Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dc62a227
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dc62a227
编写于
8月 12, 2021
作者:
C
Chen Weihang
提交者:
GitHub
8月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "[oneDNN] Fix to issue #34554 (#34623)" (#34838)
This reverts commit
0a5c99e8
.
上级
dffb0b22
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
279 addition
and
436 deletion
+279
-436
paddle/fluid/operators/elementwise/mkldnn/elementwise_mkldnn_op.h
...luid/operators/elementwise/mkldnn/elementwise_mkldnn_op.h
+4
-15
paddle/fluid/operators/elementwise/mkldnn/elementwise_mul_mkldnn_op.cc
...operators/elementwise/mkldnn/elementwise_mul_mkldnn_op.cc
+6
-4
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
+5
-6
paddle/fluid/operators/mkldnn/caching_tests.cmake
paddle/fluid/operators/mkldnn/caching_tests.cmake
+1
-1
paddle/fluid/operators/mkldnn/scale_mkldnn_op.cc
paddle/fluid/operators/mkldnn/scale_mkldnn_op.cc
+3
-5
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
+59
-46
paddle/fluid/operators/mkldnn/test_mkldnn_caching.cc
paddle/fluid/operators/mkldnn/test_mkldnn_caching.cc
+55
-29
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+146
-330
未找到文件。
paddle/fluid/operators/elementwise/mkldnn/elementwise_mkldnn_op.h
浏览文件 @
dc62a227
...
...
@@ -47,24 +47,13 @@ class EltwiseMKLDNNKernel : public framework::OpKernel<T> {
float
scale_o
=
ctx
.
Attr
<
float
>
(
"Scale_out"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
platform
::
BinaryMKLDNNHandler
<
T
>
handler
(
BINARY_OP
,
axis
,
mkldnn_engine
,
ctx
.
GetPlace
(),
x
,
y
,
z
,
scale_x
,
scale_y
,
scale_o
);
platform
::
BinaryMKLDNNHandler
<
T
>
handler
(
BINARY_OP
,
axis
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
x
,
y
,
z
,
scale_x
,
scale_y
,
scale_o
,
ctx
.
OutputName
(
"Out"
)
);
const
auto
src_x_memory
=
handler
.
AcquireSrcMemory
(
x
);
const
auto
src_y_memory
=
handler
.
AcquireSecondSrcMemory
(
y
);
// (jczaja) For Inplace src and dst should be the same memory object.
// So x should share buffer with z. But UT mechanics is testing inplace
// execution for this op not checking that x can be bradcasted to match in
// shape y tensor.
// This is wrong as when x is to be broadcasted then z(out) will match the
// shape of y which is bigger than x. Hence if x is smaller in shape than z
// and they share a buffer (of
// shape x) then this buffer is not big enough to hold result of elementwise
// operation.
auto
dst_memory
=
(
x
->
numel
()
==
z
->
numel
()
&&
x
->
IsSharedBufferWith
(
*
z
))
?
src_x_memory
:
handler
.
AcquireDstMemory
(
z
);
const
auto
dst_memory
=
handler
.
AcquireDstMemory
(
z
);
const
auto
binary_prim
=
handler
.
AcquireForwardPrimitive
();
...
...
paddle/fluid/operators/elementwise/mkldnn/elementwise_mul_mkldnn_op.cc
浏览文件 @
dc62a227
...
...
@@ -48,8 +48,9 @@ class EltwiseMulMKLDNNGradKernel : public ElemwiseGradKernel<T> {
if
(
dx
)
{
// dx = dout*y
platform
::
BinaryMKLDNNHandler
<
T
>
handler
(
dnnl
::
algorithm
::
binary_mul
,
axis
,
mkldnn_engine
,
ctx
.
GetPlace
(),
dout
,
y
,
dx
,
1.0
f
,
1.0
f
,
1.0
f
);
dnnl
::
algorithm
::
binary_mul
,
axis
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
dout
,
y
,
dx
,
1.0
f
,
1.0
f
,
1.0
f
,
ctx
.
InputName
(
framework
::
GradVarName
(
"Out"
)));
const
auto
src_dout_memory
=
handler
.
AcquireSrcMemory
(
dout
);
const
auto
src_y_memory
=
handler
.
AcquireSecondSrcMemory
(
y
);
...
...
@@ -74,8 +75,9 @@ class EltwiseMulMKLDNNGradKernel : public ElemwiseGradKernel<T> {
// Handler is having nullptr passed instead of output tensor as
// we want Dst buffer to be allocated by oneDNN not to use Tensor
platform
::
BinaryMKLDNNHandler
<
T
>
handler
(
dnnl
::
algorithm
::
binary_mul
,
axis
,
mkldnn_engine
,
ctx
.
GetPlace
(),
dout
,
x
,
nullptr
,
1.0
f
,
1.0
f
,
1.0
f
);
dnnl
::
algorithm
::
binary_mul
,
axis
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
dout
,
x
,
nullptr
,
1.0
f
,
1.0
f
,
1.0
f
,
ctx
.
InputName
(
framework
::
GradVarName
(
"Out"
)));
const
auto
src_dout_memory
=
handler
.
AcquireSrcMemory
(
dout
);
const
auto
src_x_memory
=
handler
.
AcquireSecondSrcMemory
(
x
);
...
...
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
浏览文件 @
dc62a227
...
...
@@ -79,15 +79,15 @@ void eltwise_forward(const framework::ExecutionContext &ctx,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Operator DNNL eletwise_forward must use CPUPlace"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
bool
is_inplaced
=
x
->
IsSharedBufferWith
(
*
y
);
platform
::
ActivationMKLDNNHandler
<
T
>
handler
(
algorithm
,
ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
x
);
platform
::
ActivationMKLDNNHandler
<
T
>
handler
(
algorithm
,
ctx
,
dev_ctx
,
ctx
.
GetPlace
(),
x
,
ctx
.
InputName
(
"X"
),
is_inplaced
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
auto
dst_memory_p
=
is_inplaced
?
src_memory_p
:
handler
.
AcquireDstMemory
(
y
);
...
...
