequencePoolOp pools features of all time-steps of each instance. + + For a mini-batch of 3 variable lengths sentences, containing 2, 3, and 2 time-steps: + + Assume X is a [7,M,N] float LoDTensor, and X->lod()[0] = [0, 2, 5, 7]. + Besides, for the sake of simplicity, we assume M=1 and N=1, + and the value of X = [[1, 3], [2, 4, 6], [5, 1]]. + + Thus, Out is a [3,1,1] float LoDTensor, but Out->lod() is nullptr. + And for different strategy, the value of Out is as follows: + + - AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2 + - SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1 + - SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2), + 6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2) + - MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1) + - LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1) + - FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1) + )DOC"); + } +}; + +class SequencePoolGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Gradient of Out should not be null."); + PADDLE_ENFORCE(ctx->HasInput("X"), "The input X should not be null."); + auto og_dims = ctx->GetInputDim(framework::GradVarName("Out")); + auto x_dims = ctx->GetInputDim("X"); + PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(), + "The rank of output grad must equal to Input(X)."); + for (int64_t i = 1; i < og_dims.size(); ++i) { + PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch."); + } + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker, + sequence_pool_grad, ops::SequencePoolGradOp); +REGISTER_OP_CPU_KERNEL( + sequence_pool, ops::SequencePoolKernel); +REGISTER_OP_CPU_KERNEL( + sequence_pool_grad, + ops::SequencePoolGradKernel); diff --git a/paddle/operators/rowwise_add_op.cu b/paddle/operators/sequence_pool_op.cu similarity index 76% rename from paddle/operators/rowwise_add_op.cu rename to paddle/operators/sequence_pool_op.cu index 4a57f64c890ce99d6060faec6a4a01b107403344..66850772d501f873cf754205c19e9d0c0090370a 100644 --- a/paddle/operators/rowwise_add_op.cu +++ b/paddle/operators/sequence_pool_op.cu @@ -13,11 +13,12 @@ limitations under the License. */ #define EIGEN_USE_GPU -#include "paddle/operators/rowwise_add_op.h" + +#include "paddle/operators/sequence_pool_op.h" namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( - rowwise_add, ops::RowwiseAddKernel); + sequence_pool, ops::SequencePoolKernel); REGISTER_OP_GPU_KERNEL( - rowwise_add_grad, - ops::RowwiseAddGradKernel); + sequence_pool_grad, + ops::SequencePoolGradKernel); diff --git a/paddle/operators/sequence_pool_op.h b/paddle/operators/sequence_pool_op.h new file mode 100644 index 0000000000000000000000000000000000000000..752d714125578b2d1f926765b183495ec5cc203e --- /dev/null +++ b/paddle/operators/sequence_pool_op.h @@ -0,0 +1,126 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; +template +using EigenVector = framework::EigenVector; +template +using EigenMatrix = framework::EigenMatrix; + +enum SeqPoolType { + AVERAGE = 0, + SUM = 1, + SQRT = 2, // square_root_n + MAX = 3, + LAST = 4, + FIRST = 5 +}; + +template +class SequencePoolKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* in = context.Input("X"); + auto* out = context.Output("Out"); + int strategy = context.Attr("strategy"); + + auto dims = in->dims(); + auto lod = in->lod(); + int64_t w = in->numel() / dims[0]; + + // InferShape by lod + PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); + PADDLE_ENFORCE_GE( + dims[0], + /*batch size = */ static_cast(lod[0].size() - 1), + "The first dimension of Input(X) must be large than batch size."); + dims[0] = lod[0].size() - 1; + out->Resize({dims}); + + auto lod_level_0 = lod[0]; + + out->mutable_data(context.GetPlace()); + auto place = context.GetEigenDevice(); + for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { + Tensor in_t = in->Slice(static_cast(lod_level_0[i]), + static_cast(lod_level_0[i + 1])); + Tensor out_t = out->Slice(i, i + 1); + int64_t h = static_cast(lod_level_0[i + 1] - lod_level_0[i]); + auto in_e = EigenMatrix::From(in_t, framework::make_ddim({h, w})); + auto out_e = EigenVector::Flatten(out_t); + + switch (strategy) { + case AVERAGE: + out_e.device(place) = in_e.mean(Eigen::array({{0}})); + break; + case SUM: + out_e.device(place) = in_e.sum(Eigen::array({{0}})); + break; + default: + PADDLE_THROW("unsupported pooling strategy"); + } + } + } +}; + +template +class SequencePoolGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* in = context.Input("X"); + auto* out_g = context.Input(framework::GradVarName("Out")); + auto* in_g = context.Output(framework::GradVarName("X")); + int strategy = context.Attr("strategy"); + + auto dims = in->dims(); + auto lod = in->lod()[0]; + int64_t w = in->numel() / dims[0]; + + in_g->mutable_data(context.GetPlace()); + auto place = context.GetEigenDevice(); + for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { + auto in_g_t = in_g->Slice(static_cast(lod[i]), + static_cast(lod[i + 1])); + auto out_g_t = out_g->Slice(i, i + 1); + int64_t h = static_cast(lod[i + 1] - lod[i]); + auto in_g_e = EigenMatrix::From(in_g_t, {h, w}); + auto out_g_e = EigenMatrix::From(out_g_t, {1, w}); + Eigen::DSizes bcast(h, 1); + + switch (strategy) { + case AVERAGE: + in_g_e.device(place) = (out_g_e / static_cast(h)).broadcast(bcast); + break; + case SUM: + in_g_e.device(place) = (out_g_e).broadcast(bcast); + break; + default: + PADDLE_THROW("unsupported pooling strategy"); + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/sequence_softmax_op.cc b/paddle/operators/sequence_softmax_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..621779ab6133f56a43fb2d20c814ebed8762ea7d --- /dev/null +++ b/paddle/operators/sequence_softmax_op.cc @@ -0,0 +1,103 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/sequence_softmax_op.h" + +namespace paddle { +namespace operators { + +class SequenceSoftmaxOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SequenceSoftmaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SequenceSoftmaxOp should not be null."); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SequenceSoftmaxOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension " + "of length 1."); + AddOutput("Out", + "(LoDTensor) 1-D or 2-D output LoDTensor with the 2-nd dimension " + "of length 1."); + AddComment(R"DOC( +SequenceSoftmaxOp computes softmax activation among all time-steps for each +sequence. The dimension of each time-step should be 1. Thus, the shape of +input Tensor can be either [N, 1] or [N], where N is the sum of all sequences' +lengths. + +Equation: + for i-th sequence in a mini-batch: + Out(X[lod[i]:lod[i+1]], :) = + exp(X[lod[i]:lod[i+1], :]) / sum(exp(X[lod[i]:lod[i+1], :])) + +For example, for a mini-batch of 3 sequences with variable-length, +each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], +then softmax will be computed among X[0:2, :], X[2:5, :], X[5:7, :] +and N turns out to be 7. +)DOC"); + } +}; + +class SequenceSoftmaxGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Out"), + "Input(Out) of SequenceSoftmaxGradOp should not be null."); + PADDLE_ENFORCE( + ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) of SequenceSoftmaxGradOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SequenceSoftmaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Output(X@GRAD) of SequenceSoftmaxOp should not be null."); + + PADDLE_ENFORCE_EQ( + ctx->GetInputDim("Out"), + ctx->GetInputDim(framework::GradVarName("Out")), + "Input(Out) and Input(Out@GRAD) of SequenceSoftmaxGradOp should be of " + "the same shape."); + + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(sequence_softmax, ops::SequenceSoftmaxOp, + ops::SequenceSoftmaxOpMaker, sequence_softmax_grad, + ops::SequenceSoftmaxGradOp); +REGISTER_OP_CPU_KERNEL( + sequence_softmax, + ops::SequenceSoftmaxKernel); +REGISTER_OP_CPU_KERNEL( + sequence_softmax_grad, + ops::SequenceSoftmaxGradKernel); diff --git a/paddle/operators/sequence_softmax_op.cu b/paddle/operators/sequence_softmax_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..f2a1e3d5e31ef21b95a51b287bdd1d4aa9221e89 --- /dev/null +++ b/paddle/operators/sequence_softmax_op.cu @@ -0,0 +1,25 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#define EIGEN_USE_GPU + +#include "paddle/operators/sequence_softmax_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + sequence_softmax, + ops::SequenceSoftmaxKernel) +REGISTER_OP_GPU_KERNEL( + sequence_softmax_grad, + ops::SequenceSoftmaxGradKernel); diff --git a/paddle/operators/sequence_softmax_op.h b/paddle/operators/sequence_softmax_op.h new file mode 100644 index 0000000000000000000000000000000000000000..96d87c404d217280d74bd088e7a23f539ef6e7ce --- /dev/null +++ b/paddle/operators/sequence_softmax_op.h @@ -0,0 +1,94 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/softmax.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; + +template +class SequenceSoftmaxKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* x = ctx.Input("X"); + auto* out = ctx.Output("Out"); + + auto lod = x->lod(); + auto dims = x->dims(); + + const size_t level = lod.size() - 1; + PADDLE_ENFORCE_EQ(dims[0], static_cast(lod[level].back()), + "The first dimension of Input(X) should be equal to the " + "sum of all sequences' lengths."); + PADDLE_ENFORCE_EQ(dims[0], x->numel(), + "The width of each timestep in Input(X) of " + "SequenceSoftmaxOp should be 1."); + + out->mutable_data(ctx.GetPlace()); + for (int i = 0; i < static_cast(lod[level].size()) - 1; ++i) { + int start_pos = static_cast(lod[level][i]); + int end_pos = static_cast(lod[level][i + 1]); + Tensor x_i = x->Slice(start_pos, end_pos); + Tensor out_i = out->Slice(start_pos, end_pos); + + // Reshape from (end_pos - start_pos) x 1UL to 1UL x (end_pos - start_pos) + framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos}); + x_i.Resize(dims_i); + out_i.Resize(dims_i); + math::SoftmaxFunctor()(ctx.device_context(), &x_i, &out_i); + } + } +}; + +template +class SequenceSoftmaxGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* out = ctx.Input("Out"); + auto* out_grad = ctx.Input(framework::GradVarName("Out")); + auto* x = ctx.Input("X"); + auto* x_grad = ctx.Output(framework::GradVarName("X")); + + auto lod = x->lod(); + const size_t level = lod.size() - 1; + + x_grad->mutable_data(ctx.GetPlace()); + for (int i = 0; i < static_cast(lod[level].size()) - 1; ++i) { + int start_pos = static_cast(lod[level][i]); + int end_pos = static_cast(lod[level][i + 1]); + + Tensor out_i = out->Slice(start_pos, end_pos); + Tensor out_grad_i = out_grad->Slice(start_pos, end_pos); + Tensor x_grad_i = x_grad->Slice(start_pos, end_pos); + + // Reshape from (end_pos - start_pos) x 1UL to 1UL x (end_pos - start_pos) + framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos}); + out_i.Resize(dims_i); + out_grad_i.Resize(dims_i); + x_grad_i.Resize(dims_i); + math::SoftmaxGradFunctor()(ctx.device_context(), &out_i, + &out_grad_i, &x_grad_i); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index ad267e7f087943ff3b8326a7baf2ce3955fa51c2..3bce95535cf10c0df95b503c6e362b3f0ba2e723 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -22,11 +22,18 @@ class SGDOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE( - ctx.Input("param")->dims() == ctx.Input("grad")->dims(), - "Two input of SGD Op's dimension must be same."); - ctx.Output("param_out")->Resize(ctx.Input("param")->dims()); + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("param"), + "Input(param) of SGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("grad"), + "Input(grad) of SGDOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("param_out"), + "Output(param_out) of SGDOp should not be null."); + + auto param_dim = ctx->GetInputDim("param"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("grad"), + "Two input of SGD Op's dimension must be same."); + ctx->SetOutputDim("param_out", param_dim); } }; diff --git a/paddle/operators/sgd_op.h b/paddle/operators/sgd_op.h index f8888f9c362e1c39af42236bb3a23be37aa3ae15..a3fe3308942f98e2c28376b589b6fc930e6878a1 100644 --- a/paddle/operators/sgd_op.h +++ b/paddle/operators/sgd_op.h @@ -25,7 +25,7 @@ template ; template -class SGDOpKernel : public framework::OpKernel { +class SGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto param = ctx.Input("param"); diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..ede458e01147ab70444c4d158973cfb0818b9bdd --- /dev/null +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc @@ -0,0 +1,150 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/sigmoid_cross_entropy_with_logits_op.