Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dd436156
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
dd436156
编写于
1月 06, 2020
作者:
H
Huihuang Zheng
提交者:
GitHub
1月 06, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ParallelExecutor Test for Cond API and Fix PE Checks Shape Bug (#22029)
上级
95872494
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
194 addition
and
76 deletion
+194
-76
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+2
-0
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+2
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+7
-5
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+14
-5
python/paddle/fluid/tests/unittests/test_cond.py
python/paddle/fluid/tests/unittests/test_cond.py
+109
-39
python/paddle/fluid/tests/unittests/test_feed_data_check_shape_type.py
.../fluid/tests/unittests/test_feed_data_check_shape_type.py
+60
-27
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
dd436156
...
...
@@ -379,6 +379,8 @@ ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
return
graph
;
}
size_t
ParallelExecutor
::
DeviceCount
()
const
{
return
member_
->
places_
.
size
();
}
std
::
vector
<
Scope
*>
&
ParallelExecutor
::
GetLocalScopes
()
{
return
member_
->
local_scopes_
;
}
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
dd436156
...
...
@@ -58,6 +58,8 @@ class ParallelExecutor {
~
ParallelExecutor
();
size_t
DeviceCount
()
const
;
std
::
vector
<
Scope
*>
&
GetLocalScopes
();
void
DropLocalExeScopes
();
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
dd436156
...
...
@@ -2175,11 +2175,13 @@ All parameter, weight, gradient are variables in Paddle.
&
ParallelExecutor
::
FeedTensorsIntoLocalScopes
)
.
def
(
"feed_and_split_tensor_into_local_scopes"
,
&
ParallelExecutor
::
FeedAndSplitTensorIntoLocalScopes
)
.
def
(
"run"
,
[](
ParallelExecutor
&
self
,
.
def
(
"run"
,
[](
ParallelExecutor
&
self
,
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
pybind11
::
gil_scoped_release
release
;
return
self
.
Run
(
fetch_tensors
);
});
})
.
def
(
"device_count"
,
&
ParallelExecutor
::
DeviceCount
);
BindFleetWrapper
(
&
m
);
BindBoxHelper
(
&
m
);
...
...
python/paddle/fluid/executor.py
浏览文件 @
dd436156
...
...
@@ -193,7 +193,7 @@ def dimension_is_compatible_with(first, second):
return
True
def
check_feed_shape_type
(
var
,
feed
):
def
check_feed_shape_type
(
var
,
feed
,
num_places
=
1
):
"""
Returns True if the variable doesn't require feed check or it is compatible
with the shape and have same dtype as the feeded value.
...
...
@@ -207,6 +207,8 @@ def check_feed_shape_type(var, feed):
Args:
var (Variable): the Variable object
feed (LoDTensor): the feeded value, which must be a LoDTensor
num_places: an integer value indicating the number of places.
ParallelExecutor will divide data into devices (CPU/GPU) evenly.
Returns:
True if the shape and dtype of variable is compatible with the feed value
Raises:
...
...
@@ -214,11 +216,18 @@ def check_feed_shape_type(var, feed):
the feed value
"""
if
var
.
desc
.
need_check_feed
():
if
not
dimension_is_compatible_with
(
feed
.
shape
(),
var
.
shape
):
feed_shape
=
feed
.
shape
()
if
six
.
PY2
:
feed_shape
[
0
]
=
long
(
feed_shape
[
0
]
/
num_places
)
if
len
(
feed
.
lod
())
==
0
else
-
1
else
:
feed_shape
[
0
]
=
int
(
feed_shape
[
0
]
/
num_places
)
if
len
(
feed
.
lod
())
==
0
else
-
1
if
not
dimension_is_compatible_with
(
feed_shape
,
var
.
shape
):
raise
ValueError
(
'The feeded Variable %r should have dimensions = %d, shape = '
'%r, but received feeded shape %r'
%
(
var
.
name
,
len
(
var
.
shape
),
var
.
shape
,
feed
.
shape
()
))
'%r, but received feeded shape %r
on each device
'
%
(
var
.
name
,
len
(
var
.
shape
),
var
.
shape
,
feed
_shape
))
if
not
dtype_is_compatible_with
(
feed
.