@@ -106,14 +106,13 @@ template <typename T>
void
eltwise_grad
(
const
framework
::
ExecutionContext
&
ctx
,
mkldnn
::
algorithm
algorithm
)
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
diff_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
diff_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
platform
::
ActivationMKLDNNHandler
<
T
>
handler
(
algorithm
,
ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
x
,
diff_y
);
platform
::
ActivationMKLDNNHandler
<
T
>
handler
(
algorithm
,
ctx
,
dev_ctx
,
ctx
.
GetPlace
(),
x
,
diff_y
,
ctx
.
InputName
(
"X"
)
);
auto
src_memory_p
=
handler
.
AcquireBackwardSrcMemory
(
x
);
auto
diff_dst_memory_p
=
handler
.
AcquireDiffDstMemory
(
diff_y
);
...
...
paddle/fluid/operators/mkldnn/caching_tests.cmake
浏览文件 @
dc62a227
cc_test
(
test_mkldnn_caching SRCS mkldnn/test_mkldnn_caching.cc DEPS op_registry elementwise_mul_op elementwise_add_op activation_op softmax_op
conv_op im2col vol2col
softmax scope device_context enforce
)
cc_test
(
test_mkldnn_caching SRCS mkldnn/test_mkldnn_caching.cc DEPS op_registry elementwise_mul_op elementwise_add_op activation_op softmax_op softmax scope device_context enforce
)
paddle/fluid/operators/mkldnn/scale_mkldnn_op.cc
浏览文件 @
dc62a227
...
...
@@ -29,7 +29,6 @@ class ScaleMKLDNNKernel : public framework::OpKernel<T> {
void
RunKernel
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
...
...
@@ -37,12 +36,11 @@ class ScaleMKLDNNKernel : public framework::OpKernel<T> {
bool
is_inplaced
=
x
->
IsSharedBufferWith
(
*
out
);
platform
::
ActivationMKLDNNHandler
<
T
>
handler
(
mkldnn
::
algorithm
::
eltwise_linear
,
ctx
,
mkldnn_engine
,
ctx
.
GetPlace
()
,
x
);
mkldnn
::
algorithm
::
eltwise_linear
,
ctx
,
dev_ctx
,
ctx
.
GetPlace
(),
x
,
ctx
.
InputName
(
"X"
),
is_inplaced
);
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
auto
dst_memory_p
=
is_inplaced
?
src_memory_p
:
handler
.
AcquireDstMemory
(
out
);
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
out
);
auto
activation_p
=
handler
.
AcquireForwardPrimitive
();
auto
&
astream
=
paddle
::
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
...
...
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
浏览文件 @
dc62a227
...
...
@@ -32,56 +32,69 @@ using platform::to_void_cast;
template
<
typename
T
>
class
SoftmaxMKLDNNHandler
:
public
platform
::
MKLDNNHandler
NoCaching
T
<
T
,
mkldnn
::
softmax_forward
,
mkldnn
::
softmax_backward
>
{
:
public
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
softmax_forward
,
mkldnn
::
softmax_backward
>
{
public:
SoftmaxMKLDNNHandler
(
const
mkldnn
::
engine
mkldnn_engine
,
SoftmaxMKLDNNHandler
(
const
MKLDNNDeviceContext
&
dev_ctx
,
const
mkldnn
::
engine
mkldnn_engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
input
,
Tensor
*
output
,
const
int
axis
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
mkldnn
::
softmax_forward
,
mkldnn
::
softmax_backward
>
(
mkldnn_engine
,
cpu_place
)
{
PADDLE_ENFORCE_EQ
(
input
->
dims
(),
output
->
dims
(),
platform
::
errors
::
InvalidArgument
(
"The shape of input and output tensor must be identical."
));
auto
softmax_tz
=
framework
::
vectorize
(
input
->
dims
());
auto
md
=
memory
::
desc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
md
,
axis
);
Tensor
*
output
,
const
int
axis
,
const
std
::
string
uniq_name
,
bool
is_inplaced
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
softmax_forward
,
mkldnn
::
softmax_backward
>
(
dev_ctx
,
mkldnn_engine
,
cpu_place
,
// Softmax may be inplace then uniq_name is no longer unique
is_inplaced
?
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
input
->
dims
()),
axis
,
uniq_name
)
:
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
input
->
dims
()),
uniq_name
))
{
if
(
!
this
->
isCached
())
{
PADDLE_ENFORCE_EQ
(
input
->
dims
(),
output
->
dims
(),
platform
::
errors
::
InvalidArgument
(
"The shape of input and output tensor must be identical."
));
auto
softmax_tz
=
framework
::
vectorize
(
input
->
dims
());
auto
md
=
memory
::
desc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
md
,
axis
);
}
}
SoftmaxMKLDNNHandler
(
const
framework
::
ExecutionContext
&
ctx
,
const
mkldnn
::
engine
mkldnn_engine
,
const
MKLDNNDeviceContext
&
dev_ctx
,
platform
::
Place
cpu_place
,
const
Tensor
*
out
,
const
Tensor
*
out_grad
,
Tensor
*
in_x_grad
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
mkldnn
::
softmax_forward
,
mkldnn
::
softmax_backward
>
(
mkldnn_engine
,
cpu_place
)
{
PADDLE_ENFORCE_EQ
(
out_grad
->
dims
(),
in_x_grad
->
dims
(),
platform
::
errors
::
InvalidArgument
(
"The shape of softmax_grad's input "
"and output must be identical, but shapes differ, "
"out_grad: %s in_grad: %s"
,
out_grad
->
dims
(),
in_x_grad
->
dims
()));
auto
dims
=
out_grad
->
dims
();
// input and output share the same shape
const
int
axis
=
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
dims
.
size
());
auto
softmax_tz
=
framework
::
vectorize
<
int64_t
>
(
dims
);
auto
data_softmax_md
=
MKLDNNMemDesc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out
->
format
());
auto
diff_softmax_md
=
MKLDNNMemDesc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
data_softmax_md
,
axis
);
this
->
AcquireBackwardPrimitiveDescriptor
(
diff_softmax_md
,
data_softmax_md
,
axis
);
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
softmax_forward
,
mkldnn
::
softmax_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
out
->
dims
()),
unique_name
))
{
if
(
!
this
->
isBwdCached
())
{
PADDLE_ENFORCE_EQ
(
out_grad
->
dims
(),
in_x_grad
->
dims
(),
platform
::
errors
::
InvalidArgument
(
"The shape of softmax_grad's input "
"and output must be identical."