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; + +class SigmoidCrossEntropyWithLogitsOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Labels"), + "Input(Labels) should be not null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should be not null."); + + auto x_dims = ctx->GetInputDim("X"); + auto labels_dims = ctx->GetInputDim("Labels"); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); + PADDLE_ENFORCE_EQ(labels_dims.size(), 2, + "Input(Labels)'s rank should be 2."); + PADDLE_ENFORCE_EQ(x_dims[0], labels_dims[0], + "The 1st dimension of Input(X) and Input(Labels) should " + "be equal."); + PADDLE_ENFORCE_EQ(x_dims[1], labels_dims[1], + "The 2nd dimension of Input(X) and Input(Labels) should " + "be equal."); + + ctx->SetOutputDim("Out", x_dims); + ctx->ShareLoD("X", /*->*/ "Out"); + } +}; + +class SigmoidCrossEntropyWithLogitsGradOp + : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Labels"), + "Input(Labels) should be not null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) shoudl be not null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Output(X@GRAD) should be not null."); + + auto x_dims = ctx->GetInputDim("X"); + auto labels_dims = ctx->GetInputDim("Labels"); + auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out")); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); + PADDLE_ENFORCE_EQ(labels_dims.size(), 2, + "Input(Labels)'s rank should be 2."); + PADDLE_ENFORCE_EQ(dout_dims.size(), 2, + "Input(Out@Grad)'s rank should be 2."); + PADDLE_ENFORCE_EQ(x_dims[0], labels_dims[0], + "The 1st dimension of Input(X) and Input(Labels) should " + "be equal."); + PADDLE_ENFORCE_EQ(x_dims[1], labels_dims[1], + "The 2nd dimension of Input(X) and Input(Labels) should " + "be equal."); + PADDLE_ENFORCE_EQ(x_dims[0], dout_dims[0], + "The 1st dimension of Input(X) and Input(Out@Grad) " + "should be equal."); + PADDLE_ENFORCE_EQ(x_dims[1], dout_dims[1], + "The 2nd dimension of Input(X) and Input(Out@Grad) " + "should be equal."); + + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + } +}; + +class SigmoidCrossEntropyWithLogitsOpMaker + : public framework::OpProtoAndCheckerMaker { + public: + SigmoidCrossEntropyWithLogitsOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(Tensor, default Tensor), a 2-D tensor with shape N x D, " + "where N is the batch size and D is the number of classes. " + "This input is a tensor of logits computed by the previous " + " operator. Logits are unscaled log probabilities given as " + "log(p/(1-p))."); + AddInput("Labels", + "(Tensor, default Tensor), a 2-D tensor of the same type " + "and shape as X. This input is a tensor of probabalistic labels " + "for each logit"); + AddOutput("Out", + "(Tensor, default Tensor), a 2-D tensor with shape N x D " + " of elementwise logistic losses."); + AddComment(R"DOC( +SigmoidCrossEntropyWithLogits Operator. + +This measures the elementwise probability error in discrete classification tasks +in which each class is independent. This can be thought of as predicting labels +for a data-point that are not mutually exclusive. For example, a news article +can be about politics, technology or sports at the same time or none of these. + +The logistic loss is given as follows: + + loss = -Labels * log(sigmoid(X)) - (1 - Labels) * log(1 - sigmoid(X)) + +We know that sigmoid(X) = (1 / (1 + exp(-X))). By substituting this we get + + loss = X - X * Labels + log(1 + exp(-X)) + +For stability and to prevent overflow of exp(-X) when X < 0, +we can reformulate the loss as follows: + + loss = max(X, 0) - X * Labels + log(1 + exp(-abs(X))) + +Both the input `X` and `Labels` can carry the LoD (Level of Details) information. +However the output only shares the LoD with input `X`. +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(sigmoid_cross_entropy_with_logits, + ops::SigmoidCrossEntropyWithLogitsOp, + ops::SigmoidCrossEntropyWithLogitsOpMaker, + sigmoid_cross_entropy_with_logits_grad, + ops::SigmoidCrossEntropyWithLogitsGradOp); +REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits, + ops::SigmoidCrossEntropyWithLogitsKernel< + paddle::platform::CPUPlace, float>); +REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits_grad, + ops::SigmoidCrossEntropyWithLogitsGradKernel< + paddle::platform::CPUPlace, float>); diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..32a39956a14a206373b7b4c141dad19577d171f0 --- /dev/null +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu @@ -0,0 +1,24 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/sigmoid_cross_entropy_with_logits_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(sigmoid_cross_entropy_with_logits, + ops::SigmoidCrossEntropyWithLogitsKernel< + paddle::platform::GPUPlace, float>); +REGISTER_OP_GPU_KERNEL(sigmoid_cross_entropy_with_logits_grad, + ops::SigmoidCrossEntropyWithLogitsGradKernel< + paddle::platform::GPUPlace, float>); diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.h b/paddle/operators/sigmoid_cross_entropy_with_logits_op.h new file mode 100644 index 0000000000000000000000000000000000000000..41c619f181c878f08959a8ca461c60af5ffdff2a --- /dev/null +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.h @@ -0,0 +1,75 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +// Out = max(X, 0) - X * Labels + log(1 + exp(-abs(X))) +template +class SigmoidCrossEntropyWithLogitsKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + const framework::Tensor *X = context.Input("X"); + const framework::Tensor *Labels = + context.Input("Labels"); + framework::Tensor *Out = context.Output("Out"); + Out->mutable_data(context.GetPlace()); + + auto x = framework::EigenVector::Flatten(*X); + auto labels = framework::EigenVector::Flatten(*Labels); + auto out = framework::EigenVector::Flatten(*Out); + auto place = context.GetEigenDevice(); + + // term1 = max(x, 0) + auto term1 = x.cwiseMax(static_cast(0)); + // term2 = x * labels + auto term2 = x * labels; + // term3 = log(1 + exp(-abs(x))) + auto term3 = (static_cast(1) + (-(x.abs())).exp()).log(); + + out.device(place) = term1 - term2 + term3; + } +}; + +// dX = sigmoid(X) - labels +template +class SigmoidCrossEntropyWithLogitsGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + const framework::Tensor *X = context.Input("X"); + const framework::Tensor *Labels = + context.Input("Labels"); + const framework::Tensor *dOut = + context.Input(framework::GradVarName("Out")); + framework::Tensor *dX = + context.Output(framework::GradVarName("X")); + dX->mutable_data(context.GetPlace()); + + auto x = framework::EigenVector::Flatten(*X); + auto labels = framework::EigenVector::Flatten(*Labels); + auto dout = framework::EigenVector::Flatten(*dOut); + auto dx = framework::EigenVector::Flatten(*dX); + auto place = context.GetEigenDevice(); + + auto sigmoid_x = static_cast(1) / (static_cast(1) + (-x).exp()); + dx.device(place) = dout * (sigmoid_x - labels); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/sigmoid_op.cc b/paddle/operators/sigmoid_op.cc deleted file mode 100644 index 761c6de8d4d2150b30b97b58da95da3d5f33db63..0000000000000000000000000000000000000000 --- a/paddle/operators/sigmoid_op.cc +++ /dev/null @@ -1,61 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/operators/sigmoid_op.h" - -namespace paddle { -namespace operators { - -class SigmoidOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - ctx.Output("Y")->Resize(ctx.Input("X")->dims()); - } -}; - -class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker { - public: - SigmoidOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "sigmoid input"); - AddOutput("Y", "sigmoid output"); - AddComment("Sigmoid function"); - } -}; - -class SigmoidOpGrad : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - ctx.Output(framework::GradVarName("X")) - ->Resize(ctx.Input("Y")->dims()); - } -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP(sigmoid, ops::SigmoidOp, ops::SigmoidOpMaker, sigmoid_grad, - ops::SigmoidOpGrad); -REGISTER_OP_CPU_KERNEL(sigmoid, - ops::SigmoidKernel); -REGISTER_OP_CPU_KERNEL( - sigmoid_grad, ops::SigmoidGradKernel); diff --git a/paddle/operators/sigmoid_op.h b/paddle/operators/sigmoid_op.h deleted file mode 100644 index b01a9b3f23283471f8846325075719ba0e75ed35..0000000000000000000000000000000000000000 --- a/paddle/operators/sigmoid_op.h +++ /dev/null @@ -1,62 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#pragma once -#include "paddle/framework/eigen.h" -#include "paddle/framework/op_registry.h" - -namespace paddle { -namespace operators { - -using Tensor = framework::Tensor; -template -using EigenVector = framework::EigenVector; - -template -class SigmoidKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto input = context.Input("X"); - auto output = context.Output("Y"); - output->mutable_data(context.GetPlace()); - - // The clipping is used in Paddle's raw implenmention - auto X = EigenVector::Flatten(*input); - auto Y = EigenVector::Flatten(*output); - auto place = context.GetEigenDevice(); - - Y.device(place) = 1. / (1. + (-X).exp()); - } -}; - -template -class SigmoidGradKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto Y_t = context.Input("Y"); - auto dY_t = context.Input(framework::GradVarName("Y")); - auto dX_t = context.Output(framework::GradVarName("X")); - - dX_t->mutable_data(context.GetPlace()); - - auto dX = EigenVector::Flatten(*dX_t); - auto Y = EigenVector::Flatten(*Y_t); - auto dY = EigenVector::Flatten(*dY_t); - dX.device(context.GetEigenDevice()) = dY * Y * (1. - Y); - } -}; - -} // namespace operators -} // namespace paddle diff --git a/paddle/operators/smooth_l1_loss_op.cc b/paddle/operators/smooth_l1_loss_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..2d197e3b1b763fa87939623d47728aab3bff7cd1 --- /dev/null +++ b/paddle/operators/smooth_l1_loss_op.cc @@ -0,0 +1,131 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/smooth_l1_loss_op.h" + +namespace paddle { +namespace operators { + +class SmoothL1LossOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized."); + PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized."); + + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); + PADDLE_ENFORCE_EQ(x_dims, y_dims, "The shape of X and Y must be the same."); + PADDLE_ENFORCE_GE(x_dims.size(), 2, + "The tensor rank of X must be at least 2."); + if (ctx->HasInput("InsideWeight")) { + PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"), + "If weights are provided, must specify both " + "inside and outside weights."); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims, + "The shape of InsideWeight must be same as X."); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims, + "The shape of OutsideWeight must be same as X."); + } + + ctx->SetOutputDim("Diff", x_dims); + // loss is a two-rank tensor + ctx->SetOutputDim("Out", {x_dims[0], 1}); + } +}; + +template +class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SmoothL1LossOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "The input tensor of smooth l1 loss op." + "The rank should be greater or equal to 2 with shape " + "[batch_size, value_dim1, value_dim2, ..., value_dimN]"); + AddInput("Y", + "The target tensor of smooth l1 loss op " + "with the same shape as X."); + AddInput("InsideWeight", + "Optional input tensor of smooth l1 loss op with the same shape " + "as X. If provided, the result of (X - Y) will be multiplied " + "by this tensor element by element."); + AddInput("OutsideWeight", + "Optinal input of smooth l1 loss op with the same shape as X." + "If provided, the output smooth l1 loss will be multiplied by " + "this tensor element by element."); + AddOutput("Diff", "Intermediate variable to cache InsideWeight*(X-Y).") + .AsIntermediate(); + AddOutput("Out", "Smooth l1 loss."); + AddAttr("sigma", + "Hyper parameter of smooth l1 loss op." + "A float scalar with default value 3.0.") + .SetDefault(3.0); + AddComment(R"DOC( +Compute smooth l1 loss for input and target. The operator take the 1st +dimension of input as batch size. For each instance, it will compute +smooth l1 loss element by element first and sum all losses to one value. +So the output shape is [batch_size, 1]. + +The equation is: +loss = 0.5 * (sigma * (x-y))^2 if abs(x - y) < 1 / sigma^2 + abs(x - y) - 0.5 / sigma^2 otherwise + +)DOC"); + } +}; + +class SmoothL1LossGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + auto in_dims = ctx->GetInputDim("X"); + auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); + + PADDLE_ENFORCE_GE(out_dims.size(), 