Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ddb29b6c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ddb29b6c
编写于
8月 03, 2017
作者:
Y
Yi Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move constants from framework::OperatorBase to framework::
上级
6f12fd28
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
84 addition
and
82 deletion
+84
-82
paddle/framework/backward.cc
paddle/framework/backward.cc
+9
-9
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+39
-39
paddle/framework/grad_op_builder.cc
paddle/framework/grad_op_builder.cc
+3
-3
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+1
-1
paddle/framework/operator.h
paddle/framework/operator.h
+21
-19
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+2
-2
paddle/operators/fc_op.cc
paddle/operators/fc_op.cc
+1
-1
paddle/operators/mean_op.cc
paddle/operators/mean_op.cc
+1
-1
paddle/operators/mean_op.h
paddle/operators/mean_op.h
+2
-2
paddle/operators/softmax_op.cc
paddle/operators/softmax_op.cc
+3
-3
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+2
-2
未找到文件。
paddle/framework/backward.cc
浏览文件 @
ddb29b6c
...
@@ -59,7 +59,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
...
@@ -59,7 +59,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// If all input gradients of forwarding operator do not need to calculate,
// If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take
// just return an NOP. Not return null ptr because NOP does not take
// too much time for calculation, but it is useful for simplifying logic.
// too much time for calculation, but it is useful for simplifying logic.
if
(
AllInSet
(
forwardOp
.
inputs_
,
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
if
(
AllInSet
(
forwardOp
.
inputs_
,
kGradVarSuffix
,
no_grad_names
))
{
no_grad_names
))
{
return
NOP
();
return
NOP
();
}
}
...
@@ -67,11 +67,11 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
...
@@ -67,11 +67,11 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// All output gradients of forwarding operator do not need to calculate.
// All output gradients of forwarding operator do not need to calculate.
// Then all input gradients cannot be computed at all, and we put them into
// Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
// `no_grad_names` set. Return an NOP.
if
(
AllInSet
(
forwardOp
.
outputs_
,
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
if
(
AllInSet
(
forwardOp
.
outputs_
,
kGradVarSuffix
,
no_grad_names
))
{
no_grad_names
))
{
for
(
auto
&
name
:
forwardOp
.
inputs_
)
{
for
(
auto
&
name
:
forwardOp
.
inputs_
)
{
// Mark all input is not need
// Mark all input is not need
no_grad_names
.
insert
(
name
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
no_grad_names
.
insert
(
name
+
kGradVarSuffix
);
}
}
return
NOP
();
return
NOP
();
}
}
...
@@ -135,8 +135,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
...
@@ -135,8 +135,8 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
for
(
std
::
string
&
grad_input
:
grad_op
->
inputs_
)
{
for
(
std
::
string
&
grad_input
:
grad_op
->
inputs_
)
{
if
(
no_grad_names
.
count
(
grad_input
))
{
if
(
no_grad_names
.
count
(
grad_input
))
{
std
::
string
prefix
=
grad_input
.
substr
(
std
::
string
prefix
=
grad_input
.
substr
(
0
,
grad_input
.
size
()
-
OperatorBase
::
GRAD_VAR_SUFFIX
()
.
size
());
0
,
grad_input
.
size
()
-
kGradVarSuffix
.
size
());
grad_input
=
prefix
+
OperatorBase
::
ZERO_VAR_SUFFIX
()
;
grad_input
=
prefix
+
kZeroVarSuffix
;
// If part of input gradient of that operator is not calculated, fill
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
// zero variables to that input gradient.
...
@@ -147,7 +147,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
...
@@ -147,7 +147,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
for
(
std
::
string
&
grad_output
:
grad_op
->
outputs_
)
{
for
(
std
::
string
&
grad_output
:
grad_op
->
outputs_
)
{
if
(
no_grad_names
.
count
(
grad_output
))
{
if
(
no_grad_names
.
count
(
grad_output
))
{
grad_output
=
OperatorBase
::
EMPTY_VAR_NAME
()
;
grad_output
=
kEmptyVarName
;
}
}
}
}
...