));
auto
dims
=
out_grad
->
dims
();
// input and output share the same shape
const
int
axis
=
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
dims
.
size
());
auto
softmax_tz
=
framework
::
vectorize
<
int64_t
>
(
dims
);
auto
data_softmax_md
=
MKLDNNMemDesc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out
->
format
());
auto
diff_softmax_md
=
MKLDNNMemDesc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
data_softmax_md
,
axis
);
this
->
AcquireBackwardPrimitiveDescriptor
(
diff_softmax_md
,
data_softmax_md
,
axis
);
}
}
};
...
...
@@ -98,8 +111,9 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
const
int
axis
=
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
input
->
dims
().
size
());
SoftmaxMKLDNNHandler
<
T
>
handler
(
mkldnn_engine
,
ctx
.
GetPlace
(),
input
,
output
,
axis
);
SoftmaxMKLDNNHandler
<
T
>
handler
(
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
input
,
output
,
axis
,
ctx
.
OutputName
(
"Out"
),
is_inplaced
);
auto
softmax_src_memory_p
=
handler
.
AcquireSrcMemory
(
input
);
// For Inplace src and and dst are the same memory object
...
...
@@ -135,12 +149,11 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Operator DNNL SoftmaxGrad must use CPUPlace"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
Tensor
*
output
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
out_grad
=
ctx
.
template
Input
<
Tensor
>(
framework
::
GradVarName
(
"Out"
));
auto
*
in_x_grad
=
ctx
.
template
Output
<
Tensor
>(
framework
::
GradVarName
(
"X"
));
SoftmaxMKLDNNHandler
<
T
>
handler
(
ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
output
,
SoftmaxMKLDNNHandler
<
T
>
handler
(
ctx
,
dev_ctx
,
ctx
.
GetPlace
(),
output
,
out_grad
,
in_x_grad
,
ctx
.
InputName
(
"Out"
));
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
output
);
...
...
paddle/fluid/operators/mkldnn/test_mkldnn_caching.cc
浏览文件 @
dc62a227
...
...
@@ -33,8 +33,6 @@ USE_OP(relu);
USE_OP_DEVICE_KERNEL
(
relu
,
MKLDNN
);
USE_OP
(
softmax
);
USE_OP_DEVICE_KERNEL
(
softmax
,
MKLDNN
);
USE_OP
(
conv2d
);
USE_OP_DEVICE_KERNEL_WITH_CUSTOM_TYPE
(
conv2d
,
MKLDNN
,
FP32
);
namespace
paddle
{
namespace
operators
{
...
...
@@ -66,19 +64,16 @@ class CacheTester {
template
<
typename
T
>
void
RunOperator
(
const
platform
::
Place
&
place
,
const
std
::
string
&
op_type
,
const
framework
::
DDim
&
dims
,
const
std
::
string
&
first_input
)
{
const
framework
::
DDim
&
dims
,
const
std
::
string
&
output_name
,
bool
inplace
=
false
)
{
framework
::
Scope
scope
;
std
::
map
<
const
std
::
string
,
int
>
num_inputs
=
{{
"softmax"
,
1
},
{
"relu"
,
1
},
{
"conv2d"
,
2
},
{
"elementwise_add"
,
2
},
{
"elementwise_mul"
,
2
}};
std
::
string
first_input_var_name
=
(
op_type
==
"conv2d"
)
?
"Input"
:
"X"
;
std
::
string
second_input_var_name
=
(
op_type
==
"conv2d"
)
?
"Filter"
:
"Y"
;
std
::
string
output_var_name
=
(
op_type
==
"conv2d"
)
?
"Output"
:
"Out"
;
std
::
string
output_name
=
"output"
;
std
::
string
first_input
=
inplace
==
true
?
output_name
:
"x"
;
std
::
vector
<
InputVars
>
input_names
=
{
{
first_input
,
scope
.
Var
(
first_input
)
->
GetMutable
<
framework
::
LoDTensor
>
()},
...
...
@@ -118,40 +113,71 @@ void RunOperator(const platform::Place &place, const std::string &op_type,
auto
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
op
=
num_inputs
[
op_type
]
>
1
?
framework
::
OpRegistry
::
CreateOp
(
op_type
,
{{
first_input_var_name
,
{
first_input
}},
{
second_input_var_name
,
{
"x1"
}}},
{{
output_var_name
,
{
output_name
}}},
{{
"use_mkldnn"
,
{
true
}}})
:
framework
::
OpRegistry
::
CreateOp
(
op_type
,
{{
first_input_var_name
,
{
first_input
}}},
{{
output_var_name
,
{
output_name
}}},
{{
"use_mkldnn"
,
{
true
}}});
auto
op
=
num_inputs
[
op_type
]
>
1
?
framework
::
OpRegistry
::
CreateOp
(
op_type
,
{{
"X"
,
{
first_input
}},
{
"Y"
,
{
"x1"
}}},
{{
"Out"
,
{
output_name
}}},
{{
"use_mkldnn"
,
{
true
}}})
:
framework
::
OpRegistry
::
CreateOp
(
op_type
,
{{
"X"
,
{
first_input
}}},
{{
"Out"
,
{
output_name
}}},
{{
"use_mkldnn"
,
{
true
}}});
op
->
Run
(
scope
,
place
);
pool
.
Get
(
place
)
->
Wait
();
}
TEST
(
test_
conv2d
_reuse_cache
,
cpu_place
)
{
framework
::
DDim
dims
({
1
,
16
,
32
,
64
});
TEST
(
test_
softmax
_reuse_cache
,
cpu_place
)
{
framework
::
DDim
dims
({
32
,
64
});
platform
::
CPUPlace
p
;
CacheTester
ct
;
RunOperator
<
float
>
(
p
,
"
conv2d"
,
dims
,
"input_signal
"
);
RunOperator
<
float
>
(
p
,
"
conv2d"
,
dims
,
"input_signal
"
);
PADDLE_ENFORCE_EQ
(
ct
.