2, + "The tensor rank of Input(Out@Grad) should be 2."); + PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0], + "The 1st dimension of Input(Out@Grad) must be " + "same as input."); + PADDLE_ENFORCE_EQ(out_dims[1], 1, + "The 2nd dimension of Input(Out@Grad) must be 1."); + + auto x_grad_name = framework::GradVarName("X"); + auto y_grad_name = framework::GradVarName("Y"); + if (ctx->HasOutput(x_grad_name)) { + ctx->SetOutputDim(x_grad_name, in_dims); + } + if (ctx->HasOutput(y_grad_name)) { + ctx->SetOutputDim(y_grad_name, in_dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(smooth_l1_loss, ops::SmoothL1LossOp, + ops::SmoothL1LossOpMaker, smooth_l1_loss_grad, + ops::SmoothL1LossGradOp); +REGISTER_OP_CPU_KERNEL( + smooth_l1_loss, ops::SmoothL1LossKernel); +REGISTER_OP_CPU_KERNEL( + smooth_l1_loss_grad, + ops::SmoothL1LossGradKernel); diff --git a/paddle/operators/sigmoid_op.cu b/paddle/operators/smooth_l1_loss_op.cu similarity index 73% rename from paddle/operators/sigmoid_op.cu rename to paddle/operators/smooth_l1_loss_op.cu index 1a50dfe14a7b9e2614aadb7729de9f9e461e9905..1c3172f43867741cd1f26979a366b2425f326321 100644 --- a/paddle/operators/sigmoid_op.cu +++ b/paddle/operators/smooth_l1_loss_op.cu @@ -13,11 +13,12 @@ limitations under the License. */ #define EIGEN_USE_GPU -#include "paddle/operators/sigmoid_op.h" -namespace ops = paddle::operators; +#include "paddle/operators/smooth_l1_loss_op.h" -REGISTER_OP_GPU_KERNEL(sigmoid, - ops::SigmoidKernel); +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL( + smooth_l1_loss, ops::SmoothL1LossKernel); REGISTER_OP_GPU_KERNEL( - sigmoid_grad, ops::SigmoidGradKernel); + smooth_l1_loss_grad, + ops::SmoothL1LossGradKernel); diff --git a/paddle/operators/smooth_l1_loss_op.h b/paddle/operators/smooth_l1_loss_op.h new file mode 100644 index 0000000000000000000000000000000000000000..39d0070b6c8909b8f433de48038240e851d9d6cf --- /dev/null +++ b/paddle/operators/smooth_l1_loss_op.h @@ -0,0 +1,182 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/platform/hostdevice.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenVector = framework::EigenVector; +template +using EigenMatrix = framework::EigenMatrix; + +template +struct SmoothL1LossForward { + HOSTDEVICE SmoothL1LossForward(const T& sigma2) : sigma2(sigma2) {} + + HOSTDEVICE T operator()(const T& val) const { + T abs_val = std::abs(val); + if (abs_val < 1.0 / sigma2) { + return 0.5 * val * val * sigma2; + } else { + return abs_val - 0.5 / sigma2; + } + } + + T sigma2; +}; + +template +class SmoothL1LossKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* in0 = context.Input("X"); + auto* in1 = context.Input("Y"); + auto* in2 = context.Input("InsideWeight"); + auto* in3 = context.Input("OutsideWeight"); + auto* out0 = context.Output("Diff"); + auto* out1 = context.Output("Out"); + + out0->mutable_data(context.GetPlace()); + out1->mutable_data(context.GetPlace()); + auto place = context.GetEigenDevice(); + + auto sigma = static_cast(context.Attr("sigma")); + T sigma2 = sigma * sigma; + bool has_weight = (in2 != nullptr) && (in3 != nullptr); + + auto x = EigenVector::Flatten(*in0); + auto y = EigenVector::Flatten(*in1); + auto diff = EigenVector::Flatten(*out0); + + diff.device(place) = x - y; + // multiply inside weight + if (has_weight) { + auto inside_weight = EigenVector::Flatten(*in2); + // cache diff, reused in bp + diff.device(place) = diff * inside_weight; + } + + auto in_counts = in0->numel(); + Tensor ptensor_errors; + ptensor_errors.mutable_data({static_cast(in_counts)}, + context.GetPlace()); + auto errors = EigenVector::Flatten(ptensor_errors); + // apply smooth l1 forward + errors.device(place) = diff.unaryExpr(SmoothL1LossForward(sigma2)); + + // multiply outside weight + if (has_weight) { + auto outside_weight = EigenVector::Flatten(*in3); + errors.device(place) = errors * outside_weight; + } + auto loss = EigenVector::Flatten(*out1); + // first dimension of 'X' is the number of samples + auto mat_dims = + framework::make_ddim({static_cast(in0->dims()[0]), + static_cast(in_counts / in0->dims()[0])}); + auto errors_mat_view = EigenMatrix::From(ptensor_errors, mat_dims); + loss.device(place) = errors_mat_view.sum(Eigen::array({{1}})); + } +}; + +template +struct SmoothL1LossBackward { + HOSTDEVICE SmoothL1LossBackward(const T& sigma2) : sigma2(sigma2) {} + + HOSTDEVICE T operator()(const T& val) const { + T abs_val = std::abs(val); + if (abs_val < 1.0 / sigma2) { + return sigma2 * val; + } else { + return (0 < val) - (val < 0); + } + } + + T sigma2; +}; + +template +class SmoothL1LossGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* in0 = context.Input("InsideWeight"); + auto* in1 = context.Input("OutsideWeight"); + auto* in2 = context.Input("Diff"); + auto* og = context.Input(framework::GradVarName("Out")); + auto sigma = static_cast(context.Attr("sigma")); + T sigma2 = sigma * sigma; + bool has_weight = (in0 != nullptr) && (in1 != nullptr); + + auto place = context.GetEigenDevice(); + + auto in_dims = in2->dims(); + auto counts = in2->numel(); + auto cols = counts / in_dims[0]; + auto mat_dims = framework::make_ddim( + {static_cast(in_dims[0]), static_cast(cols)}); + + Tensor ptensor_diff; + ptensor_diff.mutable_data({static_cast(counts)}, + context.GetPlace()); + auto diff = EigenVector::Flatten(ptensor_diff); + // apply smooth l1 backwoard + diff.device(place) = EigenVector::Flatten(*in2).unaryExpr( + SmoothL1LossBackward(sigma2)); + + // compute weights + Tensor ptensor_weights; + ptensor_weights.mutable_data(mat_dims, context.GetPlace()); + auto weights = EigenMatrix::From(ptensor_weights); + // initialize to 1.0 + weights.device(place) = weights.constant(static_cast(1.0)); + if (has_weight) { + auto inside_weight = EigenMatrix::From(*in0, mat_dims); + auto outside_weight = EigenMatrix::From(*in1, mat_dims); + weights.device(place) = inside_weight * outside_weight; + } + + // compute gradients + auto out_grad = EigenMatrix::From(*og); + auto diff_mat_view = EigenMatrix::From(ptensor_diff, mat_dims); + auto gradients = out_grad.broadcast( + Eigen::array({{1, static_cast(cols)}})) * + weights * diff_mat_view; + + auto* out0 = context.Output(framework::GradVarName("X")); + auto* out1 = context.Output(framework::GradVarName("Y")); + + if (out0) { + out0->mutable_data(context.GetPlace()); + auto x_grad = EigenMatrix::From(*out0, mat_dims); + x_grad.device(place) = gradients; + } + + if (out1) { + out1->mutable_data(context.GetPlace()); + auto y_grad = EigenMatrix::From(*out1, mat_dims); + y_grad.device(place) = -1 * gradients; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/softmax_op.cc b/paddle/operators/softmax_op.cc index 7166b2f60be8a6088ab3a81686f7bed1b7181d97..e353afee3e10247fbd5c7f4282c366cd1bc39552 100644 --- a/paddle/operators/softmax_op.cc +++ b/paddle/operators/softmax_op.cc @@ -22,17 +22,23 @@ class SoftmaxOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE(ctx.Input("X")->dims().size() == 2UL, + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SoftmaxOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Y"), + "Output(Y) of SoftmaxOp should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + PADDLE_ENFORCE(x_dims.size() == 2UL, "The input of softmax op must be a matrix."); - ctx.Output("Y")->Resize(ctx.Input("X")->dims()); + ctx->SetOutputDim("Y", x_dims); } }; class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftmaxOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + SoftmaxOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of softmax. " @@ -63,16 +69,15 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should be not null."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")), - "Input(Y@GRAD) should be not null."); - PADDLE_ENFORCE_EQ(ctx.Input("Y")->dims(), - ctx.Input(framework::GradVarName("Y"))->dims(), + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should be not null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), + "Input(Y@GRAD) should be not null."); + PADDLE_ENFORCE_EQ(ctx->GetInputDim("Y"), + ctx->GetInputDim(framework::GradVarName("Y")), "Input(Y) and its gradients should have a same shape."); - ctx.Output(framework::GradVarName("X")) - ->Resize(ctx.Input("X")->dims()); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; diff --git a/paddle/operators/softmax_op.h b/paddle/operators/softmax_op.h index 8a3a5ab927c0e2937936fcc973f000d4d95c3dbc..2c08853f4f615bfe95f51aa20776ddddcdaa8f61 100644 --- a/paddle/operators/softmax_op.h +++ b/paddle/operators/softmax_op.h @@ -15,6 +15,7 @@ limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/math/softmax.h" namespace paddle { namespace operators { @@ -25,73 +26,31 @@ template ; template -class SoftmaxKernel : public framework::OpKernel { +class SoftmaxKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto X = context.Input("X"); - auto Y = context.Output("Y"); - Y->mutable_data(context.GetPlace()); - - auto logits = EigenMatrix::From(*X); - auto softmax = EigenMatrix::From(*Y); - - const int kBatchDim = 0; - const int kClassDim = 1; - - const int batch_size = logits.dimension(kBatchDim); - const int num_classes = logits.dimension(kClassDim); - - Eigen::DSizes along_class(kClassDim); - Eigen::DSizes batch_by_one(batch_size, 1); - Eigen::DSizes one_by_class(1, num_classes); + auto* X = context.Input("X"); + auto* Y = context.Output("Y"); - auto shifted_logits = (logits - - logits.maximum(along_class) - .eval() - .reshape(batch_by_one) - .broadcast(one_by_class)); - - softmax.device(context.GetEigenDevice()) = shifted_logits.exp(); + // allocate memory on device. + Y->mutable_data(context.GetPlace()); - softmax.device(context.GetEigenDevice()) = - (softmax * - softmax.sum(along_class) - .inverse() - .eval() - .reshape(batch_by_one) - .broadcast(one_by_class)); + math::SoftmaxFunctor()(context.device_context(), X, Y); } }; template -class SoftmaxGradKernel : public framework::OpKernel { +class SoftmaxGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - std::shared_ptr scale_ = std::make_shared(); + auto* Y = context.Input("Y"); + auto* dY = context.Input(framework::GradVarName("Y")); + auto* dX = context.Output(framework::GradVarName("X")); - auto Y = context.Input("Y"); - auto dY = context.Input(framework::GradVarName("Y")); - auto dX = context.Output(framework::GradVarName("X")); + // allocate memory on device. dX->mutable_data(context.GetPlace()); - const int batch_size = Y->dims()[0]; - const int class_num = Y->dims()[1]; - - Eigen::DSizes along_class(1); - Eigen::DSizes batch_by_one(batch_size, 1); - Eigen::DSizes one_by_class(1, class_num); - - auto Y_eigen = EigenMatrix::From(*Y); - auto dY_eigen = EigenMatrix::From(*dY); - auto dX_eigen = EigenMatrix::From(*dX); - auto place = context.GetEigenDevice(); - - auto dot = (Y_eigen * dY_eigen) - .sum(along_class) - .eval() - .reshape(batch_by_one) - .broadcast(one_by_class); - dX_eigen.device(place) = (dY_eigen - dot) * Y_eigen; + math::SoftmaxGradFunctor()(context.device_context(), Y, dY, dX); } }; diff --git a/paddle/operators/softmax_with_cross_entropy_op.cc b/paddle/operators/softmax_with_cross_entropy_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..a76489871f30dc8d852b6a783efeff41704fd4a4 --- /dev/null +++ b/paddle/operators/softmax_with_cross_entropy_op.cc @@ -0,0 +1,178 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/softmax_with_cross_entropy_op.h" +#include + +namespace paddle { +namespace operators { + +class SoftmaxWithCrossEntropyOpMaker + : public framework::OpProtoAndCheckerMaker { + public: + SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Logits", + "(Tensor, default: Tensor), The unscaled log probabilities " + "which is a 2-D tensor with shape [N x K]. N is the batch_size, " + "and K is the class number.") + .NotInGradient(); + AddInput( + "Label", + "(Tensor, default: Tensor), The ground truth which is a 2-D " + "tensor. " + "If softLable is set to 0, Label is a Tensor with shape [N x 1]. " + "If softLable is set to 1, Label is a Tensor " + "with shape [N x K]."); + AddOutput( + "Softmax", + "(Tensor, default: Tensor), A 2-D tensor with shape [N x K]. " + "The outputs value of softmax activation by given the input batch, " + "which will be used in backward calculation.") + .AsIntermediate(); + AddOutput("Loss", + "(Tensor, default: Tensor), A 2-D tensor. The cross " + "entropy loss with shape [N x 1]."); + AddAttr( + "softLabel", + "(bool, default: false), A flag to indicate whether to