Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dc76e4b0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dc76e4b0
编写于
12月 14, 2018
作者:
K
Kaipeng Deng
提交者:
GitHub
12月 14, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14701 from heavengate/adaptive_pool
add adaptive pool2d and pool3d
上级
0b1c7d83
f16aa394
变更
14
展开全部
显示空白变更内容
内联
并排
Showing
14 changed file
with
1014 addition
and
317 deletion
+1014
-317
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-0
paddle/fluid/operators/math/pooling.cc
paddle/fluid/operators/math/pooling.cc
+153
-62
paddle/fluid/operators/math/pooling.cu
paddle/fluid/operators/math/pooling.cu
+268
-147
paddle/fluid/operators/math/pooling.h
paddle/fluid/operators/math/pooling.h
+22
-10
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+62
-3
paddle/fluid/operators/pool_op.h
paddle/fluid/operators/pool_op.h
+10
-6
paddle/fluid/operators/pool_with_index_op.cc
paddle/fluid/operators/pool_with_index_op.cc
+35
-3
paddle/fluid/operators/pool_with_index_op.h
paddle/fluid/operators/pool_with_index_op.h
+8
-4
paddle/fluid/operators/spp_op.h
paddle/fluid/operators/spp_op.h
+3
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+200
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+23
-0
python/paddle/fluid/tests/unittests/test_pool2d_op.py
python/paddle/fluid/tests/unittests/test_pool2d_op.py
+65
-26
python/paddle/fluid/tests/unittests/test_pool3d_op.py
python/paddle/fluid/tests/unittests/test_pool3d_op.py
+86
-35
python/paddle/fluid/tests/unittests/test_pool_max_op.py
python/paddle/fluid/tests/unittests/test_pool_max_op.py
+77
-18
未找到文件。
paddle/fluid/API.spec
浏览文件 @
dc76e4b0
...
@@ -77,6 +77,8 @@ paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'use_cudnn', 'name']
...
@@ -77,6 +77,8 @@ paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'use_cudnn', 'name']
paddle.fluid.layers.softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True))
paddle.fluid.layers.adaptive_pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None))
paddle.fluid.layers.adaptive_pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
...
...
paddle/fluid/operators/math/pooling.cc
浏览文件 @
dc76e4b0
...
@@ -31,7 +31,7 @@ class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -31,7 +31,7 @@ class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
bool
exclusive
,
framework
::
Tensor
*
output
)
{
bool
exclusive
,
bool
adaptive
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
input_width
=
input
.
dims
()[
3
];
...
@@ -51,16 +51,28 @@ class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -51,16 +51,28 @@ class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
hstart
,
hend
;
int
wstart
,
wend
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
if
(
adaptive
)
{
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
AdaptStartIndex
(
ph
,
input_height
,
output_height
);
hend
=
AdaptEndIndex
(
ph
,
input_height
,
output_height
);
}
else
{
hstart
=
ph
*
stride_height
-
padding_height
;
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
hstart
=
std
::
max
(
hstart
,
0
);
}
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
if
(
adaptive
)
{
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
AdaptStartIndex
(
pw
,
input_width
,
output_width
);
wend
=
AdaptEndIndex
(
pw
,
input_width
,
output_width
);
}
else
{
wstart
=
pw
*
stride_width
-
padding_width
;
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
}
T
ele
=
pool_process
.
initial
();
T
ele
=
pool_process
.
initial
();
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
...
@@ -68,7 +80,8 @@ class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -68,7 +80,8 @@ class Pool2dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
pool_process
.
compute
(
input_data
[
h
*
input_width
+
w
],
&
ele
);
pool_process
.
compute
(
input_data
[
h
*
input_width
+
w
],
&
ele
);
}
}
}
}
int
pool_size
=
exclusive
?
(
hend
-
hstart
)
*
(
wend
-
wstart
)
int
pool_size
=
(
exclusive
||
adaptive
)
?
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_height
*
ksize_width
;
:
ksize_height
*
ksize_width
;
pool_process
.
finalize
(
static_cast
<
T
>
(
pool_size
),
&
ele
);
pool_process
.
finalize
(
static_cast
<
T
>
(
pool_size
),
&
ele
);
output_data
[
ph
*
output_width
+
pw
]
=
ele
;
output_data
[
ph
*
output_width
+
pw
]
=
ele
;
...
@@ -94,7 +107,7 @@ class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -94,7 +107,7 @@ class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_grad_process
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_grad_process
,
bool
exclusive
,
framework
::
Tensor
*
input_grad
)
{
bool
exclusive
,
bool
adaptive
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
input_width
=
input
.
dims
()[
3
];
...
@@ -115,17 +128,30 @@ class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -115,17 +128,30 @@ class Pool2dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
hstart
,
hend
;
int
wstart
,
wend
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
if
(
adaptive
)
{
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
AdaptStartIndex
(
ph
,
input_height
,
output_height
);
hend
=
AdaptEndIndex
(
ph
,
input_height
,
output_height
);
}
else
{
hstart
=
ph
*
stride_height
-
padding_height
;
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
hstart
=
std
::
max
(
hstart
,
0
);
}
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
if
(
adaptive
)
{
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
AdaptStartIndex
(
pw
,
input_width
,
output_width
);
wend
=
AdaptEndIndex
(
pw
,
input_width
,
output_width
);
}
else
{
wstart
=
pw
*
stride_width
-
padding_width
;
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
int
pool_size
=
exclusive
?
(
hend
-
hstart
)
*
(
wend
-
wstart
)
}
int
pool_size
=
(
exclusive
||
adaptive
)
?
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_height
*
ksize_width
;
:
ksize_height
*
ksize_width
;
float
scale
=
1.0
/
pool_size
;
float
scale
=
1.0
/
pool_size
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
...
@@ -251,7 +277,7 @@ class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -251,7 +277,7 @@ class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_process
,
bool
exclusive
,
framework
::
Tensor
*
output
)
{
bool
exclusive
,
bool
adaptive
,
framework
::
Tensor
*
output
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
const
int
input_height
=
input
.
dims
()[
3
];
...
@@ -276,20 +302,38 @@ class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -276,20 +302,38 @@ class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
dstart
,
dend
;
int
hstart
,
hend
;
int
wstart
,
wend
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
int
dstart
=
pd
*
stride_depth
-
padding_depth
;
if
(
adaptive
)
{
int
dend
=
std
::
min
(
dstart
+
ksize_depth
,
input_depth
);
dstart
=
AdaptStartIndex
(
pd
,
input_depth
,
output_depth
);
dend
=
AdaptEndIndex
(
pd
,
input_depth
,
output_depth
);
}
else
{
dstart
=
pd
*
stride_depth
-
padding_depth
;
dend
=
std
::
min
(
dstart
+
ksize_depth
,
input_depth
);
dstart
=
std
::
max
(
dstart
,
0
);
dstart
=
std
::
max
(
dstart
,
0
);
}
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
if
(
adaptive
)
{
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
AdaptStartIndex
(
ph
,
input_height
,
output_height
);
hend
=
AdaptEndIndex
(
ph
,
input_height
,
output_height
);
}
else
{
hstart
=
ph
*
stride_height
-
padding_height
;
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
hstart
=
std
::
max
(
hstart
,
0
);
}
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
if
(
adaptive
)
{
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
AdaptStartIndex
(
pw
,
input_width
,
output_width
);
wend
=
AdaptEndIndex
(
pw
,
input_width
,
output_width
);
}
else
{
wstart
=
pw
*
stride_width
-
padding_width
;
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
}
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
T
ele
=
pool_process
.
initial
();
T
ele
=
pool_process
.
initial
();
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
...
@@ -302,7 +346,7 @@ class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -302,7 +346,7 @@ class Pool3dFunctor<platform::CPUDeviceContext, PoolProcess, T> {
}
}
}
}
int
pool_size
=
int
pool_size
=
exclusive
(
exclusive
||
adaptive
)
?
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
)
?
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_depth
*
ksize_height
*
ksize_width
;
:
ksize_depth
*
ksize_height
*
ksize_width
;
pool_process
.
finalize
(
static_cast
<
T
>
(
pool_size
),
&
ele
);
pool_process
.
finalize
(
static_cast
<
T
>
(
pool_size
),
&
ele
);
...