Analyze
(
9
),
true
,
RunOperator
<
float
>
(
p
,
"
softmax"
,
dims
,
"softmax_out
"
);
RunOperator
<
float
>
(
p
,
"
softmax"
,
dims
,
"softmax_out
"
);
PADDLE_ENFORCE_EQ
(
ct
.
Analyze
(
4
),
true
,
platform
::
errors
::
InvalidArgument
(
"
Invalid
number of cached oneDNN objects"
));
"
Wrong
number of cached oneDNN objects"
));
}
TEST
(
test_
conv2d
_noreuse_cache
,
cpu_place
)
{
framework
::
DDim
dims
({
1
,
16
,
32
,
64
});
TEST
(
test_
softmax
_noreuse_cache
,
cpu_place
)
{
framework
::
DDim
dims
({
32
,
64
});
platform
::
CPUPlace
p
;
CacheTester
ct
;
RunOperator
<
float
>
(
p
,
"
conv2d"
,
dims
,
"input_signal
"
);
RunOperator
<
float
>
(
p
,
"
conv2d"
,
dims
,
"input_signal
2"
);
PADDLE_ENFORCE_EQ
(
ct
.
Analyze
(
1
8
),
true
,
RunOperator
<
float
>
(
p
,
"
softmax"
,
dims
,
"softmax_out
"
);
RunOperator
<
float
>
(
p
,
"
softmax"
,
dims
,
"softmax_out
2"
);
PADDLE_ENFORCE_EQ
(
ct
.
Analyze
(
8
),
true
,
platform
::
errors
::
InvalidArgument
(
"Invalid number of cached oneDNN objects"
));
"Wrong number of cached oneDNN objects"
));
}
TEST
(
test_softmax_inplace_cache
,
cpu_place
)
{
framework
::
DDim
dims
({
32
,
64
});
platform
::
CPUPlace
p
;
CacheTester
ct
;
RunOperator
<
float
>
(
p
,
"softmax"
,
dims
,
"softmax_out"
);
RunOperator
<
float
>
(
p
,
"softmax"
,
dims
,
"softmax_out"
,
true
);
PADDLE_ENFORCE_EQ
(
ct
.
Analyze
(
7
),
true
,
platform
::
errors
::
InvalidArgument
(
"Wrong number of cached oneDNN objects"
));
}
TEST
(
test_relu_inplace_cache
,
cpu_place
)
{
framework
::
DDim
dims
({
32
,
64
});
platform
::
CPUPlace
p
;
CacheTester
ct
;
RunOperator
<
float
>
(
p
,
"relu"
,
dims
,
"relu_out"
);
RunOperator
<
float
>
(
p
,
"relu"
,
dims
,
"relu_out"
,
true
);
PADDLE_ENFORCE_EQ
(
ct
.
Analyze
(
7
),
true
,
platform
::
errors
::
InvalidArgument
(
"Wrong number of cached oneDNN objects"
));
}
TEST
(
test_elementwise_add_reuse_cache
,
cpu_place
)
{
framework
::
DDim
dims
({
32
,
64
});
platform
::
CPUPlace
p
;
CacheTester
ct
;
RunOperator
<
float
>
(
p
,
"elementwise_add"
,
dims
,
"elementwise_add_out"
);
RunOperator
<
float
>
(
p
,
"relu"
,
dims
,
"elementwise_add_out"
,
true
);
PADDLE_ENFORCE_EQ
(
ct
.
Analyze
(
8
),
true
,
platform
::
errors
::
InvalidArgument
(
"Wrong number of cached oneDNN objects"
));
}
}
// namespace operators
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
dc62a227
...
...
@@ -34,211 +34,6 @@ using framework::Tensor;
using
user_function
=
std
::
function
<
std
::
shared_ptr
<
float
>
(
const
float
*
)
>
;
using
memory
=
mkldnn
::
memory
;
template
<
typename
T
,
typename
TForward
,
typename
TBackward
=
mkldnn_dummy_primitive
,
typename
TBackward_params
=
mkldnn_dummy_primitive
>
class
MKLDNNHandlerNoCachingT
{
public:
MKLDNNHandlerNoCachingT
(
mkldnn
::
engine
engine
,
platform
::
Place
cpu_place
)
:
engine_
(
engine
),
place_
(
cpu_place
),
fwd_pd_
(
nullptr
),
bwd_pd_
(
nullptr
)
{
platform
::
MKLDNNDeviceContext
::
tls
().
log_lib_version
();
}
std
::
shared_ptr
<
TForward
>
AcquireForwardPrimitive
()
{
return
std
::
make_shared
<
TForward
>
(
*
fwd_pd_
);
}
std
::
shared_ptr
<
TBackward
>
AcquireBackwardPrimitive
()
{
return
std
::
make_shared
<
TBackward
>
(
*
bwd_pd_
);
}
std
::
shared_ptr
<
TBackward_params
>
AcquireBackwardWeightsPrimitive
()
{
PADDLE_ENFORCE_NOT_NULL
(
bwd_w_pd_
,
platform
::
errors
::
Unavailable
(
"BWD_PD should be set when "
"getting BWD prim ."