@@ -168,11 +168,11 @@ std::shared_ptr<OperatorBase> Backward(
...
@@ -168,11 +168,11 @@ std::shared_ptr<OperatorBase> Backward(
std
::
unordered_set
<
std
::
string
>
no_grad_names
;
std
::
unordered_set
<
std
::
string
>
no_grad_names
;
no_grad_names
.
reserve
(
no_grad_vars
.
size
());
no_grad_names
.
reserve
(
no_grad_vars
.
size
());
no_grad_names
.
insert
(
OperatorBase
::
EMPTY_VAR_NAME
()
+
no_grad_names
.
insert
(
kEmptyVarName
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
kGradVarSuffix
);
for
(
auto
&
name
:
no_grad_vars
)
{
for
(
auto
&
name
:
no_grad_vars
)
{
no_grad_names
.
insert
(
name
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
no_grad_names
.
insert
(
name
+
kGradVarSuffix
);
}
}
size_t
uid
=
0
;
size_t
uid
=
0
;
return
BackwardRecursive
(
forwardOp
,
no_grad_names
,
uid
);
return
BackwardRecursive
(
forwardOp
,
no_grad_names
,
uid
);
...
...
paddle/framework/backward_test.cc
浏览文件 @
ddb29b6c
...
@@ -78,14 +78,14 @@ class FcOp : public ops::NetOp {
...
@@ -78,14 +78,14 @@ class FcOp : public ops::NetOp {
{
Output
(
"mul_result"
)},
{}));
{
Output
(
"mul_result"
)},
{}));
auto
b_name
=
Input
(
"b"
);
auto
b_name
=
Input
(
"b"
);
std
::
string
before_act
=
"mul_result"
;
std
::
string
before_act
=
"mul_result"
;
if
(
b_name
!=
EMPTY_VAR_NAME
()
)
{
if
(
b_name
!=
kEmptyVarName
)
{
AddOp
(
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
Output
(
"mul_result"
),
b_name
},
AddOp
(
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
Output
(
"mul_result"
),
b_name
},
{
Output
(
"add_result"
)},
{}));
{
Output
(
"add_result"
)},
{}));
before_act
=
"add_result"
;
before_act
=
"add_result"
;
}
else
{
}
else
{
auto
out_varname
=
Output
(
"add_result"
);
auto
out_varname
=
Output
(
"add_result"
);
if
(
out_varname
!=
EMPTY_VAR_NAME
()
)
{
if
(
out_varname
!=
kEmptyVarName
)
{
this
->
Rename
(
out_varname
,
EMPTY_VAR_NAME
()
);
this
->
Rename
(
out_varname
,
kEmptyVarName
);
}
}
}
}
...
@@ -163,13 +163,13 @@ TEST(Backward, simple_op_grad) {
...
@@ -163,13 +163,13 @@ TEST(Backward, simple_op_grad) {
ASSERT_NE
(
fwd
,
nullptr
);
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
OpRegistry
::
CreateGradOp
(
*
fwd
);
auto
gop
=
f
::
OpRegistry
::
CreateGradOp
(
*
fwd
);
ASSERT_EQ
(
4UL
,
gop
->
inputs_
.
size
());
ASSERT_EQ
(
4UL
,
gop
->
inputs_
.
size
());
ASSERT_EQ
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
()
,
gop
->
inputs_
[
0
]);
ASSERT_EQ
(
f
::
kEmptyVarName
,
gop
->
inputs_
[
0
]);
ASSERT_EQ
(
"rowwise_add_grad"
,
gop
->
type_
);
ASSERT_EQ
(
"rowwise_add_grad"
,
gop
->
type_
);
ASSERT_EQ
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
gop
->
outputs_
[
0
]);
ASSERT_EQ
(
"X"
+
f
::
kGradVarSuffix
,
gop
->
outputs_
[
0
]);
ASSERT_EQ
(
"b"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
gop
->
outputs_
[
1
]);
ASSERT_EQ
(
"b"
+
f
::
kGradVarSuffix
,
gop
->
outputs_
[
1
]);
ASSERT_EQ
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
ASSERT_EQ
(
"X"
+
f
::
kGradVarSuffix
,
gop
->
Output
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
));
gop
->
Output
(
"X"
+
f
::
kGradVarSuffix
));
}
}
TEST
(
Backward
,
simple_op_not_need_grad
)
{
TEST
(
Backward
,
simple_op_not_need_grad
)
{
...