_dtype
(),
var
.
dtype
):
var_dtype_format
=
convert_dtype
(
var
.
dtype
)
if
isinstance
(
var
.
dtype
,
core
.
VarDesc
.
VarType
)
else
var
.
dtype
...
...
@@ -632,7 +641,7 @@ class Executor(object):
feed_tensor
.
set
(
feed
[
feed_name
],
core
.
CPUPlace
())
if
need_check_feed
:
var
=
global_block
.
var
(
feed_name
)
check_feed_shape_type
(
var
,
feed_tensor
)
check_feed_shape_type
(
var
,
feed_tensor
,
exe
.
device_count
()
)
feed_tensor_dict
[
feed_name
]
=
feed_tensor
exe
.
feed_and_split_tensor_into_local_scopes
(
feed_tensor_dict
)
...
...
python/paddle/fluid/tests/unittests/test_cond.py
浏览文件 @
dd436156
...
...
@@ -15,6 +15,7 @@
from
__future__
import
print_function
import
numpy
as
np
import
os
import
unittest
import
paddle.fluid
as
fluid
...
...
@@ -22,7 +23,6 @@ import paddle.fluid.core as core
import
paddle.fluid.layers
as
layers
import
paddle.fluid.framework
as
framework
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.framework
import
Program
,
program_guard
from
simple_nets
import
simple_fc_net_with_inputs
,
batchnorm_fc_with_inputs
...
...
@@ -329,7 +329,7 @@ class TestCondNestedControlFlow(unittest.TestCase):
class
TestCondBackward
(
unittest
.
TestCase
):
def
backward_value_helper
(
self
,
cond_func
):
def
backward_value_helper
(
self
,
cond_func
,
use_cuda
,
use_parallel_exe
):
"""
Helper function that compares calculated backward value is close to dy/dx
"""
...
...
@@ -344,16 +344,35 @@ class TestCondBackward(unittest.TestCase):
i
=
fluid
.
data
(
name
=
"i"
,
shape
=
[
1
],
dtype
=
'int32'
)
loss
=
cond_func
(
i
,
img
,
label
)
append_backward
(
loss
)
place
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
num_devices
=
1
if
use_parallel_exe
:
os
.
environ
[
'CPU_NUM'
]
=
str
(
2
)
exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
main_program
=
main_program
,
loss_name
=
loss
.
name
)
num_devices
=
exe
.
device_count
delta
=
0.005
for
feed_i
in
range
(
0
,
10
):
feed_img
=
np
.
random
.
random
(
size
=
[
1
,
9
]).
astype
(
np
.
float32
)
feed_label
=
np
.
random
.
randint
(
low
=
0
,
high
=
10
,
size
=
[
1
,
1
],
dtype
=
np
.
int64
)
if
use_parallel_exe
:
img_grad
,
loss_value
=
exe
.
run
(
feed
=
{
'i'
:
np
.
full
((
num_devices
),
feed_i
,
np
.
int32
),
'image'
:
np
.
repeat
(
feed_img
,
num_devices
,
axis
=
0
),
'label'
:
np
.
repeat
(
feed_label
,
num_devices
,
axis
=
0
)
},
fetch_list
=
[
img
.
grad_name
,
loss
.
name
])
else
:
img_grad
,
loss_value
=
exe
.
run
(
main_program
,
feed
=
{
...
...