));
return
std
::
make_shared
<
TBackward_params
>
(
*
bwd_w_pd_
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSrcMemory
(
const
framework
::
Tensor
*
input
)
{
const
T
*
input_data
=
input
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
fwd_pd_
->
src_desc
(),
to_void_cast
<
T
>
(
input_data
));
}
template
<
typename
T_out
=
T
>
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemory
(
framework
::
Tensor
*
output
)
{
T_out
*
ptr
=
output
->
mutable_data
<
T_out
>
(
place_
,
fwd_pd_
->
dst_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
fwd_pd_
->
dst_desc
(),
ptr
);
}
template
<
typename
T_out
=
T
>
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemory
(
void
)
{
return
this
->
AcquireMemoryFromPrimitive
(
fwd_pd_
->
dst_desc
());
}
template
<
typename
T_out
=
T
>
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDstMemory
(
const
framework
::
Tensor
*
output
)
{
const
T_out
*
output_data
=
output
->
data
<
T_out
>
();
return
this
->
AcquireMemoryFromPrimitive
(
bwd_pd_
->
dst_desc
(),
to_void_cast
<
T_out
>
(
output_data
));
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffDstMemory
(
const
framework
::
Tensor
*
diffdst
)
{
const
T
*
ptr
=
diffdst
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
bwd_pd_
->
diff_dst_desc
(),
to_void_cast
<
T
>
(
ptr
));
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffSrcMemory
(
framework
::
Tensor
*
diffsrc
)
{
T
*
ptr
=
diffsrc
->
mutable_data
<
T
>
(
place_
,
bwd_pd_
->
diff_src_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
bwd_pd_
->
diff_src_desc
(),
ptr
);
}
// Buffer of given Tensor is used for oneDNN computation
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffWeightsMemory
(
framework
::
Tensor
*
diff_weights
)
{
PADDLE_ENFORCE_NOT_NULL
(
bwd_w_pd_
,
platform
::
errors
::
Unavailable
(
"BWD_W_PD should be set when getting BWD grad of weights."
));
T
*
ptr
=
diff_weights
->
mutable_data
<
T
>
(
place_
,
bwd_w_pd_
->
diff_weights_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
bwd_w_pd_
->
diff_weights_desc
(),
ptr
);
}
// Buffer is allocated by oneDNN to store computation results
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireDiffWeightsMemory
(
void
)
{
PADDLE_ENFORCE_NOT_NULL
(
bwd_w_pd_
,
platform
::
errors
::
Unavailable
(
"BWD_W_PD should be set when getting BWD grad of weights."
));
return
this
->
AcquireMemoryFromPrimitive
(
bwd_w_pd_
->
diff_weights_desc
());
}
protected:
// If your primitive descriptor requires attributes, pass them as a
// first argument and paramters to descriptor constructor in the following
// arguments. Otherwise, all arguments will be forwarded to descriptor
// constructor, including the first one.
template
<
typename
Arg
,
typename
...
Args
>
void
AcquireForwardPrimitiveDescriptor
(
Arg
&&
first_arg
,
Args
&&
...
args
)
{
CreateForwardPrimitiveDescriptor
(
first_arg
,
std
::
forward
<
Args
>
(
args
)...);
}
// Using sfinae to specialise variadic function. Workaround for not having
// if constexpr in C++ 11.
template
<
class
First
,
class
...
Args
>
typename
std
::
enable_if
<
std
::
is_same
<
typename
std
::
decay
<
First
>::
type
,
dnnl
::
primitive_attr
>::
value
>::
type
CreateForwardPrimitiveDescriptor
(
First
&&
first
,
Args
&&
...
args
)
{
auto
fwd_desc
=
typename
TForward
::
desc
(
std
::
forward
<
Args
>
(
args
)...);
fwd_pd_
=
std
::
make_shared
<
typename
TForward
::
primitive_desc
>
(
fwd_desc
,
first
,
engine_
);
}
template
<
class
First
,
class
...
Args
>
typename
std
::
enable_if
<!
std
::
is_same
<
typename
std
::
decay
<
First
>::
type
,
dnnl
::
primitive_attr
>::
value
>::
type
CreateForwardPrimitiveDescriptor
(
First
&&
first
,
Args
&&
...
args
)
{
auto
fwd_desc
=
typename
TForward
::
desc
(
std
::
forward
<
First
>
(
first
),
std
::
forward
<
Args
>
(
args
)...);
fwd_pd_
=
std
::
make_shared
<
typename
TForward
::
primitive_desc
>
(
fwd_desc
,
engine_
);
}
template
<
typename
...
Args
>
void
AcquireBackwardPrimitiveDescriptor
(
Args
&&
...
args
)
{
// fwd_pd_ is set during grad by calling
// AcquireForwardPrimitiveDescriptor
PADDLE_ENFORCE_NOT_NULL
(
fwd_pd_
,
platform
::
errors
::
Unavailable
(
"Get MKLDNN Forward primitive %s failed."
));
auto
bwd_desc
=
typename
TBackward
::
desc
(
std
::
forward
<
Args
>
(
args
)...);
bwd_pd_
=
std
::
make_shared
<
typename
TBackward
::
primitive_desc
>
(
bwd_desc
,
engine_
,
*
fwd_pd_
);
}
template
<
typename
...
Args
>
void
AcquireBackwardWeightsPrimitiveDescriptor
(
Args
&&
...
args
)
{
// fwd_pd_ is set during grad by calling
// AcquireForwardPrimitiveDescriptor
PADDLE_ENFORCE_NOT_NULL
(
fwd_pd_
,
platform
::
errors
::
Unavailable
(
"Get MKLDNN Forward primitive %s failed."
));
auto
bwd_desc
=
typename
TBackward_params
::
desc
(
std
::
forward
<
Args
>
(
args
)...);
bwd_w_pd_
=
std
::
make_shared
<
typename
TBackward_params
::
primitive_desc
>
(
bwd_desc
,
engine_
,
*
fwd_pd_
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryFromPrimitive
(
mkldnn
::
memory
::
desc
md
,
void
*
ptr
)
{
return
std
::
make_shared
<
mkldnn
::
memory
>
(
md
,
engine_
,
ptr
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryFromPrimitive
(
mkldnn
::
memory
::
desc
md
)
{
return
std
::
make_shared
<
mkldnn
::
memory
>
(
md
,
engine_
);
}
void
AcquireReorder
(
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
user_memory_p
,
const
std
::
shared_ptr
<
mkldnn
::
memory
>&
target_memory_p
)
{
auto
reorder_p
=
std
::
make_shared
<
mkldnn
::
reorder
>
(
*
user_memory_p
,
*
target_memory_p
);
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
platform
::
RecordEvent
record_reorder
(
"int_reorder"
,
platform
::
EventRole
::
kUniqueOp
);
reorder_p
->
execute
(
astream
,
{{
MKLDNN_ARG_FROM
,
*
user_memory_p
},
{
MKLDNN_ARG_TO
,
*
target_memory_p
}});
astream
.