@@ -330,7 +374,7 @@ class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -330,7 +374,7 @@ class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_grad_process
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_grad_process
,
bool
exclusive
,
framework
::
Tensor
*
input_grad
)
{
bool
exclusive
,
bool
adaptive
,
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
const
int
input_height
=
input
.
dims
()[
3
];
...
@@ -356,24 +400,41 @@ class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
...
@@ -356,24 +400,41 @@ class Pool3dGradFunctor<platform::CPUDeviceContext, PoolProcess, T> {
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
dstart
,
dend
;
int
hstart
,
hend
;
int
wstart
,
wend
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
int
dstart
=
pd
*
stride_depth
-
padding_depth
;
if
(
adaptive
)
{
int
dend
=
std
::
min
(
dstart
+
ksize_depth
,
input_depth
);
dstart
=
AdaptStartIndex
(
pd
,
input_depth
,
output_depth
);
dend
=
AdaptEndIndex
(
pd
,
input_depth
,
output_depth
);
}
else
{
dstart
=
pd
*
stride_depth
-
padding_depth
;
dend
=
std
::
min
(
dstart
+
ksize_depth
,
input_depth
);
dstart
=
std
::
max
(
dstart
,
0
);
dstart
=
std
::
max
(
dstart
,
0
);
}
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
if
(
adaptive
)
{
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
AdaptStartIndex
(
ph
,
input_height
,
output_height
);
hend
=
AdaptEndIndex
(
ph
,
input_height
,
output_height
);
}
else
{
hstart
=
ph
*
stride_height
-
padding_height
;
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
hstart
=
std
::
max
(
hstart
,
0
);
}
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
if
(
adaptive
)
{
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
AdaptStartIndex
(
pw
,
input_width
,
output_width
);
wend
=
AdaptEndIndex
(
pw
,
input_width
,
output_width
);
}
else
{
wstart
=
pw
*
stride_width
-
padding_width
;
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
}
int
pool_size
=
int
pool_size
=
exclusive
(
exclusive
||
adaptive
)
?
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
)
?
(
dend
-
dstart
)
*
(
hend
-
hstart
)
*
(
wend
-
wstart
)
:
ksize_depth
*
ksize_height
*
ksize_width
;
:
ksize_depth
*
ksize_height
*
ksize_width
;
float
scale
=
1.0
/
pool_size
;
float
scale
=
1.0
/
pool_size
;
...
@@ -517,8 +578,8 @@ class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
...
@@ -517,8 +578,8 @@ class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
const
std
::
vector
<
int
>&
paddings
,
bool
adaptive
,
framework
::
Tensor
*
mask
)
{
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
input_width
=
input
.
dims
()[
3
];
...
@@ -538,16 +599,28 @@ class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
...
@@ -538,16 +599,28 @@ class MaxPool2dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
T1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
T2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
int
hstart
,
hend
;
int
wstart
,
wend
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
if
(
adaptive
)
{
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
AdaptStartIndex
(
ph
,
input_height
,
output_height
);
hend
=
AdaptEndIndex
(
ph
,
input_height
,
output_height
);
}
else
{
hstart
=
ph
*
stride_height
-
padding_height
;
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
hstart
=
std
::
max
(
hstart
,
0
);
}
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
if
(
adaptive
)
{
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
AdaptStartIndex
(
pw
,
input_width
,
output_width
);
wend
=
AdaptEndIndex
(
pw
,
input_width
,
output_width
);
}
else
{
wstart
=
pw
*
stride_width
-
padding_width
;
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
}
T1
ele
=
static_cast
<
T1
>
(
-
FLT_MAX
);
T1
ele
=
static_cast
<
T1
>
(
-
FLT_MAX
);
int
index
=
-
1
;
int
index
=
-
1
;
...
@@ -584,7 +657,7 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
...
@@ -584,7 +657,7 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
const
std
::
vector
<
int
>&
ksize
,
const
framework
::
Tensor
&
mask
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
paddings
,
bool
adaptive
,
framework
::
Tensor
*
input_grad
)
{
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
input_height
=
input_grad
->
dims
()[
2
];
const
int
input_height
=
input_grad
->
dims
()[
2
];
...
@@ -637,8 +710,8 @@ class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
...
@@ -637,8 +710,8 @@ class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
const
std
::
vector
<
int
>&
paddings
,
bool
adaptive
,
framework
::
Tensor
*
mask
)
{
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
const
int
input_height
=
input
.
dims
()[
3
];
...
@@ -663,20 +736,38 @@ class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
...
@@ -663,20 +736,38 @@ class MaxPool3dWithIndexFunctor<platform::CPUDeviceContext, T1, T2> {
T1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
T2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
int
dstart
,
dend
;
int
hstart
,
hend
;
int
wstart
,
wend
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
int
dstart
=
pd
*
stride_depth
-
padding_depth
;
if
(
adaptive
)
{
int
dend
=
std
::
min
(
dstart
+
ksize_depth
,
input_depth
);
dstart
=
AdaptStartIndex
(
pd
,
input_depth
,
output_depth
);
dend
=
AdaptEndIndex
(
pd
,
input_depth
,
output_depth
);
}
else
{
dstart
=
pd
*
stride_depth
-
padding_depth
;
dend
=
std
::
min
(
dstart
+
ksize_depth
,
input_depth
);
dstart
=
std
::
max
(
dstart
,
0
);
dstart
=
std
::
max
(
dstart
,
0
);
}
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
if
(
adaptive
)
{
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
AdaptStartIndex
(
ph
,
input_height
,
output_height
);
hend
=
AdaptEndIndex
(
ph
,
input_height
,
output_height
);
}
else
{
hstart
=
ph
*
stride_height
-
padding_height
;
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
hstart
=
std
::
max
(
hstart
,
0
);
}
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
if
(
adaptive
)
{
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
AdaptStartIndex
(
pw
,
input_width
,
output_width
);
wend
=
AdaptEndIndex
(
pw
,
input_width
,
output_width
);
}
else
{
wstart
=
pw
*
stride_width
-
padding_width
;
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
wstart
=
std
::
max
(
wstart
,
0
);
}
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
T1
ele
=
static_cast
<
T1
>
(
-
FLT_MAX
);
T1
ele
=
static_cast
<
T1
>
(
-
FLT_MAX
);
...
@@ -718,7 +809,7 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
...
@@ -718,7 +809,7 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUDeviceContext, T1, T2> {
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
const
std
::
vector
<
int
>&
ksize
,
const
framework
::
Tensor
&
mask
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
paddings
,
bool
adaptive
,
framework
::
Tensor
*
input_grad
)
{
framework
::
Tensor
*
input_grad
)
{
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
batch_size
=
input_grad
->
dims
()[
0
];
const
int
input_depth
=
input_grad
->
dims
()[
2
];
const
int
input_depth
=
input_grad
->
dims
()[
2
];
...
...
paddle/fluid/operators/math/pooling.cu
浏览文件 @
dc76e4b0
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/pooling.h
浏览文件 @
dc76e4b0
...
@@ -68,6 +68,18 @@ class AvgPoolGrad {
...
@@ -68,6 +68,18 @@ class AvgPoolGrad {
}
}
};
};
/* used for adaptive pool to calculate start and end index of each divided grid
*/
HOSTDEVICE
inline
int
AdaptStartIndex
(
int
ph
,
int
input_size
,
int
output_size
)
{
return
static_cast
<
int
>
(
floor
(
static_cast
<
double
>
(
ph
*
input_size
)
/
output_size
));
}
HOSTDEVICE
inline
int
AdaptEndIndex
(
int
ph
,
int
input_size
,
int
output_size
)
{
return
static_cast
<
int
>
(
ceil
(
static_cast
<
double
>
((
ph
+
1
)
*
input_size
)
/
output_size
));
}
/*
/*
* \brief Getting pooling results, and calculating gradient.
* \brief Getting pooling results, and calculating gradient.
*
*
...
@@ -102,7 +114,7 @@ class Pool2dFunctor {
...