@@ -363,24 +382,40 @@ class TestCondBackward(unittest.TestCase):
},
fetch_list
=
[
img
.
grad_name
,
loss
.
name
])
numerical_grad
=
np
.
zeros
(
shape
=
[
1
,
9
],
dtype
=
np
.
float32
)
numerical_grad
=
np
.
zeros
(
shape
=
[
num_devices
,
9
],
dtype
=
np
.
float32
)
feed_img_delta
=
np
.
copy
(
feed_img
)
for
j
in
range
(
9
):
feed_img_delta
[
0
][
j
]
=
feed_img
[
0
][
j
]
+
delta
if
use_parallel_exe
:
loss_delta
=
exe
.
run
(
feed
=
{
'i'
:
np
.
full
((
num_devices
),
feed_i
,
np
.
int32
),
'image'
:
np
.
repeat
(
feed_img_delta
,
num_devices
,
axis
=
0
),
'label'
:
np
.
repeat
(
feed_label
,
num_devices
,
axis
=
0
)
},
fetch_list
=
[
loss
.
name
])
multi_device_grad
=
(
loss_delta
[
0
]
-
loss_value
[
0
])
/
delta
/
num_devices
for
d
in
range
(
num_devices
):
numerical_grad
[
d
][
j
]
=
multi_device_grad
[
d
]
else
:
loss_delta
=
exe
.
run
(
main_program
,
feed
=
{
'i'
:
np
.
full
((
1
),
feed_i
,
np
.
int32
),
'i'
:
np
.
full
((
1
),
feed_i
,
np
.
int32
),
'image'
:
feed_img_delta
,
'label'
:
feed_label
},
fetch_list
=
[
loss
.
name
])
numerical_grad
[
0
][
j
]
=
(
loss_delta
[
0
]
-
loss_value
[
0
])
/
delta
numerical_grad
[
0
][
j
]
=
(
loss_delta
[
0
]
-
loss_value
[
0
])
/
delta
feed_img_delta
[
0
][
j
]
=
feed_img
[
0
][
j
]
self
.
assertTrue
(
np
.
isclose
(
img_grad
,
numerical_grad
,
atol
=
0.05
,
rtol
=
0.05
).
all
())
def
add_optimizer_helper
(
self
,
cond_func
):
def
add_optimizer_helper
(
self
,
cond_func
,
use_cuda
,
use_parallel_exe
):
"""
Test that program is runnable when add optimizer
"""
...
...
@@ -394,15 +429,31 @@ class TestCondBackward(unittest.TestCase):
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
optimizer
.
minimize
(
loss
)
place
=
fluid
.
CUDAPlace
(
0
)
if
core
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
if
use_parallel_exe
:
os
.
environ
[
'CPU_NUM'
]
=
str
(
2
)
exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
use_cuda
,
main_program
=
main_program
,
loss_name
=
loss
.
name
)
num_devices
=
exe
.
device_count
for
feed_i
in
range
(
0
,
10
):
feed_img
=
np
.
random
.
random
(
size
=
[
16
,
784
]).
astype
(
np
.
float32
)
feed_label
=
np
.
random
.
randint
(
low
=
0
,
high
=
10
,
size
=
[
16
,
1
],
dtype
=
np
.
int64
)
if
use_parallel_exe
:
exe
.
run
(
feed
=
{
'i'
:
np
.
full
((
num_devices
),
feed_i
,
np
.
int32
),
'image'
:
np
.
repeat
(
feed_img
,
num_devices
,
axis
=
0
),
'label'
:
np
.
repeat
(
feed_label
,
num_devices
,
axis
=
0
)
},
fetch_list
=
[
loss
.
name
])
else
:
exe
.
run
(
main_program
,
feed
=
{
'i'
:
np
.
full
((
1
),
feed_i
,
np
.
int32
),
...
...
