提交 dce92332 编写于 作者: T Travis CI

Deploy to GitHub Pages: 0dc75ab3

上级 3b8bbad6
## Auto Gradient Checker Design
## Backgraound:
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=0.005,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
```
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
```
## Auto Graident Checker Framework
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
#### Python Interface
```python
def check_grad(self,
forward_op,
input_vars,
inputs_to_check,
output_name,
no_grad_set=None,
only_cpu=False,
max_relative_error=0.005):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
```python
numeric_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
max_diff = numpy.max(diff_mat)
```
#### Notes:
1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.
#### Refs:
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Auto Gradient Checker Design &mdash; PaddlePaddle documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index"
href="../genindex.html"/>
<link rel="search" title="Search" href="../search.html"/>
<link rel="top" title="PaddlePaddle documentation" href="../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../about/index_en.html">ABOUT</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/ubuntu_install_en.html">Debian Package installation guide</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../about/index_en.html">ABOUT</a></li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Auto Gradient Checker Design</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="auto-gradient-checker-design">
<span id="auto-gradient-checker-design"></span><h1>Auto Gradient Checker Design<a class="headerlink" href="#auto-gradient-checker-design" title="Permalink to this headline"></a></h1>
</div>
<div class="section" id="backgraound">
<span id="backgraound"></span><h1>Backgraound:<a class="headerlink" href="#backgraound" title="Permalink to this headline"></a></h1>
<ul class="simple">
<li>Operator forward computing is easy to check if the result is right because it has a clear definition. <strong>But</strong> backpropagation is a notoriously difficult algorithm to debug and get right:<ul>
<li><ol class="first">
<li>you should get the right backpropagation formula according to the forward computation.</li>
</ol>
</li>
<li><ol class="first">
<li>you should implement it right in CPP.</li>
</ol>
</li>
<li><ol class="first">
<li>it&#8217;s difficult to prepare test data.</li>
</ol>
</li>
</ul>
</li>
<li>Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator&#8217;s result. It has several advantages:<ul>
<li><ol class="first">
<li>numeric gradient checker only need forward operator.</li>
</ol>
</li>
<li><ol class="first">
<li>user only need to prepare the input data for forward Operator.</li>
</ol>
</li>
</ul>
</li>
</ul>
</div>
<div class="section" id="mathematical-theory">
<span id="mathematical-theory"></span><h1>Mathematical Theory<a class="headerlink" href="#mathematical-theory" title="Permalink to this headline"></a></h1>
<p>The following two document from stanford has a detailed explanation of how to get numeric gradient and why it&#8217;s useful.</p>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization">Gradient checking and advanced optimization(en)</a></li>
<li class="toctree-l1"><a class="reference external" href="http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96">Gradient checking and advanced optimization(cn)</a></li>
</ul>
</div>
</div>
<div class="section" id="numeric-gradient-implementation">
<span id="numeric-gradient-implementation"></span><h1>Numeric Gradient Implementation<a class="headerlink" href="#numeric-gradient-implementation" title="Permalink to this headline"></a></h1>
<div class="section" id="python-interface">
<span id="python-interface"></span><h2>Python Interface<a class="headerlink" href="#python-interface" title="Permalink to this headline"></a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_numeric_gradient</span><span class="p">(</span><span class="n">op</span><span class="p">,</span>
<span class="n">input_values</span><span class="p">,</span>
<span class="n">output_name</span><span class="p">,</span>
<span class="n">input_to_check</span><span class="p">,</span>
<span class="n">delta</span><span class="o">=</span><span class="mf">0.005</span><span class="p">,</span>
<span class="n">local_scope</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get Numeric Gradient for an operator&#39;s input.</span>
<span class="sd"> :param op: C++ operator instance, could be an network</span>
<span class="sd"> :param input_values: The input variables. Should be an dictionary, key is</span>
<span class="sd"> variable name. Value is numpy array.</span>
<span class="sd"> :param output_name: The final output variable name.</span>
<span class="sd"> :param input_to_check: The input variable need to get gradient.</span>
<span class="sd"> :param delta: The perturbation value for numeric gradient method. The</span>
<span class="sd"> smaller delta is, the more accurate result will get. But if that delta is</span>
<span class="sd"> too small, it could occur numerical stability problem.</span>
<span class="sd"> :param local_scope: The local scope used for get_numeric_gradient.</span>
<span class="sd"> :return: The gradient array in numpy format.</span>
<span class="sd"> &quot;&quot;&quot;</span>
</pre></div>
</div>
</div>
<div class="section" id="explaination">