@@ -177,7 +177,7 @@ TEST(Backward, simple_op_not_need_grad) {
...
@@ -177,7 +177,7 @@ TEST(Backward, simple_op_not_need_grad) {
ASSERT_NE
(
fwd
,
nullptr
);
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
Backward
(
*
fwd
,
{
"X"
});
auto
gop
=
f
::
Backward
(
*
fwd
,
{
"X"
});
ASSERT_EQ
(
std
::
find
(
gop
->
outputs_
.
begin
(),
gop
->
outputs_
.
end
(),
ASSERT_EQ
(
std
::
find
(
gop
->
outputs_
.
begin
(),
gop
->
outputs_
.
end
(),
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
),
"X"
+
f
::
kGradVarSuffix
),
gop
->
outputs_
.
end
());
gop
->
outputs_
.
end
());
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"X"
,
"b"
});
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"X"
,
"b"
});
...
@@ -211,7 +211,7 @@ TEST(Backward, net_fc_backward_normal) {
...
@@ -211,7 +211,7 @@ TEST(Backward, net_fc_backward_normal) {
TEST
(
Backward
,
net_fc_backward_not_have_b
)
{
TEST
(
Backward
,
net_fc_backward_not_have_b
)
{
std
::
shared_ptr
<
f
::
OperatorBase
>
fwd
=
f
::
OpRegistry
::
CreateOp
(
std
::
shared_ptr
<
f
::
OperatorBase
>
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{
"X"
,
"w"
,
f
::
OperatorBase
::
EMPTY_VAR_NAME
()
},
"fc"
,
{
"X"
,
"w"
,
f
::
kEmptyVarName
},
{
"mul_result"
,
"add_result"
,
"tmp"
},
{});
{
"mul_result"
,
"add_result"
,
"tmp"
},
{});
ASSERT_NE
(
fwd
,
nullptr
);
ASSERT_NE
(
fwd
,
nullptr
);
std
::
shared_ptr
<
f
::
OperatorBase
>
gop
=
f
::
Backward
(
*
fwd
,
{});
std
::
shared_ptr
<
f
::
OperatorBase
>
gop
=
f
::
Backward
(
*
fwd
,
{});
...
@@ -242,15 +242,15 @@ TEST(Backward, net_input_of_network_not_need_grad) {
...
@@ -242,15 +242,15 @@ TEST(Backward, net_input_of_network_not_need_grad) {
std
::
unordered_set
<
std
::
string
>
all_output
=
std
::
unordered_set
<
std
::
string
>
(
std
::
unordered_set
<
std
::
string
>
all_output
=
std
::
unordered_set
<
std
::
string
>
(
bwd_net
->
outputs_
.
begin
(),
bwd_net
->
outputs_
.
end
());
bwd_net
->
outputs_
.
begin
(),
bwd_net
->
outputs_
.
end
());
all_output
.
erase
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
()
);
all_output
.
erase
(
f
::
kEmptyVarName
);
for
(
auto
&
out
:
{
"W1"
,
"b1"
,
"hidden0"
,
"W2"
,
"b2"
})
{
for
(
auto
&
out
:
{
"W1"
,
"b1"
,
"hidden0"
,
"W2"
,
"b2"
})
{
ASSERT_NE
(
all_output
.
find
(
out
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
),
ASSERT_NE
(
all_output
.
find
(
out
+
f
::
kGradVarSuffix
),
all_output
.
end
());
all_output
.
end
());
}
}
// Not Generated X
// Not Generated X
ASSERT_EQ
(
all_output
.
find
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
),
ASSERT_EQ
(
all_output
.
find
(
"X"
+
f
::
kGradVarSuffix
),
all_output
.
end
());
all_output
.
end
());
ASSERT_EQ
(
2UL
,
bwd_net
->
ops_
.
size
());
ASSERT_EQ
(
2UL
,
bwd_net
->
ops_
.
size
());
...