@@ -418,8 +469,13 @@ class TestCondBackward(unittest.TestCase):
lambda
:
simple_fc_net_with_inputs
(
img
,
label
,
class_num
=
10
),
lambda
:
batchnorm_fc_with_inputs
(
img
,
label
,
class_num
=
10
))
self
.
backward_value_helper
(
cond_func
)
self
.
add_optimizer_helper
(
cond_func
)
for
use_parallel_exe
in
[
False
,
True
]:
self
.
backward_value_helper
(
cond_func
,
core
.
is_compiled_with_cuda
(),
use_parallel_exe
)
self
.
add_optimizer_helper
(
cond_func
,
core
.
is_compiled_with_cuda
(),
use_parallel_exe
)
def
test_half_nested_cond_backward
(
self
):
def
branch
(
i
,
img
,
label
):
...
...
@@ -434,10 +490,19 @@ class TestCondBackward(unittest.TestCase):
return
layers
.
cond
(
i
<
5
,
lambda
:
layers
.
mean
(
img
),
lambda
:
branch
(
i
,
img
,
label
))
self
.
backward_value_helper
(
cond_func_simple_net_at_true
)
self
.
add_optimizer_helper
(
cond_func_simple_net_at_true
)
self
.
backward_value_helper
(
cond_func_simple_net_at_false
)
self
.
add_optimizer_helper
(
cond_func_simple_net_at_false
)
for
use_parallel_exe
in
[
False
,
True
]:
self
.
backward_value_helper
(
cond_func_simple_net_at_true
,
core
.
is_compiled_with_cuda
(),
use_parallel_exe
)
self
.
add_optimizer_helper
(
cond_func_simple_net_at_true
,
core
.
is_compiled_with_cuda
(),
use_parallel_exe
)
self
.
backward_value_helper
(
cond_func_simple_net_at_false
,
core
.
is_compiled_with_cuda
(),
use_parallel_exe
)
self
.
add_optimizer_helper
(
cond_func_simple_net_at_false
,
core
.
is_compiled_with_cuda
(),
use_parallel_exe
)
def
test_nested_cond_backward
(
self
):
def
branch
(
i
,
img
,
label
,
mod_two
):
...
...
@@ -453,8 +518,13 @@ class TestCondBackward(unittest.TestCase):
return
layers
.
cond
(
i
<
5
,
lambda
:
branch
(
i
,
img
,
label
,
True
),
lambda
:
branch
(
i
,
img
,
label
,
False
))
self
.
backward_value_helper
(
cond_func
)
self
.
add_optimizer_helper
(
cond_func
)
for
use_parallel_exe
in
[
False
,
True
]:
self
.
backward_value_helper
(
cond_func
,
core
.
is_compiled_with_cuda
(),
use_parallel_exe
)
self
.
add_optimizer_helper
(
cond_func
,
core
.
is_compiled_with_cuda
(),
use_parallel_exe
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_feed_data_check_shape_type.py
浏览文件 @
dd436156
...
...
@@ -36,17 +36,21 @@ class TestFeedData(unittest.TestCase):
def
setUp
(
self
):
self
.
hidden_sizes
=
[
25
,
20
,
15
]
self
.
base
_batch_size
=
10
self
.
data
_batch_size
=
10
self
.
class_num
=
10
self
.
iterations
=
5
def
_get_batch_size
(
self
,
use_cuda
,
use_parallel_executor
):
batch_size_times
=
1
if
use_parallel_executor
:
batch_size_times
=
core
.
get_cuda_device_count
(
)
if
use_cuda
else
int
(
def
_get_device_count
(
self
,
use_cuda
):
return
core
.
get_cuda_device_count
()
if
use_cuda
else
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
return
self
.
base_batch_size
*
batch_size_times
def
_get_feed_batch_size
(
self
,
use_cuda
,
use_parallel_executor
):
"""
Returns actual feeded data size. We should multiple the number of
devices when it is using ParallelExecutor
"""
return
self
.
data_batch_size
*
self
.
_get_device_count
(
use_cuda
)
if
use_parallel_executor
else
self
.
data_batch_size
def
_simple_fc_net
(
self
,
in_size
,
label_size
,
class_num
,
hidden_sizes
):
in_data
=
fluid
.
data
(
name
=
"data"
,
dtype
=
'float32'
,
shape
=
in_size
)
...