@@ -102,7 +114,7 @@ class Pool2dFunctor {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
bool
exclusive
,
framework
::
Tensor
*
output
);
bool
exclusive
,
bool
adaptive
,
framework
::
Tensor
*
output
);
};
};
template
<
typename
DeviceContext
,
typename
PoolProcess
,
typename
T
>
template
<
typename
DeviceContext
,
typename
PoolProcess
,
typename
T
>
...
@@ -114,7 +126,7 @@ class Pool2dGradFunctor {
...
@@ -114,7 +126,7 @@ class Pool2dGradFunctor {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
bool
exclusive
,
framework
::
Tensor
*
input_grad
);
bool
exclusive
,
bool
adaptive
,
framework
::
Tensor
*
input_grad
);
};
};
template
<
typename
DeviceContext
,
class
T
>
template
<
typename
DeviceContext
,
class
T
>
...
@@ -136,7 +148,7 @@ class Pool3dFunctor {
...
@@ -136,7 +148,7 @@ class Pool3dFunctor {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
bool
exclusive
,
framework
::
Tensor
*
output
);
bool
exclusive
,
bool
adaptive
,
framework
::
Tensor
*
output
);
};
};
template
<
typename
DeviceContext
,
typename
PoolProcess
,
typename
T
>
template
<
typename
DeviceContext
,
typename
PoolProcess
,
typename
T
>
...
@@ -148,7 +160,7 @@ class Pool3dGradFunctor {
...
@@ -148,7 +160,7 @@ class Pool3dGradFunctor {
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
const
std
::
vector
<
int
>&
paddings
,
PoolProcess
pool_compute
,
bool
exclusive
,
framework
::
Tensor
*
input_grad
);
bool
exclusive
,
bool
adaptive
,
framework
::
Tensor
*
input_grad
);
};
};
template
<
typename
DeviceContext
,
class
T
>
template
<
typename
DeviceContext
,
class
T
>
...
@@ -176,8 +188,8 @@ class MaxPool2dWithIndexFunctor {
...
@@ -176,8 +188,8 @@ class MaxPool2dWithIndexFunctor {
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
const
std
::
vector
<
int
>&
paddings
,
bool
adaptive
,
framework
::
Tensor
*
mask
);
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
);
};
};
template
<
typename
DeviceContext
,
typename
T1
,
typename
T2
>
template
<
typename
DeviceContext
,
typename
T1
,
typename
T2
>
...
@@ -187,7 +199,7 @@ class MaxPool2dWithIndexGradFunctor {
...
@@ -187,7 +199,7 @@ class MaxPool2dWithIndexGradFunctor {
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
const
std
::
vector
<
int
>&
ksize
,
const
framework
::
Tensor
&
mask
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
paddings
,
bool
adaptive
,
framework
::
Tensor
*
input_grad
);
framework
::
Tensor
*
input_grad
);
};
};
...
@@ -197,8 +209,8 @@ class MaxPool3dWithIndexFunctor {
...
@@ -197,8 +209,8 @@ class MaxPool3dWithIndexFunctor {
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
framework
::
Tensor
*
output
,
const
std
::
vector
<
int
>&
paddings
,
bool
adaptive
,
framework
::
Tensor
*
mask
);
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
);
};
};
template
<
typename
DeviceContext
,
typename
T1
,
typename
T2
>
template
<
typename
DeviceContext
,
typename
T1
,
typename
T2
>
...
@@ -208,7 +220,7 @@ class MaxPool3dWithIndexGradFunctor {
...
@@ -208,7 +220,7 @@ class MaxPool3dWithIndexGradFunctor {
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
output_grad
,
const
framework
::
Tensor
&
mask
,
const
std
::
vector
<
int
>&
ksize
,
const
framework
::
Tensor
&
mask
,
const
std
::
vector
<
int
>&
ksize
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
const
std
::
vector
<
int
>&
paddings
,
bool
adaptive
,
framework
::
Tensor
*
input_grad
);
framework
::
Tensor
*
input_grad
);
};
};
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
dc76e4b0
...
@@ -52,6 +52,7 @@ void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -52,6 +52,7 @@ void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
ceil_mode
=
ctx
->
Attrs
().
Get
<
bool
>
(
"ceil_mode"
);
bool
ceil_mode
=
ctx
->
Attrs
().
Get
<
bool
>
(
"ceil_mode"
);
bool
adaptive
=
ctx
->
Attrs
().
Get
<
bool
>
(
"adaptive"
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
"Pooling intput should be 4-D or 5-D tensor."
);
"Pooling intput should be 4-D or 5-D tensor."
);
...
@@ -72,9 +73,13 @@ void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
...
@@ -72,9 +73,13 @@ void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
"Paddings size and pooling size should be the same."
);
"Paddings size and pooling size should be the same."
);
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
in_x_dims
[
1
]});
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
in_x_dims
[
1
]});
if
(
adaptive
)
{
output_shape
.
insert
(
output_shape
.
end
(),
ksize
.
begin
(),
ksize
.
end
());
}
else
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
PoolOutputSize
(
in_x_dims
[
i
+
2
],
ksize
[
i
],
output_shape
.
push_back
(
PoolOutputSize
(
paddings
[
i
],
strides
[
i
],
ceil_mode
));
in_x_dims
[
i
+
2
],
ksize
[
i
],
paddings
[
i
],
strides
[
i
],
ceil_mode
));
}
}
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
ShareLoD
(
"X"
,
"Out"
);
ctx
->
ShareLoD
(
"X"
,
"Out"
);
...
@@ -186,6 +191,14 @@ void Pool2dOpMaker::Make() {
...
@@ -186,6 +191,14 @@ void Pool2dOpMaker::Make() {
"averaging calculating, otherwise, include the zero-padding. Note, it "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True."
)
"is only used when pooling_type is avg. The defalut is True."
)
.
SetDefault
(
true
);
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool, default False) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
AddAttr
<
bool
>
(
"use_cudnn"
,
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
...
@@ -264,6 +277,14 @@ Example:
...
@@ -264,6 +277,14 @@ Example:
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
$$
For adaptive = true:
$$
hstart = floor(i * H_{in} / H_{out})
hend = ceil((i + 1) * H_{in} / H_{out})
wstart = floor(j * W_{in} / W_{out})
wend = ceil((j + 1) * W_{in} / W_{out})
Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
$$
)DOC"
);
)DOC"
);
}
}
...
@@ -325,6 +346,13 @@ void Pool3dOpMaker::Make() {
...
@@ -325,6 +346,13 @@ void Pool3dOpMaker::Make() {
"averaging calculating, otherwise, include the zero-padding. Note, it "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The defalut is True."
)
"is only used when pooling_type is avg. The defalut is True."
)
.
SetDefault
(
true
);
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool, default False) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
AddAttr
<
bool
>
(
"use_cudnn"
,
"use_cudnn"
,
...
@@ -376,6 +404,37 @@ Example:
...
@@ -376,6 +404,37 @@ Example:
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
$$
$$
For exclusive = true:
$$
dstart = i * strides[0] - paddings[0]
dend = dstart + ksize[0]
hstart = j * strides[1] - paddings[1]
hend = hstart + ksize[1]
wstart = k * strides[2] - paddings[2]
wend = wstart + ksize[2]
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
$$
For exclusive = false:
$$
dstart = max(0, i * strides[0] - paddings[0])
dend = min(D, dstart + ksize[0])
hstart = max(0, j * strides[1] - paddings[1])
hend = min(H, hstart + ksize[1])
wstart = max(0, k * strides[2] - paddings[2])
wend = min(W, wstart + ksize[2])
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
$$
For adaptive = true:
$$
dstart = floor(i * D_{in} / D_{out})
dend = ceil((i + 1) * D_{in} / D_{out})
hstart = floor(j * H_{in} / H_{out})
hend = ceil((j + 1) * H_{in} / H_{out})
wstart = floor(k * W_{in} / W_{out})
wend = ceil((k + 1) * W_{in} / W_{out})
Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
$$
)DOC"
);
)DOC"
);
}
}
...
...
paddle/fluid/operators/pool_op.h
浏览文件 @
dc76e4b0
...
@@ -70,6 +70,7 @@ class PoolKernel : public framework::OpKernel<T> {
...