interpretate " + "the given labels as soft labels.") + .SetDefault(false); + AddComment(R"DOC( +Cross entropy loss with softmax are used as the output layer extensively. This +operator computes the softmax normalized values for each row of the input +tensor, after which cross-entropy loss is then computed. This provides a more +numerically stable gradient. + +Because this operators performs a softmax on logits internally, it expects +unscaled logits. Please do not call this op with the output of softmax operator, +which will produce incorrect results. + +This operators expects mutually exclusive hard labels, each sample in a batch +is in exactly one class with probabilities 1. Each sample in the batch with one +and only one label. + +Equation: + +1) hard label (one-hot label) + +Loss_j = -\text{Logit}_{Label_j} + \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right), j = 1, ..., K + +2) soft label (a distribution over all classes) + +Loss_j = -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i-\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right), j = 1,...,K + +)DOC"); + } +}; + +class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Logits"), + "Input(Logits) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); + + PADDLE_ENFORCE(ctx->HasOutput("Softmax"), + "Output(Softmax) should be not null."); + PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null."); + + auto logits_dims = ctx->GetInputDim("Logits"); + auto labels_dims = ctx->GetInputDim("Label"); + PADDLE_ENFORCE_EQ( + logits_dims.size(), 2UL, + "The input of softmax_with_cross_entropy should be a 2-D tensor."); + PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL, + "The labels should be a 2-D tensor."); + + if (ctx->Attrs().Get("softLabel")) { + PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1], + "If Attr(softLabel) == true, the 2nd dimension of " + "Input(X) and Input(Label) should be equal."); + } else { + PADDLE_ENFORCE_EQ(labels_dims[1], 1UL, + "If Attr(softLabel) == false, the 2nd dimension of " + "Input(Label) should be 1."); + } + + ctx->SetOutputDim("Softmax", logits_dims); + ctx->SetOutputDim("Loss", {logits_dims[0], 1}); + + ctx->ShareLoD("Logits", /*->*/ "Softmax"); + ctx->ShareLoD("Logits", /*->*/ "Loss"); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType(ctx.Input("Logits")->type()); + } +}; + +class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")), + "Input(Loss@Grad) should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Softmax"), + "Input(Softmax) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")), + "Output(Logits@Grad) should be not null."); + + auto softmax_dims = ctx->GetInputDim("Softmax"); + auto labels_dims = ctx->GetInputDim("Label"); + PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL, + "The labels should be a 2-D tensor."); + + if (ctx->Attrs().Get("softLabel")) { + PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1], + "When Attr(softLabel) == true, the 2nd dimension of " + "Input(X) and Input(Label) should be equal."); + } else { + PADDLE_ENFORCE_EQ(labels_dims[1], 1UL, + "When Attr(softLabel) == false, the 2nd dimension of " + "Input(Label) should be 1."); + } + + ctx->SetOutputDim(framework::GradVarName("Logits"), + ctx->GetInputDim("Softmax")); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return framework::ToDataType( + ctx.Input(framework::GradVarName("Loss"))->type()); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp, + ops::SoftmaxWithCrossEntropyOpMaker, + softmax_with_cross_entropy_grad, + ops::SoftmaxWithCrossEntropyOpGrad); +REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy, + ops::SoftmaxWithCrossEntropyKernel); +REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad, + ops::SoftmaxWithCrossEntropyGradKernel); diff --git a/paddle/operators/softmax_with_cross_entropy_op.cu b/paddle/operators/softmax_with_cross_entropy_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..2bc53ecf871eb1800a920ba85e8eac31d7037efe --- /dev/null +++ b/paddle/operators/softmax_with_cross_entropy_op.cu @@ -0,0 +1,121 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU + +#include "paddle/operators/softmax_with_cross_entropy_op.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +namespace { +template +__global__ void CrossEntropyGrad(T* out_grad, const T* in_grad, + const int* labels, const int batch_size, + const int class_num) { + int tid = blockIdx.x * blockDim.x + threadIdx.x; + int sample_idx = tid / class_num; + + if (tid < batch_size * class_num) out_grad[tid] *= in_grad[sample_idx]; + __syncthreads(); + + if (tid < batch_size) { + PADDLE_ASSERT(labels[sample_idx] >= 0 && labels[sample_idx] < class_num); + out_grad[tid * class_num + labels[tid]] -= 1.; + } +} + +template +__global__ void SoftCrossEntropyGradientKernel(T* logit_grad, + const T* loss_grad, + const T* labels, + const int batch_size, + const int class_num) { + int ids = blockIdx.x * blockDim.x + threadIdx.x; + if (ids < batch_size * class_num) { + int row_ids = ids / class_num; + logit_grad[ids] = logit_grad[ids] * loss_grad[row_ids] - labels[ids]; + } +} +} // namespace + +template +class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()), + "This kernel only runs on GPU device."); + const Tensor* logits = context.Input("Logits"); + const Tensor* labels = context.Input("Label"); + Tensor* softmax = context.Output("Softmax"); + + Tensor* loss = context.Output("Loss"); + softmax->mutable_data(context.GetPlace()); + loss->mutable_data(context.GetPlace()); + + math::SoftmaxFunctor()(context.device_context(), + logits, softmax); + math::CrossEntropyFunctor()( + context.device_context(), loss, softmax, labels, + context.Attr("softLabel")); + } +}; + +template +class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()), + "This kernel only runs on GPU device."); + const Tensor* labels = context.Input("Label"); + const T* loss_grad_data = + context.Input(framework::GradVarName("Loss"))->data(); + Tensor* logit_grad = + context.Output(framework::GradVarName("Logits")); + logit_grad->ShareDataWith(*context.Input("Softmax")); + T* logit_grad_data = logit_grad->data(); + + const int batch_size = logit_grad->dims()[0]; + const int class_num = logit_grad->dims()[1]; + int block = 512; + int grid = (batch_size * class_num + block - 1) / block; + + if (context.Attr("softLabel")) { + const T* label_data = labels->data(); + SoftCrossEntropyGradientKernel<<< + grid, block, 0, reinterpret_cast( + context.device_context()) + .stream()>>>(logit_grad_data, loss_grad_data, + label_data, batch_size, class_num); + } else { + const int* label_data = labels->data(); + CrossEntropyGrad<<< + grid, block, 0, reinterpret_cast( + context.device_context()) + .stream()>>>(logit_grad_data, loss_grad_data, + label_data, batch_size, class_num); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(softmax_with_cross_entropy, + ops::SoftmaxWithCrossEntropyCUDAKernel); +REGISTER_OP_GPU_KERNEL(softmax_with_cross_entropy_grad, + ops::SoftmaxWithCrossEntropyGradCUDAKernel); diff --git a/paddle/operators/softmax_with_cross_entropy_op.h b/paddle/operators/softmax_with_cross_entropy_op.h new file mode 100644 index 0000000000000000000000000000000000000000..cffd422f1827b646a8abcd881fdcb5455e6a663a --- /dev/null +++ b/paddle/operators/softmax_with_cross_entropy_op.h @@ -0,0 +1,88 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/cross_entropy.h" +#include "paddle/operators/math/softmax.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenMatrix = framework::EigenMatrix; + +template +class SoftmaxWithCrossEntropyKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()), + "This kernel only runs on CPU."); + const Tensor* logits = context.Input("Logits"); + const Tensor* labels = context.Input("Label"); + Tensor* softmax = context.Output("Softmax"); + Tensor* loss = context.Output("Loss"); + + softmax->mutable_data(context.GetPlace()); + loss->mutable_data(context.GetPlace()); + + math::SoftmaxFunctor()(context.device_context(), + logits, softmax); + math::CrossEntropyFunctor()( + context.device_context(), loss, softmax, labels, + context.Attr("softLabel")); + } +}; + +template +class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const Tensor* out_grad = + context.Input(framework::GradVarName("Loss")); + const Tensor* labels = context.Input("Label"); + Tensor* logit_grad = + context.Output(framework::GradVarName("Logits")); + logit_grad->ShareDataWith(*context.Input("Softmax")); + + const int class_num = logit_grad->dims()[1]; + if (context.Attr("softLabel")) { + auto out_grad_mat = EigenMatrix::From(*out_grad); + auto logit_grad_mat = EigenMatrix::From(*logit_grad); + auto lbl_mat = EigenMatrix::From(*labels); + + logit_grad_mat.device(context.GetEigenDevice()) = + logit_grad_mat * + out_grad_mat.broadcast(Eigen::DSizes(1, class_num)) - + lbl_mat; + } else { + const int batch_size = logit_grad->dims()[0]; + const int* label_data = labels->data(); + const T* out_grad_data = out_grad->data(); + T* logit_grad_data = logit_grad->data(); + + for (int i = 0; i < batch_size; ++i) { + int index = i * class_num + label_data[i]; + logit_grad_data[index] = + (out_grad_data[i] * logit_grad_data[index] - 1.); + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/split_op.cc b/paddle/operators/split_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..5f4b5539affef6fe1d3c4d15fff77d983b5e107f --- /dev/null +++ b/paddle/operators/split_op.cc @@ -0,0 +1,121 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/split_op.h" +#include "paddle/operators/net_op.h" + +namespace paddle { +namespace operators { +using framework::Tensor; + +class SplitOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SplitOp should not be null."); + PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL, + "Outputs(Out) of SplitOp should not be empty."); + auto in_dims = ctx->GetInputDim("X"); + auto outs_names = ctx->Outputs("Out"); + size_t axis = static_cast(ctx->Attrs().Get("axis")); + size_t num = static_cast(ctx->Attrs().Get("num")); + std::vector sections = static_cast>( + ctx->Attrs().Get>("sections")); + const size_t outs_number = outs_names.size(); + std::vector outs_dims; + outs_dims.reserve(outs_number); + + if (num > 0) { + int64_t in_axis_dim = in_dims[axis]; + PADDLE_ENFORCE_EQ(in_axis_dim % num, 0, + "tensor split does not result" + " in an equal division"); + size_t out_axis_dim = in_axis_dim / num; + for (size_t i = 0; i < outs_number; ++i) { + auto dim = in_dims; + dim[axis] = out_axis_dim; + outs_dims.push_back(dim); + } + } else if (sections.size() > 0) { + PADDLE_ENFORCE_EQ(sections.size(), outs_number, + "tensor split sections size" + "should be equal to output size."); + for (size_t i = 0; i < outs_number; ++i) { + auto dim = in_dims; + dim[axis] = sections[i]; + outs_dims.push_back(dim); + } + } + ctx->SetOutputsDim("Out", outs_dims); + } +}; + +class SplitOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SplitOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "the input tensor of split operator."); + AddOutput("Out", "the output tensors of split operator.").AsDuplicable(); + AddComment(R"DOC( + Split the input tensor into multiple sub-tensors. + Example: + Input = [[1,2], + [3,4], + [5,6]] + sections = [2,1] + axis = 0 + Output[0] = [[1,2], + [3,4]] + Output[1] = [[5,6]] + + )DOC"); + AddAttr>("sections", + "the length for each" + "output along with the specify axis.") + .SetDefault(std::vector{}); + AddAttr("num", + "number of the sub-tensors, it must evenly divide " + "Input.dims()[axis]") + .SetDefault(0); + AddAttr("axis", "The axis which the input will be splited on.") + .SetDefault(0); + } +}; + +class SplitOpGrad : public NetOp { + public: + SplitOpGrad(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + auto out_grad = Inputs(framework::GradVarName("Out")); + auto x_grad = Output(framework::GradVarName("X")); + AppendOp(framework::OpRegistry::CreateOp("concat", {{"X", out_grad}}, + {{"Out", {x_grad}}}, attrs)); + CompleteAddOp(false); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +USE_CPU_ONLY_OP(concat); +REGISTER_OP(split, ops::SplitOp, ops::SplitOpMaker, split_grad, + ops::SplitOpGrad); +REGISTER_OP_CPU_KERNEL(split, + ops::SplitOpKernel); diff --git a/paddle/operators/split_op.cu b/paddle/operators/split_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..93d1fc3c44cbc146c945c51af1abe6494572d1ae --- /dev/null +++ b/paddle/operators/split_op.cu @@ -0,0 +1,18 