@@ -258,8 +258,8 @@ TEST(Backward, net_input_of_network_not_need_grad) {
...
@@ -258,8 +258,8 @@ TEST(Backward, net_input_of_network_not_need_grad) {
auto
first_fc_grad
=
static_cast
<
ops
::
NetOp
*>
(
bwd_net
->
ops_
[
1
].
get
());
auto
first_fc_grad
=
static_cast
<
ops
::
NetOp
*>
(
bwd_net
->
ops_
[
1
].
get
());
ASSERT_EQ
(
3UL
,
first_fc_grad
->
ops_
.
size
());
ASSERT_EQ
(
3UL
,
first_fc_grad
->
ops_
.
size
());
ASSERT_EQ
(
ASSERT_EQ
(
f
::
OperatorBase
::
EMPTY_VAR_NAME
()
,
f
::
kEmptyVarName
,
first_fc_grad
->
ops_
[
2
]
->
Output
(
"A"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
));
first_fc_grad
->
ops_
[
2
]
->
Output
(
"A"
+
f
::
kGradVarSuffix
));
}
}
TEST
(
Backward
,
net_shared_weight
)
{
TEST
(
Backward
,
net_shared_weight
)
{
...
@@ -311,17 +311,17 @@ TEST(Backward, op_part_of_output_are_not_need) {
...
@@ -311,17 +311,17 @@ TEST(Backward, op_part_of_output_are_not_need) {
ASSERT_EQ
(
1UL
,
fill_zero
.
inputs_
.
size
());
ASSERT_EQ
(
1UL
,
fill_zero
.
inputs_
.
size
());
ASSERT_EQ
(
"Z"
,
fill_zero
.
inputs_
[
0
]);
ASSERT_EQ
(
"Z"
,
fill_zero
.
inputs_
[
0
]);
ASSERT_EQ
(
1UL
,
fill_zero
.
outputs_
.
size
());
ASSERT_EQ
(
1UL
,
fill_zero
.
outputs_
.
size
());
ASSERT_EQ
(
"Z"
+
f
::
OperatorBase
::
ZERO_VAR_SUFFIX
()
,
fill_zero
.
outputs_
[
0
]);
ASSERT_EQ
(
"Z"
+
f
::
kZeroVarSuffix
,
fill_zero
.
outputs_
[
0
]);
auto
&
d_many_out
=
*
net
->
ops_
[
1
];
auto
&
d_many_out
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"many_output_op_grad"
,
d_many_out
.
type_
);
ASSERT_EQ
(
"many_output_op_grad"
,
d_many_out
.
type_
);
ASSERT_EQ
(
1UL
+
2UL
+
2UL
,
d_many_out
.
inputs_
.
size
());
// I/O/OG
ASSERT_EQ
(
1UL
+
2UL
+
2UL
,
d_many_out
.
inputs_
.
size
());
// I/O/OG
ASSERT_EQ
(
"Z"
+
f
::
OperatorBase
::
ZERO_VAR_SUFFIX
()
,
ASSERT_EQ
(
"Z"
+
f
::
kZeroVarSuffix
,
d_many_out
.
Input
(
"z"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
));
d_many_out
.
Input
(
"z"
+
f
::
kGradVarSuffix
));
ASSERT_EQ
(
"Y"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
ASSERT_EQ
(
"Y"
+
f
::
kGradVarSuffix
,
d_many_out
.
Input
(
"y"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
));
d_many_out
.
Input
(
"y"
+
f
::
kGradVarSuffix
));
ASSERT_EQ
(
"X"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
,
ASSERT_EQ
(
"X"
+
f
::
kGradVarSuffix
,
d_many_out
.