@@ -70,6 +70,7 @@ class PoolKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
exclusive
=
context
.
Attr
<
bool
>
(
"exclusive"
);
bool
exclusive
=
context
.
Attr
<
bool
>
(
"exclusive"
);
bool
adaptive
=
context
.
Attr
<
bool
>
(
"adaptive"
);
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
paddings
[
i
]
=
0
;
...
@@ -85,7 +86,7 @@ class PoolKernel : public framework::OpKernel<T> {
...
@@ -85,7 +86,7 @@ class PoolKernel : public framework::OpKernel<T> {
pool2d_forward
;
pool2d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool2d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
pool2d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
true
,
out
);
true
,
false
,
out
);
}
else
if
(
pooling_type
==
"avg"
)
{
}
else
if
(
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool2dFunctor
<
paddle
::
operators
::
math
::
Pool2dFunctor
<
...
@@ -93,7 +94,7 @@ class PoolKernel : public framework::OpKernel<T> {
...
@@ -93,7 +94,7 @@ class PoolKernel : public framework::OpKernel<T> {
pool2d_forward
;
pool2d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool2d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
pool2d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
exclusive
,
out
);
exclusive
,
adaptive
,
out
);
}
}
}
break
;
}
break
;
case
3
:
{
case
3
:
{
...
@@ -103,14 +104,14 @@ class PoolKernel : public framework::OpKernel<T> {
...
@@ -103,14 +104,14 @@ class PoolKernel : public framework::OpKernel<T> {
pool3d_forward
;
pool3d_forward
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
paddle
::
operators
::
math
::
MaxPool
<
T
>
pool_process
;
pool3d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
pool3d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
true
,
out
);
true
,
false
,
out
);
}
else
if
(
pooling_type
==
"avg"
)
{
}
else
if
(
pooling_type
==
"avg"
)
{
paddle
::
operators
::
math
::
Pool3dFunctor
<
paddle
::
operators
::
math
::
Pool3dFunctor
<
DeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
DeviceContext
,
paddle
::
operators
::
math
::
AvgPool
<
T
>
,
T
>
pool3d_forward
;
pool3d_forward
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
paddle
::
operators
::
math
::
AvgPool
<
T
>
pool_process
;
pool3d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
pool3d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
pool_process
,
exclusive
,
out
);
exclusive
,
adaptive
,
out
);
}
}
}
break
;
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
...
@@ -133,6 +134,7 @@ class PoolGradKernel : public framework::OpKernel<T> {
...
@@ -133,6 +134,7 @@ class PoolGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
exclusive
=
context
.
Attr
<
bool
>
(
"exclusive"
);
bool
exclusive
=
context
.
Attr
<
bool
>
(
"exclusive"
);
bool
adaptive
=
context
.
Attr
<
bool
>
(
"adaptive"
);
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
...
@@ -159,7 +161,8 @@ class PoolGradKernel : public framework::OpKernel<T> {
...
@@ -159,7 +161,8 @@ class PoolGradKernel : public framework::OpKernel<T> {
pool2d_backward
;
pool2d_backward
;
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
pool_process
;
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
pool_process
;
pool2d_backward
(
dev_ctx
,
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
pool2d_backward
(
dev_ctx
,
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
exclusive
,
in_x_grad
);
paddings
,
pool_process
,
exclusive
,
adaptive
,
in_x_grad
);
}
}
}
break
;
}
break
;
case
3
:
{
case
3
:
{
...
@@ -174,7 +177,8 @@ class PoolGradKernel : public framework::OpKernel<T> {
...
@@ -174,7 +177,8 @@ class PoolGradKernel : public framework::OpKernel<T> {
pool3d_backward
;
pool3d_backward
;
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
pool_process
;
paddle
::
operators
::
math
::
AvgPoolGrad
<
T
>
pool_process
;
pool3d_backward
(
dev_ctx
,
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
pool3d_backward
(
dev_ctx
,
*
in_x
,
*
out
,
*
out_grad
,
ksize
,
strides
,
paddings
,
pool_process
,
exclusive
,
in_x_grad
);
paddings
,
pool_process
,
exclusive
,
adaptive
,
in_x_grad
);
}
}
}
break
;
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
...
...
paddle/fluid/operators/pool_with_index_op.cc
浏览文件 @
dc76e4b0
...
@@ -40,6 +40,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
...
@@ -40,6 +40,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
adaptive
=
ctx
->
Attrs
().
Get
<
bool
>
(
"adaptive"
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
"Pooling intput should be 4-D or 5-D tensor."
);
"Pooling intput should be 4-D or 5-D tensor."
);
...
@@ -60,10 +61,14 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
...
@@ -60,10 +61,14 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
"Paddings size and pooling size should be the same."
);
"Paddings size and pooling size should be the same."
);
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
in_x_dims
[
1
]});
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
in_x_dims
[
1
]});
if
(
adaptive
)
{
output_shape
.
insert
(
output_shape
.
end
(),
ksize
.
begin
(),
ksize
.
end
());
}
else
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
MaxPoolOutputSize
(
in_x_dims
[
i
+
2
],
ksize
[
i
],
output_shape
.
push_back
(
MaxPoolOutputSize
(
in_x_dims
[
i
+
2
],
ksize
[
i
],
paddings
[
i
],
strides
[
i
]));
paddings
[
i
],
strides
[
i
]));
}
}
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Mask"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Mask"
,
framework
::
make_ddim
(
output_shape
));
}
}
...
@@ -133,6 +138,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -133,6 +138,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default:false) Whether to use the global pooling. "
"(bool, default:false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings will be ignored."
)
"If global_pooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool, default False) When true, will perform adaptive pooling "
"instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
"(vector<int>, default {1, 1}), strides(height, "
"width) of pooling operator."
)
"width) of pooling operator."
)
...
@@ -170,6 +183,12 @@ Example:
...
@@ -170,6 +183,12 @@ Example:
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$
$$
For adaptive = true:
$$
H_{out} = ksize[0] W_{out} = ksize[1]
$$
)DOC"
);
)DOC"
);
}
}
};
};
...
@@ -209,6 +228,14 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -209,6 +228,14 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) Whether to use the global pooling. "
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings will be ignored."
)
"If global_pooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool, default False) When true, will perform adaptive pooling "
"instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1,1,1}), strides(depth, "
"(vector<int>, default {1,1,1}), strides(depth, "
"height, width) of pooling operator."
)
"height, width) of pooling operator."
)
...
@@ -247,6 +274,11 @@ Example:
...
@@ -247,6 +274,11 @@ Example:
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
$$
For adaptive = true:
$$
D_{out} = ksize[0] H_{out} = ksize[1] W_{out} = ksize[2]
$$
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/fluid/operators/pool_with_index_op.h
浏览文件 @
dc76e4b0
...
@@ -36,6 +36,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T1> {
...
@@ -36,6 +36,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T1> {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
adaptive
=
context
.
Attr
<
bool
>
(
"adaptive"
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
...
@@ -50,13 +51,15 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T1> {
...
@@ -50,13 +51,15 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T1> {
paddle
::
operators
::
math
::
MaxPool2dWithIndexFunctor
<
DeviceContext
,
T1
,
paddle
::
operators
::
math
::
MaxPool2dWithIndexFunctor
<
DeviceContext
,
T1
,
T2
>
T2
>
pool2d_forward
;
pool2d_forward
;
pool2d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
out
,
mask
);
pool2d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
adaptive
,
out
,
mask
);
}
break
;
}
break
;
case
3
:
{
case
3
:
{
paddle
::
operators
::
math
::
MaxPool3dWithIndexFunctor
<
DeviceContext
,
T1
,
paddle
::
operators
::
math
::
MaxPool3dWithIndexFunctor
<
DeviceContext
,
T1
,
T2
>
T2
>
pool3d_forward
;
pool3d_forward
;
pool3d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
out
,
mask
);
pool3d_forward
(
dev_ctx
,
*
in_x
,
ksize
,
strides
,
paddings
,
adaptive
,
out
,
mask
);
}
break
;
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
}
}
...
@@ -75,6 +78,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T1> {
...
@@ -75,6 +78,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T1> {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
adaptive
=
context
.