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/split_op.h" +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(split, + ops::SplitOpKernel); diff --git a/paddle/operators/split_op.h b/paddle/operators/split_op.h new file mode 100644 index 0000000000000000000000000000000000000000..fa26e5f677b18c84b45dd583004d02cab4c1d375 --- /dev/null +++ b/paddle/operators/split_op.h @@ -0,0 +1,47 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/framework/op_registry.h" +#include "paddle/operators/strided_memcpy.h" + +namespace paddle { +namespace operators { + +template +class SplitOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in = ctx.Input("X"); + auto outs = ctx.MultiOutput("Out"); + auto in_stride = framework::stride(in->dims()); + int64_t axis = static_cast(ctx.Attr("axis")); + const size_t n = outs.size(); + size_t input_offset = 0; + for (size_t i = 0; i < n; i++) { + auto& out = outs[i]; + out->mutable_data(ctx.GetPlace()); + size_t axis_dim = out->dims()[axis]; + auto out_stride = framework::stride(out->dims()); + StridedMemcpy(ctx.device_context(), in->data() + input_offset, + in_stride, out->dims(), out_stride, out->data()); + input_offset += axis_dim * in_stride[axis]; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/squared_l2_distance_op.cc b/paddle/operators/squared_l2_distance_op.cc index 9f51d3efa8ecba894a1023b9de2df451ca85916c..5a0cb596008a98aacf5e7b5ff70307ea1b8508e6 100644 --- a/paddle/operators/squared_l2_distance_op.cc +++ b/paddle/operators/squared_l2_distance_op.cc @@ -22,18 +22,19 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext& ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), - "Input of SquaredL2DistanceOp " - "must be initialized."); - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), - "Target of SquaredL2DistanceOp " - "must be initialized."); - - auto* x = ctx.Input("X"); - auto x_dims = x->dims(); - auto* y = ctx.Input("Y"); - auto y_dims = y->dims(); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SquaredL2DistanceOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Y"), + "Input(Y) of SquaredL2DistanceOp should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("sub_result"), + "Output(sub_result) of SquaredL2DistanceOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SquaredL2DistanceOp should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); PADDLE_ENFORCE_EQ(framework::arity(x_dims), framework::arity(y_dims), "Tensor rank of both SquaredL2DistanceOp's " @@ -41,16 +42,16 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel { int rank = framework::arity(x_dims); PADDLE_ENFORCE_GE(rank, 2, "Tensor rank should be at least equal to 2."); - PADDLE_ENFORCE_EQ(x->numel() / x_dims[0], y->numel() / y_dims[0], + PADDLE_ENFORCE_EQ(product(x_dims) / x_dims[0], product(y_dims) / y_dims[0], "Product of dimensions expcet the first dimension of " "input and target must be equal."); PADDLE_ENFORCE(y_dims[0] == 1 || y_dims[0] == x_dims[0], "First dimension of target must be equal to input " "or to 1."); - ctx.Output("sub_result") - ->Resize({x_dims[0], x->numel() / x_dims[0]}); - ctx.Output("Out")->Resize({x_dims[0], 1}); + ctx->SetOutputDim("sub_result", {x_dims[0], product(x_dims) / x_dims[0]}); + ctx->SetOutputDim("Out", {x_dims[0], 1}); + ctx->ShareLoD("X", /*->*/ "Out"); } }; @@ -73,6 +74,9 @@ class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker { input or to 1. If the first dimension of target is 1, SquaredL2DistanceOp will broadcast target's first dimension to input's first dimension. You can decide whether calculate the gradient of input and target. + + Both the input X and Y can carry the LoD (Level of Details) information, + or not. But the output only shares the LoD with input X. )DOC"); } }; @@ -82,22 +86,22 @@ class SquaredL2DistanceGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext& ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), - "Gradient of Out should not be null"); - auto out_dims = ctx.Input(framework::GradVarName("Out"))->dims(); - auto x_dims = ctx.Input("X")->dims(); - auto y_dims = ctx.Input("Y")->dims(); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Gradient of Out should not be null"); + auto out_dims = ctx->GetInputDim(framework::GradVarName("Out")); + auto x_dims = ctx->GetInputDim("X"); + auto y_dims = ctx->GetInputDim("Y"); PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0], "First dimension of output gradient and " "input value must be equal."); PADDLE_ENFORCE_EQ(out_dims[1], 1, "Second dimension of output gradient " "must be 1."); - auto* x_grad = ctx.Output(framework::GradVarName("X")); - auto* y_grad = ctx.Output(framework::GradVarName("Y")); - if (x_grad) x_grad->Resize(x_dims); - if (y_grad) y_grad->Resize(y_dims); + auto x_grad_name = framework::GradVarName("X"); + auto y_grad_name = framework::GradVarName("Y"); + if (ctx->HasOutput(x_grad_name)) ctx->SetOutputDim(x_grad_name, x_dims); + if (ctx->HasOutput(y_grad_name)) ctx->SetOutputDim(y_grad_name, y_dims); } }; diff --git a/paddle/operators/squared_l2_distance_op.h b/paddle/operators/squared_l2_distance_op.h index 097ac04fc09a10b3b624f491a847e281e41a802c..259ef4029646914f83a112b9c6d7fdf8401483f6 100644 --- a/paddle/operators/squared_l2_distance_op.h +++ b/paddle/operators/squared_l2_distance_op.h @@ -28,7 +28,7 @@ template ; template -class SquaredL2DistanceKernel : public framework::OpKernel { +class SquaredL2DistanceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("X"); @@ -68,7 +68,7 @@ class SquaredL2DistanceKernel : public framework::OpKernel { }; template -class SquaredL2DistanceGradKernel : public framework::OpKernel { +class SquaredL2DistanceGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("sub_result"); diff --git a/paddle/operators/strided_memcpy.h b/paddle/operators/strided_memcpy.h new file mode 100644 index 0000000000000000000000000000000000000000..c9dd80518424017d9834a2bf7aee14caa56c9d79 --- /dev/null +++ b/paddle/operators/strided_memcpy.h @@ -0,0 +1,45 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/operators/detail/strided_memcpy.h" + +namespace paddle { +namespace operators { + +// Strided memory copy from src to dst. +// +// The src and dst should be both on dev_ctx.GetPlace(), otherwise, there will +// be a segment fault. +// +// The stride of an array (also referred to as increment, pitch or step size) is +// the number of locations in memory between beginnings of successive array +// elements +// +// For example, for tensor like [1, 3, 300, 300]. If there is no padding, the +// stride is [270000, 90000, 300, 1]. +// +// NOTE: When use GPU, the memcpy is async. To sync memcpy, please invoke +// `dev_ctx.Wait()`. +template +inline void StridedMemcpy(const platform::DeviceContext& dev_ctx, const T* src, + const framework::DDim& src_stride, + const framework::DDim& dst_dim, + const framework::DDim& dst_stride, T* dst) { + using namespace detail; + StridedCopyDimVisitor func(dev_ctx, src, src_stride, dst_stride, dst); + boost::apply_visitor(func, dst_dim); +} +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/strided_memcpy_test.cc b/paddle/operators/strided_memcpy_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..05882a88738cfc9cc23480efe0afe504008377ca --- /dev/null +++ b/paddle/operators/strided_memcpy_test.cc @@ -0,0 +1,160 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/strided_memcpy.h" +#include "gtest/gtest.h" +#include "paddle/memory/memory.h" + +namespace paddle { +namespace operators { + +TEST(StridedMemcpy, CPUCrop) { + // clang-format off + int src[] = { + 0, 1, 2, 0, 0, + 0, 3, 4, 0, 0, + 0, 0, 0, 0, 0, + }; + // clang-format on + + framework::DDim src_stride({5, 1}); + + int dst[4]; + framework::DDim dst_dim({2, 2}); + framework::DDim dst_stride({2, 1}); + + platform::CPUDeviceContext ctx; + StridedMemcpy(ctx, src + 1, src_stride, dst_dim, dst_stride, dst); + + ASSERT_EQ(1, dst[0]); + ASSERT_EQ(2, dst[1]); + ASSERT_EQ(3, dst[2]); + ASSERT_EQ(4, dst[3]); +} + +TEST(StridedMemcpy, CPUConcat) { + // clang-format off + int src[] = { + 1, 2, + 3, 4 + }; + // clang-format on + + int dst[8]; + + framework::DDim src_stride({2, 1}); + framework::DDim dst_dim({2, 2}); + framework::DDim dst_stride({4, 1}); + platform::CPUDeviceContext ctx; + + StridedMemcpy(ctx, src, src_stride, dst_dim, dst_stride, dst); + StridedMemcpy(ctx, src, src_stride, dst_dim, dst_stride, dst + 2); + + // clang-format off + int expect_dst[] = { + 1, 2, 1, 2, + 3, 4, 3, 4 + }; + // clang-format on + for (size_t i = 0; i < sizeof(expect_dst) / sizeof(int); ++i) { + ASSERT_EQ(expect_dst[i], dst[i]); + } +} + +#ifndef PADDLE_ONLY_CPU +TEST(StridedMemcpy, GPUCrop) { + // clang-format off + int src[] = { + 0, 1, 2, 0, 0, + 0, 3, 4, 0, 0, + 0, 0, 0, 0, 0, + }; + // clang-format on + + platform::GPUPlace gpu0(0); + platform::CPUPlace cpu; + + int* gpu_src = reinterpret_cast(memory::Alloc(gpu0, sizeof(src))); + memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src)); + + framework::DDim src_stride({5, 1}); + + int dst[4]; + int* gpu_dst = reinterpret_cast(memory::Alloc(gpu0, sizeof(dst))); + + framework::DDim dst_dim({2, 2}); + framework::DDim dst_stride({2, 1}); + + platform::CUDADeviceContext ctx(gpu0); + StridedMemcpy(ctx, gpu_src + 1, src_stride, dst_dim, dst_stride, + gpu_dst); + + memory::Copy(cpu, dst, gpu0, gpu_dst, sizeof(dst), ctx.stream()); + ctx.Wait(); + + ASSERT_EQ(1, dst[0]); + ASSERT_EQ(2, dst[1]); + ASSERT_EQ(3, dst[2]); + ASSERT_EQ(4, dst[3]); + + memory::Free(gpu0, gpu_dst); + memory::Free(gpu0, gpu_src); +} + +TEST(StridedMemcpy, GPUConcat) { + // clang-format off + int src[] = { + 1, 2, + 3, 4 + }; + // clang-format on + + platform::GPUPlace gpu0(0); + platform::CPUPlace cpu; + + int* gpu_src = reinterpret_cast(memory::Alloc(gpu0, sizeof(src))); + memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src)); + + int dst[8]; + int* gpu_dst = reinterpret_cast(memory::Alloc(gpu0, sizeof(dst))); + + framework::DDim src_stride({2, 1}); + framework::DDim dst_dim({2, 2}); + framework::DDim dst_stride({4, 1}); + platform::CUDADeviceContext ctx(gpu0); + + StridedMemcpy(ctx, gpu_src, src_stride, dst_dim, dst_stride, gpu_dst); + StridedMemcpy(ctx, gpu_src, src_stride, dst_dim, dst_stride, + gpu_dst + 2); + + memory::Copy(cpu, dst, gpu0, gpu_dst, sizeof(dst), ctx.stream()); + ctx.Wait(); + + // clang-format off + int expect_dst[] = { + 1, 2, 1, 2, + 3, 4, 3, 4 + }; + // clang-format on + for (size_t i = 0; i < sizeof(expect_dst) / sizeof(int); ++i) { + ASSERT_EQ(expect_dst[i], dst[i]); + } + + memory::Free(gpu0, gpu_dst); + memory::Free(gpu0, gpu_src); +} + +#endif +} // namespace operators +} // namespace paddle \ No newline at end of file diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index 5805826ee8a555ca6dfc1ca81feaadffea9e1012..5d76313aeb96c0c8204f64aee1057f753ec85d6b 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -21,31 +21,38 @@ class SumOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto ins = ctx.MultiInput("X"); - auto *out = ctx.Output("Out"); - int N = ins.size(); - - auto in_dim = ins[0]->dims(); + void InferShape(framework::InferShapeContextBase* ctx) const override { + auto x_dims = ctx->GetInputsDim("X"); + PADDLE_ENFORCE(!x_dims.empty(), "Input(X) of SumOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SumOp should not be null."); + auto in_dim = x_dims[0]; + size_t N = x_dims.size(); PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1."); - for (int i = 1; i < N; i++) { - auto dim = ins[i]->dims(); + for (size_t i = 1; i < N; i++) { + auto dim = x_dims[i]; PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape"); } - out->Resize(in_dim); + ctx->SetOutputDim("Out", in_dim); + ctx->ShareLoD("X", /*->*/ "Out"); } }; class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: - SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "the input tensors of sum operator.").AsDuplicable(); - AddOutput("Out", "the output tensor of sum operator."); + AddInput("X", "the input tensors of sum operator.") + .AsDuplicable() + .NotInGradient(); + AddOutput("Out", "the output tensor of sum operator.").NotInGradient(); AddComment(R"DOC( - Sum the input tensors. - )DOC"); +Sum the input tensors. + +All the inputs can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD with the first input. +)DOC"); } }; @@ -54,12 +61,16 @@ class SumGradOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - auto outputs = ctx.MultiOutput(framework::GradVarName("X")); - auto dims = ctx.Input(framework::GradVarName("Out"))->dims(); - for (auto output : outputs) { - output->Resize(dims); + void