...
@@ -79,18 +83,17 @@ class TestFeedData(unittest.TestCase):
use_parallel_executor
)
self
.
_test_feed_data_contains_neg_one
(
use_cuda
,
use_parallel_executor
)
self
.
_test_feed_lod_tensor
(
use_cuda
,
use_parallel_executor
)
# Test exception message when feeding with error
batch_size
=
self
.
_get_batch_size
(
use_cuda
,
use_parallel_executor
)
if
six
.
PY2
:
in_shape_tuple
=
(
long
(
-
1
),
long
(
3
),
long
(
4
),
long
(
8
))
feed
_shape_list
=
[
long
(
batch_size
),
long
(
3
),
long
(
4
),
long
(
5
)
error
_shape_list
=
[
long
(
self
.
data_
batch_size
),
long
(
3
),
long
(
4
),
long
(
5
)
]
else
:
in_shape_tuple
=
(
-
1
,
3
,
4
,
8
)
feed_shape_list
=
[
batch_size
,
3
,
4
,
5
]
error_shape_list
=
[
self
.
data_
batch_size
,
3
,
4
,
5
]
with
self
.
assertRaises
(
ValueError
)
as
shape_mismatch_err
:
self
.
_test_feed_data_shape_mismatch
(
use_cuda
,
...
...
@@ -98,9 +101,9 @@ class TestFeedData(unittest.TestCase):
self
.
assertEqual
(
str
(
shape_mismatch_err
.
exception
),
"The feeded Variable %r should have dimensions = %r, "
"shape = %r, but received feeded shape %r"
%
"shape = %r, but received feeded shape %r
on each device
"
%
(
u
'data'
,
len
(
in_shape_tuple
),
in_shape_tuple
,
feed
_shape_list
))
error
_shape_list
))
with
self
.
assertRaises
(
ValueError
)
as
dtype_mismatch_err
:
self
.
_test_feed_data_dtype_mismatch
(
use_cuda
,
...
...
@@ -111,18 +114,20 @@ class TestFeedData(unittest.TestCase):
"received 'float64'"
%
(
u
'label'
))
def
_test_feed_data_dtype_mismatch
(
self
,
use_cuda
,
use_parallel_executor
):
batch_size
=
self
.
_get_batch_size
(
use_cuda
,
use_parallel_executor
)
in_size
=
[
batch_size
,
3
,
4
,
5
]
feed_batch_size
=
self
.
_get_feed_batch_size
(
use_cuda
,
use_parallel_executor
)
in_size
=
[
self
.
data_batch_size
,
3
,
4
,
5
]
feed_in_data
=
np
.
random
.
uniform
(
size
=
[
batch_size
,
3
,
4
,
5
]).
astype
(
np
.
float32
)
label_size
=
[
batch_size
,
1
]
size
=
[
feed_
batch_size
,
3
,
4
,
5
]).
astype
(
np
.
float32
)
label_size
=
[
self
.
data_
batch_size
,
1
]
feed_label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
[
batch_size
,
1
]).
astype
(
np
.
float64
)
low
=
0
,
high
=
self
.
class_num
,
size
=
[
feed_batch_size
,
1
]).
astype
(
np
.
float64
)
self
.
_feed_data_in_executor
(
in_size
,
label_size
,
feed_in_data
,
feed_label
,
use_cuda
,
use_parallel_executor
)
def
_test_feed_data_shape_mismatch
(
self
,
use_cuda
,
use_parallel_executor
):
batch_size
=
self
.
_get_batch_size
(
use_cuda
,
use_parallel_executor
)
batch_size
=
self
.