<span id="explaination"></span><h2>Explaination:<a class="headerlink" href="#explaination" title="Permalink to this headline"></a></h2>
<ul class="simple">
<li>Why need <code class="docutils literal"><span class="pre">output_name</span></code><ul>
<li>One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.</li>
</ul>
</li>
<li>Why need <code class="docutils literal"><span class="pre">input_to_check</span></code><ul>
<li>One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So <code class="docutils literal"><span class="pre">get_numeric_gradient</span></code> is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call <code class="docutils literal"><span class="pre">get_numeric_gradient</span></code> multiple times.</li>
</ul>
</li>
</ul>
</div>
<div class="section" id="core-algorithm-implementation">
<span id="core-algorithm-implementation"></span><h2>Core Algorithm Implementation<a class="headerlink" href="#core-algorithm-implementation" title="Permalink to this headline"></a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1"># we only compute gradient of one element each time.</span>
<span class="c1"># we use a for loop to compute the gradient of every element.</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">tensor_size</span><span class="p">):</span>
<span class="c1"># get one input element throw it&#39;s index i.</span>
<span class="n">origin</span> <span class="o">=</span> <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">get_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
<span class="c1"># add delta to it, run op and then get the sum of the result tensor.</span>
<span class="n">x_pos</span> <span class="o">=</span> <span class="n">origin</span> <span class="o">+</span> <span class="n">delta</span>
<span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">x_pos</span><span class="p">)</span>
<span class="n">y_pos</span> <span class="o">=</span> <span class="n">get_output</span><span class="p">()</span>
<span class="c1"># plus delta to this element, run op and get the sum of the result tensor.</span>
<span class="n">x_neg</span> <span class="o">=</span> <span class="n">origin</span> <span class="o">-</span> <span class="n">delta</span>
<span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">x_neg</span><span class="p">)</span>
<span class="n">y_neg</span> <span class="o">=</span> <span class="n">get_output</span><span class="p">()</span>
<span class="c1"># restore old value</span>
<span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">origin</span><span class="p">)</span>
<span class="c1"># compute the gradient of this element and store it into a numpy array.</span>
<span class="n">gradient_flat</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">y_pos</span> <span class="o">-</span> <span class="n">y_neg</span><span class="p">)</span> <span class="o">/</span> <span class="n">delta</span> <span class="o">/</span> <span class="mi">2</span>
<span class="c1"># reshape the gradient result to the shape of the source tensor.</span>
<span class="k">return</span> <span class="n">gradient_flat</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">tensor_to_check</span><span class="o">.</span><span class="n">get_dims</span><span class="p">())</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="auto-graident-checker-framework">
<span id="auto-graident-checker-framework"></span><h1>Auto Graident Checker Framework<a class="headerlink" href="#auto-graident-checker-framework" title="Permalink to this headline"></a></h1>
<p>Each Operator Kernel has three kinds of Gradient:</p>
<ul class="simple">
<li><ol class="first">
<li>Numeric Gradient</li>
</ol>
</li>
<li><ol class="first">
<li>CPU Operator Gradient</li>
</ol>
</li>
<li><ol class="first">
<li>GPU Operator Gradient(if supported)</li>
</ol>
</li>
</ul>
<p>Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.</p>
<ul class="simple">
<li><ol class="first">
<li>calculate the numeric gradient.</li>
</ol>
</li>
<li><ol class="first">
<li>calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.</li>
</ol>
</li>
<li><ol class="first">
<li>calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)</li>
</ol>
</li>
</ul>
<div class="section" id="python-interface">
<span id="id1"></span><h2>Python Interface<a class="headerlink" href="#python-interface" title="Permalink to this headline"></a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span> <span class="k">def</span> <span class="nf">check_grad</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">forward_op</span><span class="p">,</span>
<span class="n">input_vars</span><span class="p">,</span>
<span class="n">inputs_to_check</span><span class="p">,</span>
<span class="n">output_name</span><span class="p">,</span>
<span class="n">no_grad_set</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
<span class="n">only_cpu</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
<span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.005</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :param forward_op: used to create backward_op</span>
<span class="sd"> :param input_vars: numpy value of input variable. The following</span>
<span class="sd"> computation will use these variables.</span>
<span class="sd"> :param inputs_to_check: inputs var names that should check gradient.</span>
<span class="sd"> :param output_name: output name that used to</span>