InferShape(framework::InferShapeContextBase* ctx) const override { + auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out")); + auto x_grad_names = ctx->Outputs(framework::GradVarName("X")); + size_t x_length = x_grad_names.size(); + std::vector x_grad_dims; + x_grad_dims.reserve(x_length); + for (size_t i = 0; i < x_length; ++i) { + x_grad_dims.push_back(out_grad_dims); } + ctx->SetOutputsDim(framework::GradVarName("X"), x_grad_dims); } }; diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h index 0b1e9ebaa38d455fb5e3ce8c1a39cbbcdad9a940..7e8fbb9e41c694df9169ea583ce47c33d3bcf2bb 100644 --- a/paddle/operators/sum_op.h +++ b/paddle/operators/sum_op.h @@ -22,7 +22,7 @@ template ; template -class SumKernel : public framework::OpKernel { +class SumKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto ins = context.MultiInput("X"); @@ -43,7 +43,7 @@ class SumKernel : public framework::OpKernel { }; template -class SumGradKernel : public framework::OpKernel { +class SumGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input = context.Input(framework::GradVarName("Out")); diff --git a/paddle/operators/top_k_op.cc b/paddle/operators/top_k_op.cc index 38d2f0a09aec751734864947a2f3cfa20107e22f..5f22bf1df8720b60aba7cd75896d88cd1ad77635 100644 --- a/paddle/operators/top_k_op.cc +++ b/paddle/operators/top_k_op.cc @@ -22,21 +22,26 @@ class TopkOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext &ctx) const override { - PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), - "Input of TopkOP must be initialized."); - auto *input = ctx.Input("X"); - const int k = static_cast(ctx.Attr("k")); + void InferShape(framework::InferShapeContextBase *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of TopkOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of TopkOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Indices"), + "Output(Indices) of TopkOp should not be null."); + + auto input_dims = ctx->GetInputDim("X"); + const int k = static_cast(ctx->Attrs().Get("k")); PADDLE_ENFORCE_GE(k, 1, "k must >= 1"); - PADDLE_ENFORCE_GE(input->dims().size(), 1, "input must have >= 1d shape"); - PADDLE_ENFORCE_GE(input->dims()[input->dims().size() - 1], k, + PADDLE_ENFORCE_GE(input_dims.size(), 1, "input must have >= 1d shape"); + PADDLE_ENFORCE_GE(input_dims[input_dims.size() - 1], k, "input must have >= k columns"); - framework::DDim dims = input->dims(); + framework::DDim dims = input_dims; dims[dims.size() - 1] = k; - ctx.Output("Out")->Resize(dims); - ctx.Output("Indices")->Resize(dims); + ctx->SetOutputDim("Out", dims); + ctx->SetOutputDim("Indices", dims); } }; diff --git a/paddle/operators/top_k_op.cu b/paddle/operators/top_k_op.cu index afe4d149c53819c45e20353bc9d16393f3f61e0f..7be6932f1e301d06e0e232367a38bfa673ff45be 100644 --- a/paddle/operators/top_k_op.cu +++ b/paddle/operators/top_k_op.cu @@ -279,7 +279,7 @@ __global__ void KeMatrixTopK(T* output, int output_stride, int* indices, } template -class TopkOpCUDAKernel : public framework::OpKernel { +class TopkOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), @@ -301,14 +301,16 @@ class TopkOpCUDAKernel : public framework::OpKernel { // NOTE: pass lds and dim same to input width. // NOTE: old matrix implementation of stride is different to eigen. - // TODO(typhoonzero): launch kernel on specified stream. // TODO(typhoonzero): refine this kernel. dim3 threads(256, 1); dim3 grid(input_height, 1); - KeMatrixTopK<<>>( - output_data, output->dims()[1], indices_data, input_data, input_width, - input_width, int(k)); + KeMatrixTopK<<< + grid, threads, 0, reinterpret_cast( + ctx.device_context()) + .stream()>>>(output_data, output->dims()[1], + indices_data, input_data, + input_width, input_width, int(k)); } }; diff --git a/paddle/operators/top_k_op.h b/paddle/operators/top_k_op.h index ef66acc1d569282a42be64b7a5e90f3fbdb20690..4b248faa120bcfd20e70d288cce2d485d3e6371e 100644 --- a/paddle/operators/top_k_op.h +++ b/paddle/operators/top_k_op.h @@ -28,7 +28,7 @@ template ; template -class TopkKernel : public framework::OpKernel { +class TopkKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { // Get the top k elements of each row of input tensor diff --git a/paddle/operators/transpose_op.cc b/paddle/operators/transpose_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..0672f9342dac00ecc3f358450a9a203327cbb51f --- /dev/null +++ b/paddle/operators/transpose_op.cc @@ -0,0 +1,118 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/transpose_op.h" + +namespace paddle { +namespace operators { + +using framework::Tensor; + +class TransposeOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null"); + auto x_dims = ctx->GetInputDim("X"); + std::vector axis = ctx->Attrs().Get>("axis"); + size_t x_rank = x_dims.size(); + size_t axis_size = axis.size(); + + PADDLE_ENFORCE_EQ(x_rank, axis_size, + "the input tensor's rank(%d) " + "should be equal to the axis's size(%d)", + x_rank, axis_size); + + std::vector count(axis_size, 0); + for (size_t i = 0; i < axis_size; i++) { + PADDLE_ENFORCE( + axis[i] < static_cast(axis_size) && ++count[axis[i]] == 1, + "Each element of Attribute axis should be a unique value " + "range from 0 to (dims - 1), " + "where the dims is the axis's size"); + } + + framework::DDim out_dims(x_dims); + for (size_t i = 0; i < axis_size; i++) { + out_dims[i] = x_dims[axis[i]]; + } + ctx->SetOutputDim("Out", out_dims); + } +}; + +class TransposeOpMaker : public framework::OpProtoAndCheckerMaker { + public: + TransposeOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "X", + "(Tensor)The input tensor, tensors with rank at most 6 are supported"); + AddOutput("Out", "(Tensor)The output tensor"); + AddAttr>( + "axis", + "(vector)a list of values, and the size of the list should be " + "the same with the input tensor rank, the tensor will " + "permute the axes according the the values given"); + AddComment(R"DOC( +The Tensor will be permuted according to the axis values given. +The op is very much like the numpy.transpose function in python +For example: + >> input = numpy.arange(6).reshape((2,3)) + >> input + array([[0, 1, 2], + [3, 4, 5]]) + >> axis = [1, 0] + >> output = input.transpose(axis) + >> output + array([[0, 3], + [1, 4], + [2, 5]]) +So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1}, +the output tensor shape will be (N, H, W, C) +)DOC"); + } +}; + +class TransposeOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + auto x_dims = ctx->GetInputDim("X"); + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + if (ctx->HasOutput(framework::GradVarName("X"))) { + ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad, + ops::TransposeOpGrad); +REGISTER_OP_CPU_KERNEL(transpose, + ops::TransposeKernel); +REGISTER_OP_CPU_KERNEL( + transpose_grad, + ops::TransposeGradKernel); diff --git a/paddle/operators/transpose_op.cu b/paddle/operators/transpose_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..af3f581462c919bbd2dd1067e536cc638f9c267d --- /dev/null +++ b/paddle/operators/transpose_op.cu @@ -0,0 +1,22 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/transpose_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(transpose, + ops::TransposeKernel); +REGISTER_OP_GPU_KERNEL( + transpose_grad, + ops::TransposeGradKernel); diff --git a/paddle/operators/transpose_op.h b/paddle/operators/transpose_op.h new file mode 100644 index 0000000000000000000000000000000000000000..aaa3f47ab5545accd4d1108e0ad6f5a3062186d0 --- /dev/null +++ b/paddle/operators/transpose_op.h @@ -0,0 +1,128 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +void EigenTranspose(const framework::ExecutionContext& context, + const framework::Tensor& in, framework::Tensor& out, + std::vector axis) { + Eigen::array permute; + for (int i = 0; i < Rank; i++) { + permute[i] = axis[i]; + } + auto in_dim = in.dims(); + auto out_dim = out.dims(); + + auto eigen_in = framework::EigenTensor::From(in); + auto eigen_out = framework::EigenTensor::From(out); + auto& dev = context.GetEigenDevice(); + eigen_out.device(dev) = eigen_in.shuffle(permute); +} + +template +class TransposeKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x = context.Input("X"); + auto* out = context.Output("Out"); + out->mutable_data(context.GetPlace()); + + std::vector axis = context.Attr>("axis"); + int ndims = axis.size(); + switch (ndims) { + case 1: + EigenTranspose(context, *x, *out, axis); + break; + case 2: + EigenTranspose(context, *x, *out, axis); + break; + case 3: + EigenTranspose(context, *x, *out, axis); + break; + case 4: + EigenTranspose(context, *x, *out, axis); + break; + case 5: + EigenTranspose(context, *x, *out, axis); + break; + case 6: + EigenTranspose(context, *x, *out, axis); + break; + default: + PADDLE_THROW("Tensors with rank at most 6 are supported"); + } + } +}; + +template +class TransposeGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* out_grad = + context.Input(framework::GradVarName("Out")); + auto* x_grad = + context.Output(framework::GradVarName("X")); + if (x_grad) { + x_grad->mutable_data(context.GetPlace()); + + std::vector axis = context.Attr>("axis"); + std::vector reversed_axis(axis); + + for (size_t i = 0; i < axis.size(); i++) { + reversed_axis[axis[i]] = i; + } + + int ndims = axis.size(); + + switch (ndims) { + case 1: + EigenTranspose(context, *out_grad, *x_grad, + reversed_axis); + break; + case 2: + EigenTranspose(context, *out_grad, *x_grad, + reversed_axis); + break; + case 3: + EigenTranspose(context, *out_grad, *x_grad, + reversed_axis); + break; + case 4: + EigenTranspose(context, *out_grad, *x_grad, + reversed_axis); + break; + case 5: + EigenTranspose(context, *out_grad, *x_grad, + reversed_axis); + break; + case 6: + EigenTranspose(context, *out_grad, *x_grad, + reversed_axis); + break; + default: + PADDLE_THROW("Tensors with rank at most 6 are supported"); + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index b8fbc9b52aecdb5c8d985b5de9bcd7cb85835b60..97b1d0bed4595cb750e4d2122f294f10edfbe0ff 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -21,20 +21,20 @@ namespace operators { // Use std::random and thrust::random(thrust is a std library in CUDA) to // implement uniform random. template -class CPUUniformRandomKernel : public framework::OpKernel { +class CPUUniformRandomKernel : public framework::OpKernel { public: - void Compute(const framework::ExecutionContext& context) const override { - auto* tensor = context.Output("Out"); - T* data = tensor->mutable_data(context.GetPlace()); - unsigned int seed = static_cast(context.Attr("seed")); + void Compute(const framework::ExecutionContext& ctx) const override { + auto* tensor = ctx.Output("Out"); + T* data = tensor->mutable_data(ctx.GetPlace()); + unsigned int seed = static_cast(ctx.Attr("seed")); std::minstd_rand engine; if (seed == 0) { seed = std::random_device()(); } engine.seed(seed); std::uniform_real_distribution dist( - static_cast(context.Attr("min")), - static_cast(context.Attr("max"))); + static_cast(ctx.Attr("min")), + static_cast(ctx.Attr("max"))); int64_t size = tensor->numel(); for (int64_t i = 0; i < size; ++i) { data[i] = dist(engine); @@ -47,17 +47,25 @@ class UniformRandomOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; protected: - void InferShape(const framework::InferShapeContext& ctx) const override { - PADDLE_ENFORCE(Attr("min") < Attr("max"), - "uniform_random's min must less then max"); - auto* tensor = ctx.Output("Out"); + void InferShape(framework::InferShapeContextBase* ctx) const override { + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of UniformRandomOp should not be null."); + + PADDLE_ENFORCE( + ctx->Attrs().Get("min") < ctx->Attrs().Get("max"), + "uniform_random's min must less then max"); auto dims = Attr>("dims"); std::vector temp; temp.reserve(dims.size()); for (auto dim : dims) { temp.push_back(static_cast(dim)); } - tensor->Resize(framework::make_ddim(temp)); + ctx->SetOutputDim("Out", framework::make_ddim(temp)); + } + + framework::DataType IndicateDataType( + const framework::ExecutionContext& ctx) const override { + return static_cast(Attr("data_type")); } }; @@ -77,6 +85,8 @@ Used to initialize tensor with uniform random generator. "Random seed of uniform random. " "0 means generate a seed by system") .SetDefault(0); + AddAttr("data_type", "output tensor data type") + .SetDefault(framework::DataType::FP32); } }; } // namespace operators diff --git a/paddle/operators/uniform_random_op.cu b/paddle/operators/uniform_random_op.cu index 6614b53b3f990d10c82633f3c1f079acea0cd827..5612ce9eb1c644d6271b4a9bb949f685848e05c0 100644 --- a/paddle/operators/uniform_random_op.cu +++ b/paddle/operators/uniform_random_op.cu @@ -40,7 +40,7 @@ struct UniformGenerator { // Use std::random and thrust::random(thrust is a std library in CUDA) to // implement uniform random. template -class GPUUniformRandomKernel : public framework::OpKernel { +class GPUUniformRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* tensor = context.Output("Out"); diff --git a/paddle/parameter/FirstOrderOptimizer.h b/paddle/parameter/FirstOrderOptimizer.h index caa78acd98ea4b35fc69643689cfce23026275e0..895e8d6a63d1fad0ee7a6f5647402435d418b2f1 100644 --- a/paddle/parameter/FirstOrderOptimizer.h +++ b/paddle/parameter/FirstOrderOptimizer.h @@ -15,6 +15,7 @@ limitations under the License. */ #pragma once #include "ParameterOptimizer.h" +#include "ParameterUpdateFunctions.h" #include "Regularizer.h" namespace paddle { @@ -37,6 +38,15 @@ public: real torch_learningRate = optConfig_.learning_method() == "torch_momentum" ? 