wait
();
}
template
<
typename
F
=
T
>
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryWithReorder
(
const
mkldnn
::
memory
::
desc
&
user_md
,
const
mkldnn
::
memory
::
desc
&
target_md
,
void
*
ptr
,
const
std
::
string
&
suffix
,
bool
is_persistent
=
false
,
std
::
function
<
std
::
shared_ptr
<
F
>
(
const
F
*
)
>
custom_reorder_func
=
{})
{
std
::
shared_ptr
<
mkldnn
::
memory
>
target_memory_p
;
if
(
custom_reorder_func
)
{
auto
reordered_data
=
custom_reorder_func
(
reinterpret_cast
<
const
F
*>
(
ptr
));
ptr
=
reinterpret_cast
<
void
*>
(
reordered_data
.
get
());
}
auto
user_memory_p
=
std
::
make_shared
<
dnnl
::
memory
>
(
user_md
,
engine_
,
ptr
);
if
(
user_md
!=
target_md
)
{
target_memory_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
target_md
,
engine_
);
auto
reorder_p
=
std
::
make_shared
<
dnnl
::
reorder
>
(
*
user_memory_p
,
*
target_memory_p
);
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
platform
::
RecordEvent
record_reorder
(
"int_reorder"
,
platform
::
EventRole
::
kUniqueOp
);
reorder_p
->
execute
(
astream
,
{{
MKLDNN_ARG_FROM
,
*
user_memory_p
},
{
MKLDNN_ARG_TO
,
*
target_memory_p
}});
astream
.
wait
();
}
else
{
target_memory_p
=
user_memory_p
;
}
return
target_memory_p
;
}
mkldnn
::
engine
engine_
;
platform
::
Place
place_
;
std
::
shared_ptr
<
typename
TForward
::
primitive_desc
>
fwd_pd_
;
std
::
shared_ptr
<
typename
TBackward
::
primitive_desc
>
bwd_pd_
;
std
::
shared_ptr
<
typename
TBackward_params
::
primitive_desc
>
bwd_w_pd_
;
};
template
<
typename
T
,
typename
TForward
,
typename
TBackward
=
mkldnn_dummy_primitive
,
typename
TBackward_params
=
mkldnn_dummy_primitive
>
...
...
@@ -284,7 +79,7 @@ class MKLDNNHandlerT {
std
::
static_pointer_cast
<
TBackward_params
>
(
dev_ctx_
.
GetBlob
(
key_p
));
if
(
backward_p
==
nullptr
)
{
PADDLE_ENFORCE_NOT_NULL
(
bwd_w_pd_
,
platform
::
errors
::
Unavailable
(
"BWD_PD should be set when "
"
Error:
BWD_PD should be set when "
"getting BWD prim witk key: %s ."
,
key_p
));
backward_p
=
std
::
make_shared
<
TBackward_params
>
(
*
bwd_w_pd_
);
...
...
@@ -343,7 +138,7 @@ class MKLDNNHandlerT {
PADDLE_ENFORCE_NOT_NULL
(
bwd_w_pd_
,
platform
::
errors
::
Unavailable
(
"BWD_W_PD should be set when getting BWD grad of weights."
));
"
Error:
BWD_W_PD should be set when getting BWD grad of weights."
));
T
*
ptr
=
diff_weights
->
mutable_data
<
T
>
(
place_
,
bwd_w_pd_
->
diff_weights_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
bwd_w_pd_
->
diff_weights_desc
(),
ptr
,
...
...
@@ -355,7 +150,7 @@ class MKLDNNHandlerT {
PADDLE_ENFORCE_NOT_NULL
(
bwd_w_pd_
,
platform
::
errors
::
Unavailable
(
"BWD_W_PD should be set when getting BWD grad of weights."
));
"
Error:
BWD_W_PD should be set when getting BWD grad of weights."
));
return
this
->
AcquireMemoryFromPrimitive
(
bwd_w_pd_
->
diff_weights_desc
(),
"@diff_wei_mem_p"
);
}
...
...
@@ -794,70 +589,70 @@ class MKLDNNHandler {
};
template
<
typename
T
>
class
BinaryMKLDNNHandler
:
public
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
binary
>
{
class
BinaryMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
binary
>
{
public:
BinaryMKLDNNHandler
(
const
dnnl
::
algorithm
algo
,
const
int
axis
,
const
MKLDNNDeviceContext
&
dev_ctx
,
const
mkldnn
::
engine
engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
,
float
scale_x
,
float
scale_y
,
float
scale_z
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
dnnl
::
binary
>
(
engine
,
cpu_place
)
{
PADDLE_ENFORCE_EQ
(
x
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for X tensor. Expected: %d (kMKLDNN), Actual: %d"
,
DataLayout
::
kMKLDNN
,
x
->
layout
()));
PADDLE_ENFORCE_NE
(
x
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for X tensor : %d (undef)"
,
static_cast
<
unsigned
int
>
(
x
->
format
())));
PADDLE_ENFORCE_EQ
(
y
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Y tensor. Expected: %d (kMKLDNN), Actual: %d"
,
DataLayout
::
kMKLDNN
,
y
->
layout
()));
PADDLE_ENFORCE_NE
(
y
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Y tensor : %d (undef)"
,
static_cast
<
unsigned
int
>
(
y
->
format
())));
const
auto
src_x_tz
=
framework
::
vectorize
(
x
->
dims
());
const
auto
src_y_tz
=
framework
::
vectorize
(
y
->
dims
());
// if output tensor(z) is nullptr then we are computing into oneDNN
// managed buffer
auto
rankdiff
=
x
->
dims
().
size
()
-
y
->
dims
().
size
();
const
auto
dst_tz
=
(
z
==
nullptr
)
?