Output
(
"x"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
));
d_many_out
.
Output
(
"x"
+
f
::
kGradVarSuffix
));
}
}
TEST
(
Backward
,
op_part_of_input_are_not_need
)
{
TEST
(
Backward
,
op_part_of_input_are_not_need
)
{
...
@@ -331,12 +331,12 @@ TEST(Backward, op_part_of_input_are_not_need) {
...
@@ -331,12 +331,12 @@ TEST(Backward, op_part_of_input_are_not_need) {
ASSERT_EQ
(
grad_mul
.
type_
,
"mul_grad"
);
ASSERT_EQ
(
grad_mul
.
type_
,
"mul_grad"
);
ASSERT_EQ
(
grad_mul
.
inputs_
.
size
(),
2UL
+
1UL
+
1UL
);
ASSERT_EQ
(
grad_mul
.
inputs_
.
size
(),
2UL
+
1UL
+
1UL
);
ASSERT_EQ
(
grad_mul
.
outputs_
.
size
(),
2UL
);
ASSERT_EQ
(
grad_mul
.
outputs_
.
size
(),
2UL
);
ASSERT_EQ
(
grad_mul
.
Output
(
"A"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
),
ASSERT_EQ
(
grad_mul
.
Output
(
"A"
+
f
::
kGradVarSuffix
),
f
::
OperatorBase
::
EMPTY_VAR_NAME
()
);
f
::
kEmptyVarName
);
ASSERT_EQ
(
grad_mul
.
Output
(
"B"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
),
ASSERT_EQ
(
grad_mul
.
Output
(
"B"
+
f
::
kGradVarSuffix
),
"b"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
"b"
+
f
::
kGradVarSuffix
);
ASSERT_EQ
(
grad_mul
.
Input
(
"Out"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
),
ASSERT_EQ
(
grad_mul
.
Input
(
"Out"
+
f
::
kGradVarSuffix
),
"out"
+
f
::
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
"out"
+
f
::
kGradVarSuffix
);
ASSERT_EQ
(
grad_mul
.
Input
(
"A"
),
"a"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"A"
),
"a"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"B"
),
"b"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"B"
),
"b"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"Out"
),
"out"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"Out"
),
"out"
);
...
@@ -370,17 +370,17 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
...
@@ -370,17 +370,17 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
outputs_
.
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
outputs_
.
size
(),
0UL
);
/*
/*
EXPECT_EQ(grad_fc.Output("X" + f::
OperatorBase::GRAD_VAR_SUFFIX()
),
EXPECT_EQ(grad_fc.Output("X" + f::
kGradVarSuffix
),
f::
OperatorBase::EMPTY_VAR_NAME()
);
f::
kEmptyVarName
);
EXPECT_EQ(grad_fc.Output("W" + f::
OperatorBase::GRAD_VAR_SUFFIX()
),
EXPECT_EQ(grad_fc.Output("W" + f::
kGradVarSuffix
),
"w3" + f::
OperatorBase::GRAD_VAR_SUFFIX()
);
"w3" + f::
kGradVarSuffix
);
EXPECT_EQ(grad_fc.Output("b" + f::
OperatorBase::GRAD_VAR_SUFFIX()
),
EXPECT_EQ(grad_fc.Output("b" + f::
kGradVarSuffix
),
"b3" + f::
OperatorBase::GRAD_VAR_SUFFIX()
);
"b3" + f::
kGradVarSuffix
);
EXPECT_EQ(grad_fc.Output("mul_result" + f::
OperatorBase::GRAD_VAR_SUFFIX()
),
EXPECT_EQ(grad_fc.Output("mul_result" + f::
kGradVarSuffix
),
"mul_out3" + f::
OperatorBase::GRAD_VAR_SUFFIX()
);
"mul_out3" + f::
kGradVarSuffix
);
EXPECT_EQ(grad_fc.Input("Out" + f::
OperatorBase::GRAD_VAR_SUFFIX()
),
EXPECT_EQ(grad_fc.Input("Out" + f::
kGradVarSuffix
),
"out3" + f::
OperatorBase::GRAD_VAR_SUFFIX()
);
"out3" + f::
kGradVarSuffix
);
EXPECT_EQ(grad_fc.Input("X"), "out2");
EXPECT_EQ(grad_fc.Input("X"), "out2");
EXPECT_EQ(grad_fc.Input("W"), "w3");
EXPECT_EQ(grad_fc.Input("W"), "w3");
EXPECT_EQ(grad_fc.Input("mul_result"), "mul_out3");
EXPECT_EQ(grad_fc.Input("mul_result"), "mul_out3");
...