1.0 - paraConfig.momentum() : 1.0; +#ifdef PADDLE_USE_MKLDNN + sgdUpdate(learningRate_ * paraConfig.learning_rate() * + (firstTime_ ? 1.0 : torch_learningRate), + paraConfig.momentum(), + applyDecay_ ? paraConfig.decay_rate() : 0, + vecs[PARAMETER_VALUE].get(), + vecs[PARAMETER_GRADIENT].get(), + vecs[PARAMETER_MOMENTUM].get()); +#else vecs[PARAMETER_VALUE]->sgdUpdate( *vecs[PARAMETER_GRADIENT], *vecs[PARAMETER_MOMENTUM], @@ -44,6 +54,7 @@ public: (firstTime_ ? 1.0 : torch_learningRate), paraConfig.momentum(), applyDecay_ ? paraConfig.decay_rate() : 0); +#endif } virtual void finishBatch() { firstTime_ = false; } }; diff --git a/paddle/parameter/ParameterUpdateFunctions.cpp b/paddle/parameter/ParameterUpdateFunctions.cpp index c8af7105c78dcbf9f625a348b7f38efcf278469e..8b3be062b654a52e667626199be8c8bb4a2a96d7 100644 --- a/paddle/parameter/ParameterUpdateFunctions.cpp +++ b/paddle/parameter/ParameterUpdateFunctions.cpp @@ -30,6 +30,9 @@ void sgdUpdateCpu(real learningRate, const real* grad, real* momentumVec) { decayRate *= learningRate; +#ifdef PADDLE_USE_MKLDNN +#pragma omp parallel for +#endif for (size_t i = 0; i < size; ++i) { momentumVec[i] = momentum * momentumVec[i] - learningRate * grad[i] - decayRate * value[i]; diff --git a/paddle/platform/CMakeLists.txt b/paddle/platform/CMakeLists.txt index 17bdac8749e31565b119b2cb84aed199fac0f441..daf519b91d623d4369774dc4e37dcb7b1733666b 100644 --- a/paddle/platform/CMakeLists.txt +++ b/paddle/platform/CMakeLists.txt @@ -24,3 +24,4 @@ cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info) nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda) +nv_test(transform_test SRCS transform_test.cu DEPS paddle_memory place device_context) diff --git a/paddle/platform/cuda_helper.h b/paddle/platform/cuda_helper.h index 6feec0d7f8bd5d32d9e5eedee962fcbeff655f1c..a7d99cde106a0a66f122a8c43f49717c03e60dec 100644 --- a/paddle/platform/cuda_helper.h +++ b/paddle/platform/cuda_helper.h @@ -24,6 +24,11 @@ namespace platform { #define USE_CUDA_ATOMIC(op, T) \ CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); } +// Default thread count per block(or block size). +// TODO(typhoonzero): need to benchmark against setting this value +// to 1024. +constexpr int PADDLE_CUDA_NUM_THREADS = 512; + // For atomicAdd. USE_CUDA_ATOMIC(Add, float); diff --git a/paddle/platform/details/device_ptr_cast.h b/paddle/platform/details/device_ptr_cast.h new file mode 100644 index 0000000000000000000000000000000000000000..4015491fcdc3554029aa771ab7da1b2f3424321f --- /dev/null +++ b/paddle/platform/details/device_ptr_cast.h @@ -0,0 +1,56 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#ifndef __NVCC__ +#error device_ptr_cast must be include by .cu file +#endif + +#include + +namespace paddle { +namespace platform { +namespace details { +template +struct DevicePtrCast; + +template +struct DevicePtrCast { + using ELEM = typename std::remove_pointer::type; + using RTYPE = thrust::device_ptr; + + inline thrust::device_ptr operator()(ELEM* ele) const { + return thrust::device_pointer_cast(ele); + } +}; + +template +struct DevicePtrCast { + using RTYPE = T; + inline RTYPE operator()(RTYPE it) const { return it; } +}; + +// Cast T to thrust::device_ptr if T is a pointer. +// Otherwise, e.g., T is a iterator, return T itself. +template +auto DevPtrCast(T t) -> + typename DevicePtrCast::value>::RTYPE { + DevicePtrCast::value> cast; + return cast(t); +} + +} // namespace details +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index ad212c5b2c47312743362db4926c80bf056e100d..36af1ac677f6bb3e5b6392ff0de678afe7e47950 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -16,8 +16,8 @@ namespace paddle { namespace platform { template <> -Eigen::DefaultDevice* DeviceContext::get_eigen_device() - const { +Eigen::DefaultDevice* DeviceContext::GetEigenDevice< + platform::CPUPlace, Eigen::DefaultDevice>() const { return reinterpret_cast(this)->eigen_device(); } @@ -37,6 +37,12 @@ Place CPUDeviceContext::GetPlace() const { return CPUPlace(); } #ifndef PADDLE_ONLY_CPU +template <> +Eigen::GpuDevice* +DeviceContext::GetEigenDevice() const { + return reinterpret_cast(this)->eigen_device(); +} + class EigenCudaStreamDevice : public Eigen::StreamInterface { public: EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) { @@ -90,30 +96,23 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface { mutable unsigned int* semaphore_; }; -template <> -Eigen::GpuDevice* DeviceContext::get_eigen_device() const { - return reinterpret_cast(this)->eigen_device(); -} - CUDADeviceContext::CUDADeviceContext(GPUPlace place) : place_(place) { SetDeviceId(place_.device); PADDLE_ENFORCE(cudaStreamCreate(&stream_)); eigen_stream_.reset(new EigenCudaStreamDevice()); eigen_stream_->Reinitialize(&stream_, place); eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); + PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_)); + PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_)); + PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); + PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_)); } CUDADeviceContext::~CUDADeviceContext() { SetDeviceId(place_.device); Wait(); - if (cublas_handle_) { - PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_)); - } - - if (cudnn_handle_) { - PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); - } - + PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_)); + PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); eigen_stream_.reset(); eigen_device_.reset(); PADDLE_ENFORCE(cudaStreamDestroy(stream_)); @@ -129,25 +128,13 @@ Eigen::GpuDevice* CUDADeviceContext::eigen_device() const { return eigen_device_.get(); } -cublasHandle_t CUDADeviceContext::cublas_handle() { - if (!cublas_handle_) { - SetDeviceId(place_.device); - PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_)); - PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_)); - } +cublasHandle_t CUDADeviceContext::cublas_handle() const { return cublas_handle_; } -cudnnHandle_t CUDADeviceContext::cudnn_handle() { - if (!cudnn_handle_) { - SetDeviceId(place_.device); - PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); - PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_)); - } - return cudnn_handle_; -} +cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; } -cudaStream_t CUDADeviceContext::stream() { return stream_; } +cudaStream_t CUDADeviceContext::stream() const { return stream_; } #endif // PADDLE_ONLY_CPU diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index 11528e1194e4516891034fa8febdac3ba6eed204..d805d2ab085f76e119edf1c6f2acb9715883d755 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -27,20 +27,31 @@ limitations under the License. */ namespace paddle { namespace platform { +template +struct EigenDeviceConverter; + +template <> +struct EigenDeviceConverter { + using EigenDeviceType = Eigen::DefaultDevice; +}; + class DeviceContext { public: virtual ~DeviceContext() {} virtual Place GetPlace() const = 0; - template - DeviceType* get_eigen_device() const; + template ::EigenDeviceType> + DeviceType* GetEigenDevice() const; + + virtual void Wait() const {} }; class CPUDeviceContext : public DeviceContext { public: CPUDeviceContext(); explicit CPUDeviceContext(CPUPlace place); - virtual ~CPUDeviceContext() {} Eigen::DefaultDevice* eigen_device() const; @@ -51,6 +62,11 @@ class CPUDeviceContext : public DeviceContext { }; #ifndef PADDLE_ONLY_CPU +template <> +struct EigenDeviceConverter { + using EigenDeviceType = Eigen::GpuDevice; +}; + class EigenCudaStreamDevice; class CUDADeviceContext : public DeviceContext { @@ -59,7 +75,7 @@ class CUDADeviceContext : public DeviceContext { virtual ~CUDADeviceContext(); /*! \brief Wait for all operations completion in the stream. */ - void Wait() const; + void Wait() const override; /*! \brief Return place in the device context. */ Place GetPlace() const override; @@ -67,16 +83,14 @@ class CUDADeviceContext : public DeviceContext { /*! \brief Return eigen device in the device context. */ Eigen::GpuDevice* eigen_device() const; - // clang-format off /*! \brief Return cublas handle in the device context. */ - cublasHandle_t cublas_handle(); + cublasHandle_t cublas_handle() const; /*! \brief Return cudnn handle in the device context. */ - cudnnHandle_t cudnn_handle(); + cudnnHandle_t cudnn_handle() const; /*! \brief Return cuda stream in the device context. */ - cudaStream_t stream(); - // clang-format on + cudaStream_t stream() const; private: GPUPlace place_; @@ -84,11 +98,9 @@ class CUDADeviceContext : public DeviceContext { std::unique_ptr eigen_device_; std::unique_ptr eigen_stream_; - // clang-format off - cudaStream_t stream_{nullptr}; - cudnnHandle_t cudnn_handle_{nullptr}; - cublasHandle_t cublas_handle_{nullptr}; - // clang-format on + cudaStream_t stream_; + cudnnHandle_t cudnn_handle_; + cublasHandle_t cublas_handle_; }; #endif diff --git a/paddle/platform/device_context_test.cc b/paddle/platform/device_context_test.cc index 5883a55272f0f24c94d48bc43c62ddb7bef15465..f4b00c57dee5196e535816d8985fd7e831c4c226 100644 --- a/paddle/platform/device_context_test.cc +++ b/paddle/platform/device_context_test.cc @@ -24,7 +24,7 @@ TEST(Device, Init) { for (int i = 0; i < count; i++) { DeviceContext* device_context = new CUDADeviceContext(GPUPlace(i)); Eigen::GpuDevice* gpu_device = - device_context->template get_eigen_device(); + device_context->template GetEigenDevice(); ASSERT_NE(nullptr, gpu_device); delete device_context; } diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h index 64fcbd93b6c4d5d9b36f2636c3ef4f7327f08d25..52bd23039b82fc0290edb640f5d5851ba9abee61 100644 --- a/paddle/platform/enforce.h +++ b/paddle/platform/enforce.h @@ -25,6 +25,10 @@ limitations under the License. */ #include "paddle/string/printf.h" #include "paddle/string/to_string.h" +#ifdef __GNUC__ +#include // for __cxa_demangle +#endif + #ifndef PADDLE_ONLY_CPU #include "paddle/platform/dynload/cublas.h" @@ -42,6 +46,19 @@ limitations under the License. */ namespace paddle { namespace platform { +namespace { +#ifdef __GNUC__ +inline std::string demangle(std::string name) { + int status = -4; // some arbitrary value to eliminate the compiler warning + std::unique_ptr res{ + abi::__cxa_demangle(name.c_str(), NULL, NULL, &status), std::free}; + return (status == 0) ? res.get() : name; +} +#else +inline std::string demangle(std::string name) { return name; } +#endif +} + struct EnforceNotMet : public std::exception { std::exception_ptr exp_; std::string err_str_; @@ -61,8 +78,8 @@ struct EnforceNotMet : public std::exception { Dl_info info; for (int i = 0; i < size; ++i) { - if (dladdr(call_stack[i], &info)) { - auto demangled = info.dli_sname; + if (dladdr(call_stack[i], &info) && info.dli_sname) { + auto demangled = demangle(info.dli_sname); auto addr_offset = static_cast(call_stack[i]) - static_cast(info.dli_saddr); sout << string::Sprintf("%-3d %*0p %s + %zd\n", i, @@ -90,7 +107,7 @@ struct EnforceNotMet : public std::exception { template inline typename std::enable_if::type throw_on_error( - int stat, const Args&... args) { + bool stat, const Args&... args) { if (UNLIKELY(!