(
rankdiff
>
0
?
src_x_tz
:
src_y_tz
)
:
framework
::
vectorize
(
z
->
dims
());
auto
src0_md
=
dnnl
::
memory
::
desc
(
src_x_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
auto
src1_md
=
dnnl
::
memory
::
desc
(
src_y_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
y
->
format
());
if
(
rankdiff
>
0
)
{
// Second input is of smaller rank than first
std
::
vector
<
int64_t
>
dims1_ex
(
rankdiff
,
1
);
dims1_ex
.
insert
(
next
(
dims1_ex
.
begin
(),
(
axis
==
-
1
?
rankdiff
:
axis
)),
src_y_tz
.
begin
(),
src_y_tz
.
end
());
src1_md
=
src1_md
.
reshape
(
dims1_ex
);
}
else
if
(
rankdiff
<
0
)
{
// First input is of smaller than second
std
::
vector
<
int64_t
>
dims0_ex
(
-
rankdiff
,
1
);
dims0_ex
.
insert
(
next
(
dims0_ex
.
begin
(),
(
axis
==
-
1
?
-
rankdiff
:
axis
)),
src_x_tz
.
begin
(),
src_x_tz
.
end
());
src0_md
=
src0_md
.
reshape
(
dims0_ex
);
}
const
auto
dst_md
=
memory
::
desc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
float
scale_x
,
float
scale_y
,
float
scale_z
,
const
std
::
string
&
uniq_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
binary
>
(
dev_ctx
,
engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
x
->
dims
()),
uniq_name
))
{
if
(
!
this
->
isCached
())
{
PADDLE_ENFORCE_EQ
(
x
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for X tensor."
));
PADDLE_ENFORCE_NE
(
x
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for X tensor."
));
PADDLE_ENFORCE_EQ
(
y
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Y tensor."
));
PADDLE_ENFORCE_NE
(
y
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Y tensor."
));
const
auto
src_x_tz
=
framework
::
vectorize
(
x
->
dims
());
const
auto
src_y_tz
=
framework
::
vectorize
(
y
->
dims
());
// if output tensor(z) is nullptr then we are computing into oneDNN
// managed buffer
auto
rankdiff
=
x
->
dims
().
size
()
-
y
->
dims
().
size
();
const
auto
dst_tz
=
(
z
==
nullptr
)
?
(
rankdiff
>
0
?
src_x_tz
:
src_y_tz
)
:
framework
::
vectorize
(
z
->
dims
());
auto
src0_md
=
dnnl
::
memory
::
desc
(
src_x_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
auto
src1_md
=
dnnl
::
memory
::
desc
(
src_y_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
y
->
format
());
if
(
rankdiff
>
0
)
{
// Second input is of smaller rank than first
std
::
vector
<
int64_t
>
dims1_ex
(
rankdiff
,
1
);
dims1_ex
.
insert
(
next
(
dims1_ex
.
begin
(),
(
axis
==
-
1
?
rankdiff
:
axis
)),
src_y_tz
.
begin
(),
src_y_tz
.
end
());
src1_md
=
src1_md
.
reshape
(
dims1_ex
);
}
else
if
(
rankdiff
<
0
)
{
// First input is of smaller than second
std
::
vector
<
int64_t
>
dims0_ex
(
-
rankdiff
,
1
);
dims0_ex
.
insert
(
next
(
dims0_ex
.
begin
(),
(
axis
==
-
1
?
-
rankdiff
:
axis
)),
src_x_tz
.
begin
(),
src_x_tz
.
end
());
src0_md
=
src0_md
.
reshape
(
dims0_ex
);
}
const
auto
dst_md
=
memory
::
desc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
auto
attributes
=
CreateAttributes
(
algo
,
scale_x
,
scale_y
,
scale_z
);
this
->
AcquireForwardPrimitiveDescriptor
(
attributes
,
algo
,
src0_md
,
src1_md
,
dst_md
);
auto
attributes
=
CreateAttributes
(
algo
,
scale_x
,
scale_y
,
scale_z
);
this
->
AcquireForwardPrimitiveDescriptor
(
attributes
,
algo
,
src0_md
,
src1_md
,
dst_md
);
}
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireSecondSrcMemory
(
const
framework
::
Tensor
*
input
)
{
const
T
*
input_data
=
input
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
src1_desc
(),
to_void_cast
<
T
>
(
input_data
)
);
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
src1_desc
(),
to_void_cast
<
T
>
(
input_data
),
"@src1_mem_p"
);
}
private:
...
...
@@ -980,95 +775,111 @@ class ReductionMKLDNNHandler
template
<
typename
T
>
class
ActivationMKLDNNHandler
:
public
MKLDNNHandler
NoCaching
T
<
T
,
mkldnn
::
eltwise_forward
,
mkldnn
::
eltwise_backward
>
{
:
public
MKLDNNHandlerT
<
T
,
mkldnn
::
eltwise_forward
,
mkldnn
::
eltwise_backward
>
{
public:
ActivationMKLDNNHandler
(
mkldnn
::
algorithm
algorithm
,
const
framework
::
ExecutionContext
&
ctx
,
const
mkldnn
::
engine
engine
,
Place
cpu_place
,
const
framework
::
Tensor
*
in_x
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
mkldnn
::
eltwise_forward
,
mkldnn
::
eltwise_backward
>
(
engine
,
cpu_place
)
{
float
alpha
=
ctx
.
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
float
>
(
"alpha"
)
:
0
;
float
beta
=
ctx
.
HasAttr
(
"beta"
)
?
ctx
.
Attr
<
float
>
(
"beta"
)
:
0
;
// eltwise_linear means we are in scale op
if
(
algorithm
==
mkldnn
::
algorithm
::
eltwise_linear
)
{
bool
bias_after_scale
=
ctx
.
Attr
<
bool
>
(
"bias_after_scale"
);
auto
*
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"ScaleTensor"
);
alpha
=
(
scale_tensor
==
nullptr
)
?
ctx
.
Attr
<
float
>
(
"scale"
)
:
(
float
)
*
(
scale_tensor
->
data
<
T
>
());
beta
=
ctx
.