Attr
<
bool
>
(
"adaptive"
);
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global_pooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
paddings
[
i
]
=
0
;
...
@@ -93,14 +97,14 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T1> {
...
@@ -93,14 +97,14 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T1> {
T1
,
T2
>
T1
,
T2
>
pool2d_backward
;
pool2d_backward
;
pool2d_backward
(
device_ctx
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
pool2d_backward
(
device_ctx
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
,
in_x_grad
);
paddings
,
adaptive
,
in_x_grad
);
}
break
;
}
break
;
case
3
:
{
case
3
:
{
paddle
::
operators
::
math
::
MaxPool3dWithIndexGradFunctor
<
DeviceContext
,
paddle
::
operators
::
math
::
MaxPool3dWithIndexGradFunctor
<
DeviceContext
,
T1
,
T2
>
T1
,
T2
>
pool3d_backward
;
pool3d_backward
;
pool3d_backward
(
device_ctx
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
pool3d_backward
(
device_ctx
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
,
in_x_grad
);
paddings
,
adaptive
,
in_x_grad
);
}
break
;
}
break
;
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
default:
{
PADDLE_THROW
(
"Pool op only supports 2D and 3D input."
);
}
}
}
...
...
paddle/fluid/operators/spp_op.h
浏览文件 @
dc76e4b0
...
@@ -56,13 +56,13 @@ class SppKernel : public framework::OpKernel<T> {
...
@@ -56,13 +56,13 @@ class SppKernel : public framework::OpKernel<T> {
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
math
::
MaxPool
<
T
>
max_process
;
math
::
MaxPool
<
T
>
max_process
;
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
kernel_size
,
strides
,
paddings
,
max_process
,
true
,
kernel_size
,
strides
,
paddings
,
max_process
,
true
,
false
,
&
out_level
);
&
out_level
);
}
else
if
(
pooling_type
==
"avg"
)
{
}
else
if
(
pooling_type
==
"avg"
)
{
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
AvgPool
<
T
>
,
T
>
pool_forward
;
math
::
Pool2dFunctor
<
DeviceContext
,
math
::
AvgPool
<
T
>
,
T
>
pool_forward
;
math
::
AvgPool
<
T
>
avg_process
;
math
::
AvgPool
<
T
>
avg_process
;
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
pool_forward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
kernel_size
,
strides
,
paddings
,
avg_process
,
true
,
kernel_size
,
strides
,
paddings
,
avg_process
,
true
,
false
,
&
out_level
);
&
out_level
);
}
}
// flatten pooling output shape
// flatten pooling output shape
...
@@ -156,7 +156,7 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -156,7 +156,7 @@ class SppGradKernel : public framework::OpKernel<T> {
math
::
AvgPoolGrad
<
T
>
avg_process
;
math
::
AvgPoolGrad
<
T
>
avg_process
;
pool_backward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
pool_backward
(
context
.
template
device_context
<
DeviceContext
>(),
*
in_x
,
*&
out_level
,
*&
outgrad_level
,
kernel_size
,
strides
,
*&
out_level
,
*&
outgrad_level
,
kernel_size
,
strides
,
paddings
,
avg_process
,
true
,
in_x_grad
);
paddings
,
avg_process
,
true
,
false
,
in_x_grad
);
}
}
}
}
}
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
dc76e4b0
...
@@ -52,6 +52,8 @@ __all__ = [
...
@@ -52,6 +52,8 @@ __all__ = [
'softmax'
,
'softmax'
,
'pool2d'
,
'pool2d'
,
'pool3d'
,
'pool3d'
,
'adaptive_pool2d'
,
'adaptive_pool3d'
,
'batch_norm'
,
'batch_norm'
,
'beam_search_decode'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'conv2d_transpose'
,
...
@@ -2500,6 +2502,204 @@ def pool3d(input,
...
@@ -2500,6 +2502,204 @@ def pool3d(input,
return
pool_out
return
pool_out
@
templatedoc
(
op_type
=
"pool2d"
)
def
adaptive_pool2d
(
input
,
pool_size
,
pool_type
=
"max"
,
require_index
=
False
,
name
=
None
):
"""
${comment}
Args:
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCHW, where N is batch size, C is
the number of channels, H is the height of the
feature, and W is the width of the feature.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
pool_type: ${pooling_type_comment}
require_index (bool): If true, the index of max pooling point along with outputs.
it cannot be set in average pooling type.
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
Variable: The pooling result.
Raises:
ValueError: 'pool_type' is not 'max' nor 'avg'.
ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
ValueError: 'pool_size' should be a list or tuple with length as 2.
Examples:
.. code-block:: python
# suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
# output shape is [N, C, m, n], adaptive pool divide H and W dimentions
# of input data into m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive average pool performs calculations as follow:
#
# for i in range(m):
# for j in range(n):
# hstart = floor(i * H / m)
# hend = ceil((i + 1) * H / m)
# wstart = floor(i * W / n)
# wend = ceil((i + 1) * W / n)
# output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
#
data = fluid.layers.data(
name='data', shape=[3, 32, 32], dtype='float32')
pool_out = fluid.layers.adaptive_pool2d(
input=data,
pool_size=[3, 3],
pool_type='avg')
"""
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'."
,
str
(
pool_type
))
if
pool_type
==
"avg"
and
require_index
:
raise
ValueError
(
"invalid setting 'require_index' true when 'pool_type' is 'avg'."
)
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
if
not
_is_list_or_tuple_
(
pool_size
)
or
len
(
pool_size
)
!=
2
:
raise
ValueError
(
"'pool_size' should be a list or tuple with length as 2."
)
if
pool_type
==
"max"
:
l_type
=
'max_pool2d_with_index'
else
:
l_type
=
"pool2d"
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
outputs
=
{
"Out"
:
pool_out
}
if
pool_type
==
"max"
:
mask
=
helper
.
create_variable_for_type_inference
(
dtype
)
outputs
[
"Mask"
]
=
mask
helper
.
append_op
(
type
=
l_type
,
inputs
=
{
"X"
:
input
},
outputs
=
outputs
,
attrs
=
{
"pooling_type"
:
pool_type
,
"ksize"
:
pool_size
,
"adaptive"
:
True
,
})
return
(
pool_out
,
mask
)
if
require_index
else
pool_out
@
templatedoc
(
op_type
=
"pool3d"
)
def
adaptive_pool3d
(
input
,
pool_size
,
pool_type
=
"max"
,
require_index
=
False
,
name
=
None
):
"""
${comment}
Args:
input (Variable): The input tensor of pooling operator. The format of
input tensor is NCHW, where N is batch size, C is
the number of channels, H is the height of the
feature, and W is the width of the feature.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (Depth, Height, Width).
pool_type: ${pooling_type_comment}
require_index (bool): If true, the index of max pooling point along with outputs.
it cannot be set in average pooling type.
name (str|None): A name for this layer(optional). If set None, the
layer will be named automatically.
Returns:
Variable: The pooling result.
Raises:
ValueError: 'pool_type' is not 'max' nor 'avg'.
ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
ValueError: 'pool_size' should be a list or tuple with length as 2.
Examples:
.. code-block:: python
# suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
# output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
# of input data into l * m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive average pool performs calculations as follow:
#
# for i in range(l):
# for j in range(m):
# for k in range(n):
# dstart = floor(i * D / l)
# dend = ceil((i + 1) * D / l)
# hstart = floor(j * H / m)
# hend = ceil((j + 1) * H / m)
# wstart = floor(k * W / n)
# wend = ceil((k + 1) * W / n)
# output[:, :, i, j, k] =
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
#
data = fluid.layers.data(
name='data', shape=[3, 32, 32], dtype='float32')
pool_out, mask = fluid.layers.adaptive_pool3d(
input=data,
pool_size=[3, 3],
pool_type='avg')
"""
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown pool_type: '%s'. It can only be 'max' or 'avg'."
,
str
(
pool_type
))
if
pool_type
==
"avg"
and
require_index
:
raise
ValueError
(
"invalid setting 'require_index' true when 'pool_type' is 'avg'."
)
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
if
not
_is_list_or_tuple_
(
pool_size
)
or
len
(
pool_size
)
!=
3
:
raise
ValueError
(
"'pool_size' should be a list or tuple with length as 3."