(stat))) { throw std::runtime_error(string::Sprintf(args...)); } @@ -168,7 +185,7 @@ inline void throw_on_error(T e) { std::make_exception_ptr( \ std::runtime_error(paddle::string::Sprintf(__VA_ARGS__))), \ __FILE__, __LINE__); \ - } while (0) + } while (false) #define PADDLE_ENFORCE(...) \ do { \ @@ -178,7 +195,7 @@ inline void throw_on_error(T e) { throw ::paddle::platform::EnforceNotMet(std::current_exception(), \ __FILE__, __LINE__); \ } \ - } while (0) + } while (false) /* * Some enforce helpers here, usage: diff --git a/paddle/platform/gpu_info.h b/paddle/platform/gpu_info.h index ed2420b8740e583d307f6836a70fe7e1c780e28b..f0c825bd9b0bc41396b8fdb95f0b4337cbe3db02 100644 --- a/paddle/platform/gpu_info.h +++ b/paddle/platform/gpu_info.h @@ -36,7 +36,7 @@ int GetCurrentDeviceId(); //! Set the GPU device id for next execution. void SetDeviceId(int device_id); -//!Get the memory usage of current GPU device. +//! Get the memory usage of current GPU device. void GpuMemoryUsage(size_t &available, size_t &total); //! Get the maximum allocation size of current GPU device. diff --git a/paddle/platform/hostdevice.h b/paddle/platform/hostdevice.h index e7de86b7b2f75d206e730ec409bbee5d0a08942e..eb2df291cceef553d6422e6166e1fef2c63e2a47 100644 --- a/paddle/platform/hostdevice.h +++ b/paddle/platform/hostdevice.h @@ -2,8 +2,10 @@ #ifdef __CUDACC__ #define HOSTDEVICE __host__ __device__ +#define DEVICE __device__ #define HOST __host__ #else #define HOSTDEVICE +#define DEVICE #define HOST #endif diff --git a/paddle/platform/place.cc b/paddle/platform/place.cc index b31515e1f028acac885a506ff1c20479407a05e3..856e54df89c1c18ade040957188a2fbda0901473 100644 --- a/paddle/platform/place.cc +++ b/paddle/platform/place.cc @@ -47,7 +47,7 @@ bool is_cpu_place(const Place &p) { } bool places_are_same_class(const Place &p1, const Place &p2) { - return is_gpu_place(p1) == is_gpu_place(p2); + return p1.which() == p2.which(); } std::ostream &operator<<(std::ostream &os, const Place &p) { diff --git a/paddle/platform/place.h b/paddle/platform/place.h index 1117476bb37f1b0f3876c55e610803d5ee2558ce..0efc6932349a5b3ad295d195a16737a642e18943 100644 --- a/paddle/platform/place.h +++ b/paddle/platform/place.h @@ -15,6 +15,7 @@ limitations under the License. */ #pragma once #include + #include "paddle/platform/variant.h" namespace paddle { @@ -46,8 +47,18 @@ struct IsGPUPlace : public boost::static_visitor { bool operator()(const GPUPlace &gpu) const { return true; } }; +// Define the max number of Place in bit length. i.e., the max number of places +// should be less equal than 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT) +#define NUM_PLACE_TYPE_LIMIT_IN_BIT 4 + typedef boost::variant Place; +// static check number of place types is less equal than +// 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT) +BOOST_MPL_ASSERT((boost::mpl::less_equal< + Place::types::size, + boost::mpl::long_<1 << NUM_PLACE_TYPE_LIMIT_IN_BIT>>)); + void set_place(const Place &); const Place &get_place(); diff --git a/paddle/platform/transform.h b/paddle/platform/transform.h new file mode 100644 index 0000000000000000000000000000000000000000..f196868c725cbb91b3df710260c5b60f14d53f37 --- /dev/null +++ b/paddle/platform/transform.h @@ -0,0 +1,99 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/platform/device_context.h" +#include "paddle/platform/enforce.h" +#include "paddle/platform/hostdevice.h" +#include "paddle/platform/place.h" + +#include +#include +#ifdef __NVCC__ +#include +#include +#include "paddle/platform/details/device_ptr_cast.h" +#endif + +namespace paddle { +namespace platform { + +// Transform on host or device. It provides the same API in std library. +template +struct Transform { + template + void operator()(const DeviceContext& context, InputIter first, InputIter last, + OutputIter result, UnaryOperation op); + + template + void operator()(const DeviceContext& context, InputIter1 first1, + InputIter1 last1, InputIter2 first2, OutputIter result, + BinaryOperation op); +}; + +template <> +struct Transform { + template + void operator()(const DeviceContext& context, InputIter first, InputIter last, + OutputIter result, UnaryOperation op) { + auto place = context.GetPlace(); + PADDLE_ENFORCE(is_cpu_place(place), "It must use CPU place."); + std::transform(first, last, result, op); + } + + template + void operator()(const DeviceContext& context, InputIter1 first1, + InputIter1 last1, InputIter2 first2, OutputIter result, + BinaryOperation op) { + auto place = context.GetPlace(); + PADDLE_ENFORCE(is_cpu_place(place), "It must use CPU place."); + std::transform(first1, last1, first2, result, op); + } +}; + +#ifdef __NVCC__ +template <> +struct Transform { + template + void operator()(const DeviceContext& context, InputIter first, InputIter last, + OutputIter result, UnaryOperation op) { + auto place = context.GetPlace(); + PADDLE_ENFORCE(is_gpu_place(place), "It must use GPU place."); + auto& ctx = reinterpret_cast(context); + thrust::transform(thrust::cuda::par.on(ctx.stream()), + details::DevPtrCast(first), details::DevPtrCast(last), + details::DevPtrCast(result), op); + } + + template + void operator()(const DeviceContext& context, InputIter1 first1, + InputIter1 last1, InputIter2 first2, OutputIter result, + BinaryOperation op) { + auto place = context.GetPlace(); + PADDLE_ENFORCE(is_gpu_place(place), "It must use GPU place."); + auto& ctx = reinterpret_cast(context); + thrust::transform(thrust::cuda::par.on(ctx.stream()), + details::DevPtrCast(first1), details::DevPtrCast(last1), + details::DevPtrCast(first2), details::DevPtrCast(result), + op); + } +}; +#endif + +} // namespace platform +} // namespace paddle diff --git a/paddle/platform/transform_test.cu b/paddle/platform/transform_test.cu new file mode 100644 index 0000000000000000000000000000000000000000..c76cab80e4b0e8df98a7be15f86699cfb6f93af2 --- /dev/null +++ b/paddle/platform/transform_test.cu @@ -0,0 +1,95 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include +#include "paddle/memory/memcpy.h" +#include "paddle/memory/memory.h" +#include "paddle/platform/hostdevice.h" +#include "paddle/platform/transform.h" + +template +class Scale { + public: + explicit Scale(const T& scale) : scale_(scale) {} + + HOSTDEVICE T operator()(const T& a) const { return a * scale_; } + + private: + T scale_; +}; + +template +class Multiply { + public: + HOSTDEVICE T operator()(const T& a, const T& b) const { return a * b; } +}; + +TEST(Transform, CPUUnary) { + using namespace paddle::platform; + CPUDeviceContext ctx; + float buf[4] = {0.1, 0.2, 0.3, 0.4}; + Transform trans; + trans(ctx, buf, buf + 4, buf, Scale(10)); + for (int i = 0; i < 4; ++i) { + ASSERT_NEAR(buf[i], static_cast(i + 1), 1e-5); + } +} + +TEST(Transform, GPUUnary) { + using namespace paddle::platform; + using namespace paddle::memory; + GPUPlace gpu0(0); + CUDADeviceContext ctx(gpu0); + float cpu_buf[4] = {0.1, 0.2, 0.3, 0.4}; + float* gpu_buf = static_cast(Alloc(gpu0, sizeof(float) * 4)); + Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf)); + Transform trans; + trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, Scale(10)); + ctx.Wait(); + Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf)); + Free(gpu0, gpu_buf); + for (int i = 0; i < 4; ++i) { + ASSERT_NEAR(cpu_buf[i], static_cast(i + 1), 1e-5); + } +} + +TEST(Transform, CPUBinary) { + using namespace paddle::platform; + using namespace paddle::memory; + int buf[4] = {1, 2, 3, 4}; + Transform trans; + CPUDeviceContext ctx; + trans(ctx, buf, buf + 4, buf, buf, Multiply()); + for (int i = 0; i < 4; ++i) { + ASSERT_EQ((i + 1) * (i + 1), buf[i]); + } +} + +TEST(Transform, GPUBinary) { + using namespace paddle::platform; + using namespace paddle::memory; + int buf[4] = {1, 2, 3, 4}; + GPUPlace gpu0(0); + CUDADeviceContext ctx(gpu0); + int* gpu_buf = static_cast(Alloc(gpu0, sizeof(buf))); + Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf)); + Transform trans; + trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, gpu_buf, Multiply()); + ctx.Wait(); + Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf)); + Free(gpu0, gpu_buf); + for (int i = 0; i < 4; ++i) { + ASSERT_EQ((i + 1) * (i + 1), buf[i]); + } +} diff --git a/paddle/platform/variant.h b/paddle/platform/variant.h index c2257af1b5dd1a1e284979bf17e1a947072baa85..16ee00efe7a9b0406f8459e19a55e1e1b9ca7419 100644 --- a/paddle/platform/variant.h +++ b/paddle/platform/variant.h @@ -29,4 +29,6 @@ #endif #endif +#include +#include #include diff --git a/paddle/pserver/CMakeLists.txt b/paddle/pserver/CMakeLists.txt index 2245c7d88ca74922f9919db91977dfa6cb3ca468..ccfc0e76020c7b4f54a493cc4048e7571379ec1a 100644 --- a/paddle/pserver/CMakeLists.txt +++ b/paddle/pserver/CMakeLists.txt @@ -45,14 +45,18 @@ add_dependencies(paddle_pserver paddle_proto ${external_project_dependencies}) set(PSERVER_MAIN_SOURCES ParameterServer2Main.cpp) -add_executable(paddle_pserver_main - ${PSERVER_MAIN_SOURCES}) -link_paddle_exe(paddle_pserver_main) if(WITH_TESTING) add_subdirectory(test) endif() -install(TARGETS paddle_pserver_main - RUNTIME DESTINATION opt/paddle/bin - PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ - GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ) -set_target_properties(paddle_pserver_main PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE) + +if(NOT WITH_C_API) + add_executable(paddle_pserver_main ${PSERVER_MAIN_SOURCES}) + link_paddle_exe(paddle_pserver_main) + + install(TARGETS paddle_pserver_main + RUNTIME DESTINATION opt/paddle/bin + PERMISSIONS OWNER_EXECUTE OWNER_WRITE OWNER_READ + GROUP_EXECUTE GROUP_READ WORLD_EXECUTE WORLD_READ) + + set_target_properties(paddle_pserver_main PROPERTIES INSTALL_RPATH_USE_LINK_PATH TRUE) +endif() diff --git a/paddle/pybind/.clang-format b/paddle/pybind/.clang-format new file mode 120000 index 0000000000000000000000000000000000000000..7d28cb3924707d39dafe20f4664fb17b5538996c --- /dev/null +++ b/paddle/pybind/.clang-format @@ -0,0 +1 @@ +../framework/.clang-format \ No newline at end of file diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt index 00030050700bfb2cee224124d090b0027d456ba0..18ecbd1aa34c82d63ae7f8ec1bd8f81b35eee30b 100644 --- a/paddle/pybind/CMakeLists.txt +++ b/paddle/pybind/CMakeLists.txt @@ -1,6 +1,6 @@ if(WITH_PYTHON) -cc_library(paddle_pybind SHARED - SRCS pybind.cc - DEPS pybind python backward + cc_library(paddle_pybind SHARED + SRCS pybind.cc exception.cc protobuf.cc + DEPS pybind python backward proto_desc ${GLOB_OP_LIB}) endif(WITH_PYTHON) diff --git a/paddle/pybind/exception.cc b/paddle/pybind/exception.cc new file mode 100644 index 0000000000000000000000000000000000000000..ff79b12ee4b28c53ee04f4c170b5bca9ca28d14a --- /dev/null +++ b/paddle/pybind/exception.cc @@ -0,0 +1,34 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/pybind/exception.h" + +namespace paddle { +namespace pybind { + +void BindException(pybind11::module& m) { + static pybind11::exception exc(m, "EnforceNotMet"); + pybind11::register_exception_translator([](std::exception_ptr p) { + try { + if (p) std::rethrow_exception(p); + } catch (const platform::EnforceNotMet& e) { + exc(e.what()); + } + }); + + m.def("__unittest_throw_exception__", [] { PADDLE_THROW("test exception"); }); +} + +} // namespace pybind +} // namespace paddle diff --git a/paddle/pybind/exception.h b/paddle/pybind/exception.h new file mode 100644 index 0000000000000000000000000000000000000000..70beac146046f74e23f747bab130483901a7d443 --- /dev/null +++ b/paddle/pybind/exception.h @@ -0,0 +1,24 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include "paddle/platform/enforce.h" +#include "pybind11/pybind11.h" +namespace paddle { +namespace pybind { + +extern void BindException(pybind11::module& m); +} // namespace pybind +} // namespace paddle diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc new file mode 100644 index 0000000000000000000000000000000000000000..218821b35bb6947181fedc56e002ad0285f6307d --- /dev/null +++ b/paddle/pybind/protobuf.cc @@ -0,0 +1,206 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/pybind/protobuf.h" +#include +#include +#include "paddle/framework/block_desc.h" +#include "paddle/framework/op_desc.h" +#include "paddle/framework/program_desc.h" +#include "paddle/framework/var_desc.h" + +// Cast boost::variant for PyBind. +// Copy from +// https://github.com/pybind/pybind11/issues/576#issuecomment-269563199 +namespace pybind11 { +namespace detail { + +// Can be replaced by a generic lambda in C++14 +struct variant_caster_visitor : public boost::static_visitor { + return_value_policy policy; + handle parent; + + variant_caster_visitor(return_value_policy policy, handle parent) + : policy(policy), parent(parent) {} + + template + handle operator()(T const &src) const { + return make_caster::cast(src, policy, parent); + } +}; + +template +struct variant_caster; + +template