_get_
feed_
batch_size
(
use_cuda
,
use_parallel_executor
)
in_size
=
[
None
,
3
,
4
,
8
]
feed_in_data
=
np
.
random
.
uniform
(
size
=
[
batch_size
,
3
,
4
,
5
]).
astype
(
np
.
float32
)
...
...
@@ -133,7 +138,7 @@ class TestFeedData(unittest.TestCase):
feed_label
,
use_cuda
,
use_parallel_executor
)
def
_test_feed_data_contains_neg_one
(
self
,
use_cuda
,
use_parallel_executor
):
batch_size
=
self
.
_get_batch_size
(
use_cuda
,
use_parallel_executor
)
batch_size
=
self
.
_get_
feed_
batch_size
(
use_cuda
,
use_parallel_executor
)
in_size
=
[
-
1
,
3
,
4
,
5
]
feed_in_data
=
np
.
random
.
uniform
(
size
=
[
batch_size
,
3
,
4
,
5
]).
astype
(
np
.
float32
)
...
...
@@ -144,15 +149,43 @@ class TestFeedData(unittest.TestCase):
feed_label
,
use_cuda
,
use_parallel_executor
)
def
_test_feed_data_match_shape_type
(
self
,
use_cuda
,
use_parallel_executor
):
batch_size
=
self
.
_get_batch_size
(
use_cuda
,
use_parallel_executor
)
in_size
=
[
batch_size
,
3
,
4
,
5
]
feed_in_data
=
np
.
random
.
uniform
(
size
=
in_size
).
astype
(
np
.
float32
)
label_size
=
[
batch_size
,
1
]
feed_batch_size
=
self
.
_get_feed_batch_size
(
use_cuda
,
use_parallel_executor
)
in_size
=
[
self
.
data_batch_size
,
3
,
4
,
5
]
feed_in_data
=
np
.
random
.
uniform
(
size
=
[
feed_batch_size
,
3
,
4
,
5
]).
astype
(
np
.
float32
)
label_size
=
[
self
.
data_batch_size
,
1
]
feed_label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
label_size
).
astype
(
np
.
int64
)
low
=
0
,
high
=
self
.
class_num
,
size
=
[
feed_batch_size
,
1
]).
astype
(
np
.
int64
)
self
.
_feed_data_in_executor
(
in_size
,
label_size
,
feed_in_data
,
feed_label
,
use_cuda
,
use_parallel_executor
)
def
_test_feed_lod_tensor
(
self
,
use_cuda
,
use_parallel_executor
):
device_count
=
self
.
_get_device_count
(
use_cuda
)
in_size
=
[
device_count
,
3
,
4
,
5
]
sequence_lengths
=
[
range
(
1
,
device_count
+
1
)]
# sum from 1 to device_count
sum_length
=
int
((
device_count
+
1
)
*
device_count
/
2
)
feed_in_data
=
np
.
random
.
uniform
(
size
=
[
sum_length
,
3
,
4
,
5
]).
astype
(
np
.
float32
)
feed_data_tensor
=
fluid
.
LoDTensor
()
feed_data_tensor
.
set
(
feed_in_data
,
fluid
.
CPUPlace
())
feed_data_tensor
.
set_recursive_sequence_lengths
(
sequence_lengths
)
label_size
=
[
device_count
,
1
]
feed_label_tensor
=
fluid
.
LoDTensor
()
feed_label
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
class_num
,
size
=
[
sum_length
,
1
]).
astype
(
np
.
int64
)
feed_label_tensor
.
set
(
feed_label
,
fluid
.
CPUPlace
())
feed_label_tensor
.
set_recursive_sequence_lengths
(
sequence_lengths
)
self
.
_feed_data_in_executor
(
in_size
,
label_size
,
feed_data_tensor
,
feed_label_tensor
,
use_cuda
,
use_parallel_executor
)
def
_feed_data_in_executor
(
self
,
in_size
,
label_size
,
feed_in_data
,
feed_label
,
use_cuda
,
use_parallel_executor
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录