)
if
pool_type
==
"max"
:
l_type
=
'max_pool3d_with_index'
else
:
l_type
=
"pool3d"
helper
=
LayerHelper
(
l_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
outputs
=
{
"Out"
:
pool_out
}
if
pool_type
==
"max"
:
mask
=
helper
.
create_variable_for_type_inference
(
dtype
)
outputs
[
"Mask"
]
=
mask
helper
.
append_op
(
type
=
l_type
,
inputs
=
{
"X"
:
input
},
outputs
=
outputs
,
attrs
=
{
"pooling_type"
:
pool_type
,
"ksize"
:
pool_size
,
"adaptive"
:
True
,
})
return
(
pool_out
,
mask
)
if
require_index
else
pool_out
def
batch_norm
(
input
,
def
batch_norm
(
input
,
act
=
None
,
act
=
None
,
is_test
=
False
,
is_test
=
False
,
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
dc76e4b0
...
@@ -233,6 +233,29 @@ class TestBook(unittest.TestCase):
...
@@ -233,6 +233,29 @@ class TestBook(unittest.TestCase):
pool_stride
=
[
1
,
2
],
pool_stride
=
[
1
,
2
],
pool_padding
=
(
2
,
1
)))
pool_padding
=
(
2
,
1
)))
def
test_adaptive_pool2d
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
self
.
assertIsNotNone
(
layers
.
adaptive_pool2d
(
x
,
[
3
,
3
],
pool_type
=
'avg'
))
pool
,
mask
=
layers
.
adaptive_pool2d
(
x
,
[
3
,
3
],
require_index
=
True
)
self
.
assertIsNotNone
(
pool
)
self
.
assertIsNotNone
(
mask
)
def
test_adaptive_pool3d
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
3
,
244
,
224
,
224
],
dtype
=
'float32'
)
self
.
assertIsNotNone
(
layers
.
adaptive_pool3d
(
x
,
[
3
,
3
,
3
],
pool_type
=
'avg'
))
pool
,
mask
=
layers
.
adaptive_pool3d
(
x
,
[
3
,
3
,
3
],
require_index
=
True
)
self
.
assertIsNotNone
(
pool
)
self
.
assertIsNotNone
(
mask
)
def
test_lstm_unit
(
self
):
def
test_lstm_unit
(
self
):
program
=
Program
()
program
=
Program
()
with
program_guard
(
program
):
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_pool2d_op.py
浏览文件 @
dc76e4b0
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
from
__future__
import
division
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
...
@@ -21,16 +22,28 @@ import paddle.fluid.core as core
...
@@ -21,16 +22,28 @@ import paddle.fluid.core as core
from
op_test
import
OpTest
from
op_test
import
OpTest
def
adaptive_start_index
(
index
,
input_size
,
output_size
):
return
int
(
np
.
floor
(
index
*
input_size
/
output_size
))
def
adaptive_end_index
(
index
,
input_size
,
output_size
):
return
int
(
np
.
ceil
((
index
+
1
)
*
input_size
/
output_size
))
def
max_pool2D_forward_naive
(
x
,
def
max_pool2D_forward_naive
(
x
,
ksize
,
ksize
,
strides
,
strides
,
paddings
,
paddings
,
global_pool
=
0
,
global_pool
=
0
,
ceil_mode
=
False
,
ceil_mode
=
False
,
exclusive
=
True
):
exclusive
=
True
,
adaptive
=
False
):
N
,
C
,
H
,
W
=
x
.
shape
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
if
global_pool
==
1
:
ksize
=
[
H
,
W
]
ksize
=
[
H
,
W
]
if
adaptive
:
H_out
,
W_out
=
ksize
else
:
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
//
strides
[
0
]
+
1
if
ceil_mode
else
(
)
//
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
...
@@ -40,6 +53,12 @@ def max_pool2D_forward_naive(x,
...
@@ -40,6 +53,12 @@ def max_pool2D_forward_naive(x,
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
for
i
in
range
(
H_out
):
for
i
in
range
(
H_out
):
for
j
in
range
(
W_out
):
for
j
in
range
(
W_out
):
if
adaptive
:
r_start
=
adaptive_start_index
(
i
,
H
,
ksize
[
0
])
r_end
=
adaptive_end_index
(
i
,
H
,
ksize
[
0
])
c_start
=
adaptive_start_index
(
j
,
W
,
ksize
[
1
])
c_end
=
adaptive_end_index
(
j
,
W
,
ksize
[
1
])
else
:
r_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
r_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
r_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
r_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
c_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
c_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
...
@@ -56,10 +75,14 @@ def avg_pool2D_forward_naive(x,
...
@@ -56,10 +75,14 @@ def avg_pool2D_forward_naive(x,
paddings
,
paddings
,
global_pool
=
0
,
global_pool
=
0
,
ceil_mode
=
False
,
ceil_mode
=
False
,
exclusive
=
True
):
exclusive
=
True
,
adaptive
=
False
):
N
,
C
,
H
,
W
=
x
.
shape
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
if
global_pool
==
1
:
ksize
=
[
H
,
W
]
ksize
=
[
H
,
W
]
if
adaptive
:
H_out
,
W_out
=
ksize
else
:
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
//
strides
[
0
]
+
1
if
ceil_mode
else
(
)
//
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
...
@@ -69,14 +92,20 @@ def avg_pool2D_forward_naive(x,
...
@@ -69,14 +92,20 @@ def avg_pool2D_forward_naive(x,
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
for
i
in
range
(
H_out
):
for
i
in
range
(
H_out
):
for
j
in
range
(
W_out
):
for
j
in
range
(
W_out
):
if
adaptive
:
r_start
=
adaptive_start_index
(
i
,
H
,
ksize
[
0
])
r_end
=
adaptive_end_index
(
i
,
H
,
ksize
[
0
])
c_start
=
adaptive_start_index
(
j
,
W
,
ksize
[
1
])
c_end
=
adaptive_end_index
(
j
,
W
,
ksize
[
1
])
else
:
r_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
r_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
r_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
r_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
c_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
c_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
c_end
=
np
.
min
((
j
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
W
))
c_end
=
np
.
min
((
j
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
W
))
x_masked
=
x
[:,
:,
r_start
:
r_end
,
c_start
:
c_end
]
x_masked
=
x
[:,
:,
r_start
:
r_end
,
c_start
:
c_end
]
field_size
=
((
r_end
-
r_start
)
*
(
c_end
-
c_start
))
if
exclusive
\
field_size
=
((
r_end
-
r_start
)
*
(
c_end
-
c_start
))
\
else
(
ksize
[
0
]
*
ksize
[
1
])
if
(
exclusive
or
adaptive
)
else
(
ksize
[
0
]
*
ksize
[
1
])
out
[:,
:,
i
,
j
]
=
np
.
sum
(
x_masked
,
axis
=
(
2
,
3
))
/
field_size
out
[:,
:,
i
,
j
]
=
np
.
sum
(
x_masked
,
axis
=
(
2
,
3
))
/
field_size
return
out
return
out
...
@@ -93,12 +122,13 @@ class TestPool2D_Op(OpTest):
...
@@ -93,12 +122,13 @@ class TestPool2D_Op(OpTest):
self
.
init_pool_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
self
.
init_ceil_mode
()
self
.
init_exclusive
()
self
.
init_exclusive
()
self
.
init_adaptive
()
if
self
.
global_pool
:
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
self
.
pool2D_forward_naive
(
output
=
self
.
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusive
).
astype
(
self
.
dtype
)
self
.
ceil_mode
,
self
.
exclusive
,
self
.
adaptive
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
self
.
attrs
=
{
...
@@ -112,7 +142,8 @@ class TestPool2D_Op(OpTest):
...
@@ -112,7 +142,8 @@ class TestPool2D_Op(OpTest):
'ceil_mode'
:
self
.
ceil_mode
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
'data_format'
:
'AnyLayout'
,
# TODO(dzhwinter) : should be fix latter
'AnyLayout'
,
# TODO(dzhwinter) : should be fix latter
'exclusive'
:
self
.
exclusive
'exclusive'
:
self
.
exclusive
,
'adaptive'
:
self
.
adaptive
}
}
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
...