<span class="sd"> :param max_relative_error: The relative tolerance parameter.</span>
<span class="sd"> :param no_grad_set: used when create backward ops</span>
<span class="sd"> :param only_cpu: only compute and check gradient on cpu kernel.</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
</pre></div>
</div>
</div>
<div class="section" id="how-to-check-if-two-numpy-array-is-close-enough">
<span id="how-to-check-if-two-numpy-array-is-close-enough"></span><h2>How to check if two numpy array is close enough?<a class="headerlink" href="#how-to-check-if-two-numpy-array-is-close-enough" title="Permalink to this headline"></a></h2>
<p>if <code class="docutils literal"><span class="pre">abs_numeric_grad</span></code> is nearly zero, then use abs error for numeric_grad, not relative</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">numeric_grad</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">operator_grad</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">scope</span><span class="o">.</span><span class="n">find_var</span><span class="p">(</span><span class="n">grad_var_name</span><span class="p">(</span><span class="n">name</span><span class="p">))</span><span class="o">.</span><span class="n">get_tensor</span><span class="p">())</span>
<span class="n">abs_numeric_grad</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">numeric_grad</span><span class="p">)</span>
<span class="c1"># if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative</span>
<span class="c1"># error.</span>
<span class="n">abs_numeric_grad</span><span class="p">[</span><span class="n">abs_numeric_grad</span> <span class="o">&lt;</span> <span class="mf">1e-3</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">diff_mat</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">abs_numeric_grad</span> <span class="o">-</span> <span class="n">operator_grad</span><span class="p">)</span> <span class="o">/</span> <span class="n">abs_numeric_grad</span>
<span class="n">max_diff</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">diff_mat</span><span class="p">)</span>
</pre></div>
</div>
<div class="section" id="notes">
<span id="notes"></span><h3>Notes:<a class="headerlink" href="#notes" title="Permalink to this headline"></a></h3>
<p>1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.</p>
</div>
<div class="section" id="refs">
<span id="refs"></span><h3>Refs:<a class="headerlink" href="#refs" title="Permalink to this headline"></a></h3>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization">Gradient checking and advanced optimization(en)</a></li>
<li class="toctree-l1"><a class="reference external" href="http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96">Gradient checking and advanced optimization(cn)</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
## Auto Gradient Checker Design
## Backgraound:
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=0.005,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
```
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
```
## Auto Graident Checker Framework
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
#### Python Interface
```python
def check_grad(self,
forward_op,
input_vars,
inputs_to_check,
output_name,
no_grad_set=None,
only_cpu=False,
max_relative_error=0.005):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
```python
numeric_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
max_diff = numpy.max(diff_mat)
```
#### Notes:
1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.
#### Refs:
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Auto Gradient Checker Design &mdash; PaddlePaddle 文档</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="索引"
href="../genindex.html"/>
<link rel="search" title="搜索" href="../search.html"/>
<link rel="top" title="PaddlePaddle 文档" href="../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/ubuntu_install_cn.html">Ubuntu部署PaddlePaddle</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Auto Gradient Checker Design</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="auto-gradient-checker-design">
<span id="auto-gradient-checker-design"></span><h1>Auto Gradient Checker Design<a class="headerlink" href="#auto-gradient-checker-design" title="永久链接至标题"></a></h1>
</div>
<div class="section" id="backgraound">
<span id="backgraound"></span><h1>Backgraound:<a class="headerlink" href="#backgraound" title="永久链接至标题"></a></h1>
<ul class="simple">
<li>Operator forward computing is easy to check if the result is right because it has a clear definition. <strong>But</strong> backpropagation is a notoriously difficult algorithm to debug and get right:<ul>
<li><ol class="first">
<li>you should get the right backpropagation formula according to the forward computation.</li>
</ol>
</li>
<li><ol class="first">
<li>you should implement it right in CPP.</li>
</ol>
</li>
<li><ol class="first">
<li>it&#8217;s difficult to prepare test data.</li>
</ol>
</li>
</ul>
</li>
<li>Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator&#8217;s result. It has several advantages:<ul>
<li><ol class="first">
<li>numeric gradient checker only need forward operator.</li>
</ol>
</li>
<li><ol class="first">
<li>user only need to prepare the input data for forward Operator.</li>
</ol>
</li>
</ul>
</li>
</ul>
</div>
<div class="section" id="mathematical-theory">
<span id="mathematical-theory"></span><h1>Mathematical Theory<a class="headerlink" href="#mathematical-theory" title="永久链接至标题"></a></h1>