...
paddle/framework/grad_op_builder.cc
浏览文件 @
ddb29b6c
...
@@ -57,7 +57,7 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
...
@@ -57,7 +57,7 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
for
(
const
auto
&
arg
:
src_arg_list
)
{
for
(
const
auto
&
arg
:
src_arg_list
)
{
std
::
string
src_name
=
arg
.
name
();
std
::
string
src_name
=
arg
.
name
();
std
::
string
dst_name
=
std
::
string
dst_name
=
is_grad
?
src_name
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
:
src_name
;
is_grad
?
src_name
+
kGradVarSuffix
:
src_name
;
(
*
dst_op
->
in_out_idxs_
)[
dst_name
]
=
idx
++
;
(
*
dst_op
->
in_out_idxs_
)[
dst_name
]
=
idx
++
;
int
src_arg_idx
=
src_op
->
in_out_idxs_
->
at
(
src_name
);
int
src_arg_idx
=
src_op
->
in_out_idxs_
->
at
(
src_name
);
int
src_begin
=
int
src_begin
=
...
@@ -65,9 +65,9 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
...
@@ -65,9 +65,9 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
int
src_end
=
src_format
==
nullptr
?
src_arg_idx
+
1
int
src_end
=
src_format
==
nullptr
?
src_arg_idx
+
1
:
src_format
->
at
(
src_arg_idx
+
1
);
:
src_format
->
at
(
src_arg_idx
+
1
);
for
(
int
i
=
src_begin
;
i
<
src_end
;
++
i
)
{
for
(
int
i
=
src_begin
;
i
<
src_end
;
++
i
)
{
std
::
string
s
=
is_grad
?
src_inout
[
i
]
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
std
::
string
s
=
is_grad
?
src_inout
[
i
]
+
kGradVarSuffix
:
arg
.
ignore_gradient
()
:
arg
.
ignore_gradient
()
?
OperatorBase
::
EMPTY_VAR_NAME
()
?
kEmptyVarName
:
src_inout
[
i
];
:
src_inout
[
i
];
dst_inout
.
emplace_back
(
s
);
dst_inout
.
emplace_back
(
s
);
}
}
...
...
paddle/framework/op_registry.h
浏览文件 @
ddb29b6c
...
@@ -341,7 +341,7 @@ class OpRegistry {
...
@@ -341,7 +341,7 @@ class OpRegistry {
static
void
GenerateTempVariableName
(
OperatorBase
*
op
)
{
static
void
GenerateTempVariableName
(
OperatorBase
*
op
)
{
static
std
::
atomic
<
size_t
>
gUniqId
(
0UL
);
static
std
::
atomic
<
size_t
>
gUniqId
(
0UL
);
for
(
auto
&
outname
:
op
->
outputs_
)
{
for
(
auto
&
outname
:
op
->
outputs_
)
{
if
(
outname
==
OperatorBase
::
TMP_VAR_NAME
()
)
{
if
(
outname
==
kTempVarName
)
{
outname
+=
op
->
type_
;
outname
+=
op
->
type_
;
outname
+=
"@"
;
outname
+=
"@"
;
outname
+=
std
::
to_string
(
gUniqId
.
fetch_add
(
1
));
outname
+=
std
::
to_string
(
gUniqId
.
fetch_add
(
1
));
...
...
paddle/framework/operator.h
浏览文件 @
ddb29b6c
...