@@ -159,6 +190,9 @@ class TestPool2D_Op(OpTest):
...
@@ -159,6 +190,9 @@ class TestPool2D_Op(OpTest):
def
init_exclusive
(
self
):
def
init_exclusive
(
self
):
self
.
exclusive
=
True
self
.
exclusive
=
True
def
init_adaptive
(
self
):
self
.
adaptive
=
False
class
TestCase1
(
TestPool2D_Op
):
class
TestCase1
(
TestPool2D_Op
):
def
init_test_case
(
self
):
def
init_test_case
(
self
):
...
@@ -315,5 +349,10 @@ class TestCUDNNAvgInclude(TestCase2):
...
@@ -315,5 +349,10 @@ class TestCUDNNAvgInclude(TestCase2):
self
.
exclusive
=
False
self
.
exclusive
=
False
class
TestAvgPoolAdaptive
(
TestCase1
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_pool3d_op.py
浏览文件 @
dc76e4b0
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
from
__future__
import
division
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
...
@@ -21,16 +22,28 @@ import paddle.fluid.core as core
...
@@ -21,16 +22,28 @@ import paddle.fluid.core as core
from
op_test
import
OpTest
from
op_test
import
OpTest
def
adaptive_start_index
(
index
,
input_size
,
output_size
):
return
int
(
np
.
floor
(
index
*
input_size
/
output_size
))
def
adaptive_end_index
(
index
,
input_size
,
output_size
):
return
int
(
np
.
ceil
((
index
+
1
)
*
input_size
/
output_size
))
def
max_pool3D_forward_naive
(
x
,
def
max_pool3D_forward_naive
(
x
,
ksize
,
ksize
,
strides
,
strides
,
paddings
,
paddings
,
global_pool
=
0
,
global_pool
=
0
,
ceil_mode
=
False
,
ceil_mode
=
False
,
exclusive
=
True
):
exclusive
=
True
,
adaptive
=
False
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
ksize
=
[
D
,
H
,
W
]
if
adaptive
:
D_out
,
H_out
,
W_out
=
ksize
else
:
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
//
strides
[
0
]
+
1
if
ceil_mode
else
(
)
//
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
...
@@ -42,14 +55,26 @@ def max_pool3D_forward_naive(x,
...
@@ -42,14 +55,26 @@ def max_pool3D_forward_naive(x,
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
//
strides
[
2
]
+
1
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
//
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
range
(
D_out
):
for
k
in
range
(
D_out
):
if
adaptive
:
d_start
=
adaptive_start_index
(
k
,
D
,
ksize
[
0
])
d_end
=
adaptive_end_index
(
k
,
D
,
ksize
[
0
])
else
:
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
d_end
=
np
.
min
((
k
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
D
))
d_end
=
np
.
min
((
k
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
D
))
for
i
in
range
(
H_out
):
for
i
in
range
(
H_out
):
h_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
if
adaptive
:
h_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
h_start
=
adaptive_start_index
(
i
,
H
,
ksize
[
1
])
h_end
=
adaptive_end_index
(
i
,
H
,
ksize
[
1
])
else
:
h_start
=
np
.
max
((
i
*
strides
[
1
]
-
paddings
[
1
],
0
))
h_end
=
np
.
min
((
i
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
H
))
for
j
in
range
(
W_out
):
for
j
in
range
(
W_out
):
w_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
if
adaptive
:
w_end
=
np
.
min
((
j
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
W
))
w_start
=
adaptive_start_index
(
j
,
W
,
ksize
[
2
])
w_end
=
adaptive_end_index
(
j
,
W
,
ksize
[
2
])
else
:
w_start
=
np
.
max
((
j
*
strides
[
2
]
-
paddings
[
2
],
0
))
w_end
=
np
.
min
((
j
*
strides
[
2
]
+
ksize
[
2
]
-
paddings
[
2
],
W
))
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
out
[:,
:,
k
,
i
,
j
]
=
np
.
max
(
x_masked
,
axis
=
(
2
,
3
,
4
))
out
[:,
:,
k
,
i
,
j
]
=
np
.
max
(
x_masked
,
axis
=
(
2
,
3
,
4
))
...
@@ -62,10 +87,14 @@ def avg_pool3D_forward_naive(x,
...
@@ -62,10 +87,14 @@ def avg_pool3D_forward_naive(x,
paddings
,
paddings
,
global_pool
=
0
,
global_pool
=
0
,
ceil_mode
=
False
,
ceil_mode
=
False
,
exclusive
=
True
):
exclusive
=
True
,
adaptive
=
False
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
ksize
=
[
D
,
H
,
W
]
if
adaptive
:
D_out
,
H_out
,
W_out
=
ksize
else
:
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
//
strides
[
0
]
+
1
if
ceil_mode
else
(
)
//
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
...
@@ -77,18 +106,30 @@ def avg_pool3D_forward_naive(x,
...
@@ -77,18 +106,30 @@ def avg_pool3D_forward_naive(x,
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
//
strides
[
2
]
+
1
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
//
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
range
(
D_out
):
for
k
in
range
(
D_out
):
if
adaptive
:
d_start
=
adaptive_start_index
(
k
,
D
,
ksize
[
0
])
d_end
=
adaptive_end_index
(
k
,
D
,
ksize
[
0
])
else
:
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
d_end
=
np
.
min
((
k
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
D
))
d_end
=
np
.
min
((
k
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
D
))
for
i
in
range
(
H_out
):
for
i
in
range
(
H_out
):
h_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
if
adaptive
:
h_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
h_start
=
adaptive_start_index
(
i
,
H
,
ksize
[
1
])
h_end
=
adaptive_end_index
(
i
,
H
,
ksize
[
1
])
else
:
h_start
=
np
.
max
((
i
*
strides
[
1
]
-
paddings
[
1
],
0
))
h_end
=
np
.
min
((
i
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
H
))
for
j
in
range
(
W_out
):
for
j
in
range
(
W_out
):
w_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
if
adaptive
:
w_end
=
np
.
min
((
j
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
W
))
w_start
=
adaptive_start_index
(
j
,
W
,
ksize
[
2
])
w_end
=
adaptive_end_index
(
j
,
W
,
ksize
[
2
])
else
:
w_start
=
np
.
max
((
j
*
strides
[
2
]
-
paddings
[
2
],
0
))
w_end
=
np
.
min
((
j
*
strides
[
2
]
+
ksize
[
2
]
-
paddings
[
2
],
W
))
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
field_size
=
(
d_end
-
d_start
)
*
(
h_end
-
h_start
)
*
(
w_end
-
w_start
)
\
field_size
=
(
d_end
-
d_start
)
*
(
h_end
-
h_start
)
*
(
w_end
-
w_start
)
\
if
exclusive
else
ksize
[
0
]
*
ksize
[
1
]
*
ksize
[
2
]
if
(
exclusive
or
adaptive
)
else
ksize
[
0
]
*
ksize
[
1
]
*
ksize
[
2
]
out
[:,
:,
k
,
i
,
j
]
=
np
.
sum
(
x_masked
,
axis
=
(
2
,
3
,
out
[:,
:,
k
,
i
,
j
]
=
np
.
sum
(
x_masked
,
axis
=
(
2
,
3
,
4
))
/
field_size
4
))
/
field_size
return
out
return
out
...
@@ -105,13 +146,14 @@ class TestPool3d_Op(OpTest):
...
@@ -105,13 +146,14 @@ class TestPool3d_Op(OpTest):
self
.
init_pool_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
self
.
init_ceil_mode
()
self
.
init_exclusive
()
self
.
init_exclusive
()
self
.
init_adaptive
()
if
self
.
global_pool
:
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
self
.
pool3D_forward_naive
(
output
=
self
.
pool3D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusive
).
astype
(
self
.
dtype
)
self
.
ceil_mode
,
self
.
exclusive
,
self
.
adaptive
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
self
.
attrs
=
{
...
@@ -124,7 +166,8 @@ class TestPool3d_Op(OpTest):
...