<p>The following two document from stanford has a detailed explanation of how to get numeric gradient and why it&#8217;s useful.</p>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization">Gradient checking and advanced optimization(en)</a></li>
<li class="toctree-l1"><a class="reference external" href="http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96">Gradient checking and advanced optimization(cn)</a></li>
</ul>
</div>
</div>
<div class="section" id="numeric-gradient-implementation">
<span id="numeric-gradient-implementation"></span><h1>Numeric Gradient Implementation<a class="headerlink" href="#numeric-gradient-implementation" title="永久链接至标题"></a></h1>
<div class="section" id="python-interface">
<span id="python-interface"></span><h2>Python Interface<a class="headerlink" href="#python-interface" title="永久链接至标题"></a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">get_numeric_gradient</span><span class="p">(</span><span class="n">op</span><span class="p">,</span>
<span class="n">input_values</span><span class="p">,</span>
<span class="n">output_name</span><span class="p">,</span>
<span class="n">input_to_check</span><span class="p">,</span>
<span class="n">delta</span><span class="o">=</span><span class="mf">0.005</span><span class="p">,</span>
<span class="n">local_scope</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get Numeric Gradient for an operator&#39;s input.</span>
<span class="sd"> :param op: C++ operator instance, could be an network</span>
<span class="sd"> :param input_values: The input variables. Should be an dictionary, key is</span>
<span class="sd"> variable name. Value is numpy array.</span>
<span class="sd"> :param output_name: The final output variable name.</span>
<span class="sd"> :param input_to_check: The input variable need to get gradient.</span>
<span class="sd"> :param delta: The perturbation value for numeric gradient method. The</span>
<span class="sd"> smaller delta is, the more accurate result will get. But if that delta is</span>
<span class="sd"> too small, it could occur numerical stability problem.</span>
<span class="sd"> :param local_scope: The local scope used for get_numeric_gradient.</span>
<span class="sd"> :return: The gradient array in numpy format.</span>
<span class="sd"> &quot;&quot;&quot;</span>
</pre></div>
</div>
</div>
<div class="section" id="explaination">
<span id="explaination"></span><h2>Explaination:<a class="headerlink" href="#explaination" title="永久链接至标题"></a></h2>
<ul class="simple">
<li>Why need <code class="docutils literal"><span class="pre">output_name</span></code><ul>
<li>One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.</li>
</ul>
</li>
<li>Why need <code class="docutils literal"><span class="pre">input_to_check</span></code><ul>
<li>One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So <code class="docutils literal"><span class="pre">get_numeric_gradient</span></code> is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call <code class="docutils literal"><span class="pre">get_numeric_gradient</span></code> multiple times.</li>
</ul>
</li>
</ul>
</div>
<div class="section" id="core-algorithm-implementation">
<span id="core-algorithm-implementation"></span><h2>Core Algorithm Implementation<a class="headerlink" href="#core-algorithm-implementation" title="永久链接至标题"></a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span> <span class="c1"># we only compute gradient of one element each time.</span>
<span class="c1"># we use a for loop to compute the gradient of every element.</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">tensor_size</span><span class="p">):</span>
<span class="c1"># get one input element throw it&#39;s index i.</span>
<span class="n">origin</span> <span class="o">=</span> <span class="n">tensor_to_check</span><span class="o">.</span><span class="n">get_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
<span class="c1"># add delta to it, run op and then get the sum of the result tensor.</span>
<span class="n">x_pos</span> <span class="o">=</span> <span class="n">origin</span> <span class="o">+</span> <span class="n">delta</span>
<span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">x_pos</span><span class="p">)</span>
<span class="n">y_pos</span> <span class="o">=</span> <span class="n">get_output</span><span class="p">()</span>
<span class="c1"># plus delta to this element, run op and get the sum of the result tensor.</span>
<span class="n">x_neg</span> <span class="o">=</span> <span class="n">origin</span> <span class="o">-</span> <span class="n">delta</span>
<span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">x_neg</span><span class="p">)</span>
<span class="n">y_neg</span> <span class="o">=</span> <span class="n">get_output</span><span class="p">()</span>
<span class="c1"># restore old value</span>
<span class="n">tensor_to_check</span><span class="o">.</span><span class="n">set_float_element</span><span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="n">origin</span><span class="p">)</span>
<span class="c1"># compute the gradient of this element and store it into a numpy array.</span>
<span class="n">gradient_flat</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">y_pos</span> <span class="o">-</span> <span class="n">y_neg</span><span class="p">)</span> <span class="o">/</span> <span class="n">delta</span> <span class="o">/</span> <span class="mi">2</span>