@@ -32,9 +32,30 @@ limitations under the License. */
...
@@ -32,9 +32,30 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
/// If a variable is a empty variable, that name will be used.
const
std
::
string
kEmptyVarName
=
"@EMPTY@"
;
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
const
std
::
string
kTempVarName
=
"@TEMP@"
;
/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
const
std
::
string
kGradVarSuffix
=
"@GRAD"
;
/// Variables with this suffix are supposed to be filled up with zeros.
const
std
::
string
kZeroVarSuffix
=
"@ZERO"
;
inline
std
::
string
GradVarName
(
const
std
::
string
&
var_name
)
{
return
var_name
+
kGradVarSuffix
;
}
class
OperatorBase
;
class
OperatorBase
;
class
InferShapeContext
;
class
InferShapeContext
;
class
ExecutionContext
;
class
ExecutionContext
;
/**
/**
* OperatorBase has the basic element that Net will call to do computation.
* OperatorBase has the basic element that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
* Only CreateOperator from OpRegistry will new Operator directly. User
...
@@ -43,25 +64,6 @@ class ExecutionContext;
...
@@ -43,25 +64,6 @@ class ExecutionContext;
*/
*/
class
OperatorBase
{
class
OperatorBase
{
public:
public:
/// If a variable is a empty variable, that name will be used.
static
std
::
string
EMPTY_VAR_NAME
()
{
return
"@EMPTY@"
;
}
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
static
std
::
string
TMP_VAR_NAME
()
{
return
"@TEMP@"
;
}
/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
static
std
::
string
GRAD_VAR_SUFFIX
()
{
return
"@GRAD"
;
}
static
std
::
string
GRAD_VAR_NAME
(
const
std
::
string
&
name
)
{
return
name
+
GRAD_VAR_SUFFIX
();
}
/// Variables with this suffix are supposed to be filled up with zeros.
static
std
::
string
ZERO_VAR_SUFFIX
()
{
return
"@ZERO"
;
}
virtual
~
OperatorBase
()
{}
virtual
~
OperatorBase
()
{}
template
<
typename
T
>
template
<
typename
T
>
...
...
paddle/framework/pybind.cc
浏览文件 @
ddb29b6c
...
@@ -154,8 +154,8 @@ All parameter, weight, gradient are variables in Paddle.
...
@@ -154,8 +154,8 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def_submodule
(
m
.
def_submodule
(
"var_names"
,
"var_names"
,
"The module will return special predefined variable name in Paddle"
)
"The module will return special predefined variable name in Paddle"
)
.
def
(
"empty"
,
OperatorBase
::
EMPTY_VAR_NAME
)
.
def
(
"empty"
,
kEmptyVarName
)
.
def
(
"temp"
,
OperatorBase
::
TMP_VAR_NAME
);
.
def
(
"temp"
,
kTempVarName
);
// clang-format off
// clang-format off
py
::
class_
<
paddle
::
platform
::
DeviceContext
>
(
m
,
"DeviceContext"
)
py
::
class_
<
paddle
::
platform
::
DeviceContext
>
(
m
,
"DeviceContext"
)
.
def_static
(
"create"
,
.
def_static
(
"create"
,
...
...
paddle/operators/fc_op.cc
浏览文件 @
ddb29b6c
...
@@ -27,7 +27,7 @@ public:
...
@@ -27,7 +27,7 @@ public:
{
Output
(
"before_act"
)},
{
Output
(
"before_act"
)},
{}));
{}));
auto
b
=
Input
(
"b"
);
auto
b
=
Input
(
"b"
);
if
(
b
!=
EMPTY_VAR_NAME
()
)
{
if
(
b
!=
framework
::
kEmptyVarName
)
{
AddOp
(
OpRegistry
::
CreateOp
(
"rowwise_add"
,
AddOp
(
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{
Output
(
"before_act"
),
Input
(
"b"
)},
{
Output
(
"before_act"
),
Input
(
"b"
)},
{
Output
(
"before_act"
)},
{
Output
(
"before_act"
)},
...