@@ -124,7 +166,8 @@ class TestPool3d_Op(OpTest):
'ceil_mode'
:
self
.
ceil_mode
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
'data_format'
:
'AnyLayout'
,
# TODO(dzhwinter) : should be fix latter
'AnyLayout'
,
# TODO(dzhwinter) : should be fix latter
'exclusive'
:
self
.
exclusive
'exclusive'
:
self
.
exclusive
,
'adaptive'
:
self
.
adaptive
}
}
self
.
outputs
=
{
'Out'
:
output
}
self
.
outputs
=
{
'Out'
:
output
}
...
@@ -171,6 +214,9 @@ class TestPool3d_Op(OpTest):
...
@@ -171,6 +214,9 @@ class TestPool3d_Op(OpTest):
def
init_exclusive
(
self
):
def
init_exclusive
(
self
):
self
.
exclusive
=
True
self
.
exclusive
=
True
def
init_adaptive
(
self
):
self
.
adaptive
=
False
class
TestCase1
(
TestPool3d_Op
):
class
TestCase1
(
TestPool3d_Op
):
def
init_test_case
(
self
):
def
init_test_case
(
self
):
...
@@ -353,5 +399,10 @@ class TestCUDNNAvgInclude(TestCUDNNCase3):
...
@@ -353,5 +399,10 @@ class TestCUDNNAvgInclude(TestCUDNNCase3):
self
.
exclusive
=
False
self
.
exclusive
=
False
class
TestAvgPoolAdaptive
(
TestCase1
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_pool_max_op.py
浏览文件 @
dc76e4b0
...
@@ -13,33 +13,62 @@
...
@@ -13,33 +13,62 @@
# limitations under the License.
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
print_function
from
__future__
import
division
import
unittest
import
unittest
import
numpy
as
np
import
numpy
as
np
from
op_test
import
OpTest
from
op_test
import
OpTest
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
False
):
def
adaptive_start_index
(
index
,
input_size
,
output_size
):
return
int
(
np
.
floor
(
index
*
input_size
/
output_size
))
def
adaptive_end_index
(
index
,
input_size
,
output_size
):
return
int
(
np
.
ceil
((
index
+
1
)
*
input_size
/
output_size
))
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
False
,
adaptive
=
False
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
:
if
global_pool
:
ksize
=
[
D
,
H
,
W
]
ksize
=
[
D
,
H
,
W
]
paddings
=
[
0
,
0
,
0
]
paddings
=
[
0
,
0
,
0
]
if
adaptive
:
D_out
,
H_out
,
W_out
=
ksize
else
:
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
])
//
strides
[
1
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
])
//
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
//
strides
[
2
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
//
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
mask
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
mask
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
range
(
D_out
):
for
k
in
range
(
D_out
):
if
adaptive
:
d_start
=
adaptive_start_index
(
k
,
D
,
ksize
[
0
])
d_end
=
adaptive_end_index
(
k
,
D
,
ksize
[
0
])
else
:
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
d_end
=
np
.
min
((
k
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
D
))
d_end
=
np
.
min
((
k
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
D
))
for
i
in
range
(
H_out
):
for
i
in
range
(
H_out
):
h_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
if
adaptive
:
h_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
h_start
=
adaptive_start_index
(
i
,
H
,
ksize
[
1
])
h_end
=
adaptive_end_index
(
i
,
H
,
ksize
[
1
])
else
:
h_start
=
np
.
max
((
i
*
strides
[
1
]
-
paddings
[
1
],
0
))
h_end
=
np
.
min
((
i
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
H
))
for
j
in
range
(
W_out
):
for
j
in
range
(
W_out
):
w_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
if
adaptive
:
w_end
=
np
.
min
((
j
*
strides
[
1
]
+
ksize
[
1
]
-
paddings
[
1
],
W
))
w_start
=
adaptive_start_index
(
j
,
W
,
ksize
[
2
])
w_end
=
adaptive_end_index
(
j
,
W
,
ksize
[
2
])
else
:
w_start
=
np
.
max
((
j
*
strides
[
2
]
-
paddings
[
2
],
0
))
w_end
=
np
.
min
((
j
*
strides
[
2
]
+
ksize
[
2
]
-
paddings
[
2
],
W
))
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
x_masked
=
x
[:,
:,
d_start
:
d_end
,
h_start
:
h_end
,
w_start
:
w_end
]
out
[:,
:,
k
,
i
,
j
]
=
np
.
max
(
x_masked
,
axis
=
(
2
,
3
,
4
))
out
[:,
:,
k
,
i
,
j
]
=
np
.
max
(
x_masked
,
axis
=
(
2
,
3
,
4
))
...
@@ -58,19 +87,33 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
...
@@ -58,19 +87,33 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
return
out
,
mask
return
out
,
mask
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
False
):
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
False
,
adaptive
=
False
):
N
,
C
,
H
,
W
=
x
.
shape
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
:
if
global_pool
:
ksize
=
[
H
,
W
]
ksize
=
[
H
,
W
]
paddings
=
[
0
,
0
]
paddings
=
[
0
,
0
]
if
adaptive
:
H_out
,
W_out
=
ksize
else
:
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
//
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
//
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
//
strides
[
1
]
+
1
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
mask
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
mask
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
for
i
in
range
(
H_out
):
for
i
in
range
(
H_out
):
for
j
in
range
(
W_out
):
for
j
in
range
(
W_out
):
if
adaptive
:
r_start
=
adaptive_start_index
(
i
,
H
,
ksize
[
0
])
r_end
=
adaptive_end_index
(
i
,
H
,
ksize
[
0
])
c_start
=
adaptive_start_index
(
j
,
W
,
ksize
[
1
])
c_end
=
adaptive_end_index
(
j
,
W
,
ksize
[
1
])
else
:
r_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
r_start
=
np
.
max
((
i
*
strides
[
0
]
-
paddings
[
0
],
0
))
r_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
r_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
paddings
[
0
],
H
))
c_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
c_start
=
np
.
max
((
j
*
strides
[
1
]
-
paddings
[
1
],
0
))
...
@@ -95,10 +138,12 @@ class TestMaxPoolWithIndex_Op(OpTest):
...
@@ -95,10 +138,12 @@ class TestMaxPoolWithIndex_Op(OpTest):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
init_test_case
()
self
.
init_test_case
()
self
.
init_global
()
self
.
init_global
()
self
.
init_adaptive
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
,
mask
=
self
.
pool_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
output
,
mask
=
self
.
pool_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
)
self
.
paddings
,
self
.
global_pool
,
self
.
adaptive
)
output
=
output
.
astype
(
"float32"
)
output
=
output
.
astype
(
"float32"
)
mask
=
mask
.
astype
(
"int32"
)
mask
=
mask
.
astype
(
"int32"
)
...
@@ -107,6 +152,7 @@ class TestMaxPoolWithIndex_Op(OpTest):
...
@@ -107,6 +152,7 @@ class TestMaxPoolWithIndex_Op(OpTest):
'paddings'
:
self
.
paddings
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'ksize'
:
self
.
ksize
,
'global_pooling'
:
self
.
global_pool
,
'global_pooling'
:
self
.
global_pool
,
'adaptive'
:
self
.
adaptive
,
}
}
self
.
inputs
=
{
'X'
:
input
}
self
.
inputs
=
{
'X'
:
input
}
...
@@ -129,6 +175,9 @@ class TestMaxPoolWithIndex_Op(OpTest):
...
@@ -129,6 +175,9 @@ class TestMaxPoolWithIndex_Op(OpTest):
def
init_global
(
self
):
def
init_global
(
self
):
self
.
global_pool
=
False
self
.
global_pool
=
False
def
init_adaptive
(
self
):
self
.
adaptive
=
False
class
TestCase1
(
TestMaxPoolWithIndex_Op
):
class
TestCase1
(
TestMaxPoolWithIndex_Op
):
def
init_global
(
self
):
def
init_global
(
self
):
...
@@ -190,5 +239,15 @@ class TestCase7(TestCase6):
...
@@ -190,5 +239,15 @@ class TestCase7(TestCase6):
self
.
global_pool
=
False
self
.
global_pool
=
False
class
TestCastAdaptive2d
(
TestCase6
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
class
TestCastAdaptive3d
(
TestMaxPoolWithIndex_Op
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录