<span class="c1"># reshape the gradient result to the shape of the source tensor.</span>
<span class="k">return</span> <span class="n">gradient_flat</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="n">tensor_to_check</span><span class="o">.</span><span class="n">get_dims</span><span class="p">())</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="auto-graident-checker-framework">
<span id="auto-graident-checker-framework"></span><h1>Auto Graident Checker Framework<a class="headerlink" href="#auto-graident-checker-framework" title="永久链接至标题"></a></h1>
<p>Each Operator Kernel has three kinds of Gradient:</p>
<ul class="simple">
<li><ol class="first">
<li>Numeric Gradient</li>
</ol>
</li>
<li><ol class="first">
<li>CPU Operator Gradient</li>
</ol>
</li>
<li><ol class="first">
<li>GPU Operator Gradient(if supported)</li>
</ol>
</li>
</ul>
<p>Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.</p>
<ul class="simple">
<li><ol class="first">
<li>calculate the numeric gradient.</li>
</ol>
</li>
<li><ol class="first">
<li>calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.</li>
</ol>
</li>
<li><ol class="first">
<li>calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)</li>
</ol>
</li>
</ul>
<div class="section" id="python-interface">
<span id="id1"></span><h2>Python Interface<a class="headerlink" href="#python-interface" title="永久链接至标题"></a></h2>
<div class="highlight-python"><div class="highlight"><pre><span></span> <span class="k">def</span> <span class="nf">check_grad</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">forward_op</span><span class="p">,</span>
<span class="n">input_vars</span><span class="p">,</span>
<span class="n">inputs_to_check</span><span class="p">,</span>
<span class="n">output_name</span><span class="p">,</span>
<span class="n">no_grad_set</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span>
<span class="n">only_cpu</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
<span class="n">max_relative_error</span><span class="o">=</span><span class="mf">0.005</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :param forward_op: used to create backward_op</span>
<span class="sd"> :param input_vars: numpy value of input variable. The following</span>
<span class="sd"> computation will use these variables.</span>
<span class="sd"> :param inputs_to_check: inputs var names that should check gradient.</span>
<span class="sd"> :param output_name: output name that used to</span>
<span class="sd"> :param max_relative_error: The relative tolerance parameter.</span>
<span class="sd"> :param no_grad_set: used when create backward ops</span>
<span class="sd"> :param only_cpu: only compute and check gradient on cpu kernel.</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
</pre></div>
</div>
</div>
<div class="section" id="how-to-check-if-two-numpy-array-is-close-enough">
<span id="how-to-check-if-two-numpy-array-is-close-enough"></span><h2>How to check if two numpy array is close enough?<a class="headerlink" href="#how-to-check-if-two-numpy-array-is-close-enough" title="永久链接至标题"></a></h2>
<p>if <code class="docutils literal"><span class="pre">abs_numeric_grad</span></code> is nearly zero, then use abs error for numeric_grad, not relative</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">numeric_grad</span> <span class="o">=</span> <span class="o">...</span>
<span class="n">operator_grad</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">scope</span><span class="o">.</span><span class="n">find_var</span><span class="p">(</span><span class="n">grad_var_name</span><span class="p">(</span><span class="n">name</span><span class="p">))</span><span class="o">.</span><span class="n">get_tensor</span><span class="p">())</span>
<span class="n">abs_numeric_grad</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">numeric_grad</span><span class="p">)</span>
<span class="c1"># if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative</span>
<span class="c1"># error.</span>
<span class="n">abs_numeric_grad</span><span class="p">[</span><span class="n">abs_numeric_grad</span> <span class="o">&lt;</span> <span class="mf">1e-3</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">diff_mat</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">abs_numeric_grad</span> <span class="o">-</span> <span class="n">operator_grad</span><span class="p">)</span> <span class="o">/</span> <span class="n">abs_numeric_grad</span>
<span class="n">max_diff</span> <span class="o">=</span> <span class="n">numpy</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">diff_mat</span><span class="p">)</span>
</pre></div>
</div>
<div class="section" id="notes">
<span id="notes"></span><h3>Notes:<a class="headerlink" href="#notes" title="永久链接至标题"></a></h3>
<p>1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.</p>
</div>
<div class="section" id="refs">
<span id="refs"></span><h3>Refs:<a class="headerlink" href="#refs" title="永久链接至标题"></a></h3>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization">Gradient checking and advanced optimization(en)</a></li>
<li class="toctree-l1"><a class="reference external" href="http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96">Gradient checking and advanced optimization(cn)</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/translations.js"></script>
<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册