...
paddle/operators/mean_op.cc
浏览文件 @
ddb29b6c
...
@@ -41,7 +41,7 @@ public:
...
@@ -41,7 +41,7 @@ public:
class
MeanGradOp
:
public
OperatorWithKernel
{
class
MeanGradOp
:
public
OperatorWithKernel
{
protected:
protected:
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
"X"
+
GRAD_VAR_SUFFIX
()
)
ctx
.
Output
<
Tensor
>
(
"X"
+
framework
::
kGradVarSuffix
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
}
}
};
};
...
...
paddle/operators/mean_op.h
浏览文件 @
ddb29b6c
...
@@ -39,10 +39,10 @@ template <typename Place, typename T>
...
@@ -39,10 +39,10 @@ template <typename Place, typename T>
class
MeanGradKernel
:
public
OpKernel
{
class
MeanGradKernel
:
public
OpKernel
{
public:
public:
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
ExecutionContext
&
context
)
const
override
{
auto
OG
=
context
.
Input
<
Tensor
>
(
"Out"
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
auto
OG
=
context
.
Input
<
Tensor
>
(
"Out"
+
framework
::
kGradVarSuffix
);
PADDLE_ENFORCE
(
framework
::
product
(
OG
->
dims
())
==
1
,
PADDLE_ENFORCE
(
framework
::
product
(
OG
->
dims
())
==
1
,
"Mean Gradient should be scalar"
);
"Mean Gradient should be scalar"
);
auto
IG
=
context
.
Output
<
Tensor
>
(
"X"
+
OperatorBase
::
GRAD_VAR_SUFFIX
()
);
auto
IG
=
context
.
Output
<
Tensor
>
(
"X"
+
framework
::
kGradVarSuffix
);
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
ig_size
=
(
T
)
framework
::
product
(
IG
->
dims
());
T
ig_size
=
(
T
)
framework
::
product
(
IG
->
dims
());
...
...
paddle/operators/softmax_op.cc
浏览文件 @
ddb29b6c
...
@@ -48,12 +48,12 @@ protected:
...
@@ -48,12 +48,12 @@ protected:
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1UL
,
PADDLE_ENFORCE
(
ctx
.
OutputSize
()
==
1UL
,
"Output of SoftmaxOpGrad should be 1"
);
"Output of SoftmaxOpGrad should be 1"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
"Y"
)
!=
nullptr
,
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
"Y"
)
!=
nullptr
,
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
InputVar
(
GRAD_VAR_NAME
(
"Y"
))
!=
nullptr
,
PADDLE_ENFORCE
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
))
!=
nullptr
,
"Input(Y@GRAD) should not be null"
);
"Input(Y@GRAD) should not be null"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
()
==
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
()
==
ctx
.
Input
<
Tensor
>
(
GRAD_VAR_NAME
(
"Y"
))
->
dims
(),
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
))
->
dims
(),
"the shape of Input(0) and Input(1) should be the same"
);
"the shape of Input(0) and Input(1) should be the same"
);
ctx
.
Output
<
Tensor
>
(
GRAD_VAR_NAME
(
"X"
))
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
}
};
};
...
...
paddle/operators/softmax_op.h
浏览文件 @
ddb29b6c
...
@@ -68,8 +68,8 @@ public:
...
@@ -68,8 +68,8 @@ public:
std
::
shared_ptr
<
Tensor
>
scale_
=
std
::
make_shared
<
Tensor
>
();
std
::
shared_ptr
<
Tensor
>
scale_
=
std
::
make_shared
<
Tensor
>
();
auto
Y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
Y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
dY
=
context
.
Input
<
Tensor
>
(
OperatorBase
::
GRAD_VAR_NAME
(
"Y"
));
auto
dY
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dX
=
context
.
Output
<
Tensor
>
(
OperatorBase
::
GRAD_VAR_NAME
(
"X"
));
auto
dX
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
int
batch_size
=
Y
->
dims
()[
0
];
const
int
batch_size
=
Y
->
dims
()[
0
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录