Attr
<
float
>
(
"bias"
);
// if bias_after_scale == true
// out = scale*X + bias
// else
// out = scale*(X + bias) = scale*X + scale*bias
if
(
!
bias_after_scale
)
beta
*=
alpha
;
}
else
{
// paddle uses beta but mkldnn uses alpha for swish
if
(
algorithm
==
mkldnn
::
algorithm
::
eltwise_swish
)
{
std
::
swap
(
alpha
,
beta
);
}
else
if
(
algorithm
==
dnnl
::
algorithm
::
eltwise_bounded_relu
)
{
alpha
=
ctx
.
Attr
<
float
>
(
"threshold"
);
const
MKLDNNDeviceContext
&
dev_ctx
,
Place
cpu_place
,
const
framework
::
Tensor
*
in_x
,
const
std
::
string
&
unique_name
,
bool
is_inplaced
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
eltwise_forward
,
mkldnn
::
eltwise_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
is_inplaced
?
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
in_x
->
dims
()),
"a"
,
algorithm
,
unique_name
)
:
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
in_x
->
dims
()),
"a"
,
unique_name
))
{
if
(
!
this
->
isCached
())
{
float
alpha
=
ctx
.
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
float
>
(
"alpha"
)
:
0
;
float
beta
=
ctx
.
HasAttr
(
"beta"
)
?
ctx
.
Attr
<
float
>
(
"beta"
)
:
0
;
// eltwise_linear means we are in scale op
if
(
algorithm
==
mkldnn
::
algorithm
::
eltwise_linear
)
{
bool
bias_after_scale
=
ctx
.
Attr
<
bool
>
(
"bias_after_scale"
);
auto
*
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"ScaleTensor"
);
alpha
=
(
scale_tensor
==
nullptr
)
?
ctx
.
Attr
<
float
>
(
"scale"
)
:
(
float
)
*
(
scale_tensor
->
data
<
T
>
());
beta
=
ctx
.
Attr
<
float
>
(
"bias"
);
// if bias_after_scale == true
// out = scale*X + bias
// else
// out = scale*(X + bias) = scale*X + scale*bias
if
(
!
bias_after_scale
)
beta
*=
alpha
;
}
else
{
// paddle uses beta but mkldnn uses alpha for swish
if
(
algorithm
==
mkldnn
::
algorithm
::
eltwise_swish
)
{
std
::
swap
(
alpha
,
beta
);
}
else
if
(
algorithm
==
dnnl
::
algorithm
::
eltwise_bounded_relu
)
{
alpha
=
ctx
.
Attr
<
float
>
(
"threshold"
);
}
}
}
PADDLE_ENFORCE
(
in_x
->
dims
().
size
()
>=
1
||
in_x
->
dims
().
size
()
<=
6
,
platform
::
errors
::
Unimplemented
(
"Input dimension size can be 1, 2, 3, 4, "
"5, or 6, but now the dimension size is"
,
in_x
->
dims
().
size
()));
PADDLE_ENFORCE
(
in_x
->
dims
().
size
()
>=
1
||
in_x
->
dims
().
size
()
<=
6
,
platform
::
errors
::
Unimplemented
(
"Input dimension size can be 1, 2, 3, 4, "
"5, or 6, but now the dimension size is"
,
in_x
->
dims
().
size
()));
auto
src_tz
=
framework
::
vectorize
<
int64_t
>
(
in_x
->
dims
());
auto
src_fmt
=
src_tz
.
size
()
==
2
?
MKLDNNMemoryFormat
::
nc
:
in_x
->
format
();
auto
md
=
mkldnn
::
memory
::
desc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
src_fmt
);
auto
src_tz
=
framework
::
vectorize
<
int64_t
>
(
in_x
->
dims
());
auto
src_fmt
=
src_tz
.
size
()
==
2
?
MKLDNNMemoryFormat
::
nc
:
in_x
->
format
();
auto
md
=
mkldnn
::
memory
::
desc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
src_fmt
);
this
->
AcquireForwardPrimitiveDescriptor
(
mkldnn
::
prop_kind
::
forward_training
,
algorithm
,
md
,
alpha
,
beta
);
this
->
AcquireForwardPrimitiveDescriptor
(
mkldnn
::
prop_kind
::
forward_training
,
algorithm
,
md
,
alpha
,
beta
);
}
}
ActivationMKLDNNHandler
(
mkldnn
::
algorithm
algorithm
,
const
framework
::
ExecutionContext
&
ctx
,
const
mkldnn
::
engine
engine
,
Place
cpu_place
,
const
framework
::
Tensor
*
in_x
,
const
Tensor
*
out_grad
)
:
platform
::
MKLDNNHandlerNoCachingT
<
T
,
mkldnn
::
eltwise_forward
,
mkldnn
::
eltwise_backward
>
(
engine
,
cpu_place
)
{
float
alpha
=
ctx
.
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
float
>
(
"alpha"
)
:
0
;
float
beta
=
ctx
.
HasAttr
(
"beta"
)
?
ctx
.
Attr
<
float
>
(
"beta"
)
:
0
;
// paddle uses beta but mkldnn uses alpha for swish
if
(
algorithm
==
mkldnn
::
algorithm
::
eltwise_swish
)
{
std
::
swap
(
alpha
,
beta
);
}
else
if
(
algorithm
==
dnnl
::
algorithm
::
eltwise_bounded_relu
)
{
alpha
=
ctx
.
Attr
<
float
>
(
"threshold"
);
}
const
MKLDNNDeviceContext
&
dev_ctx
,
Place
cpu_place
,
const
framework
::
Tensor
*
in_x
,
const
Tensor
*
out_grad
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
eltwise_forward
,
mkldnn
::
eltwise_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
in_x
->
dims
()),
"a"
,
unique_name
))
{
if
(
!
this
->
isBwdCached
())
{
float
alpha
=
ctx
.
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
float
>
(
"alpha"
)
:
0
;
float
beta
=
ctx
.
HasAttr
(
"beta"
)
?
ctx
.
Attr
<
float
>
(
"beta"
)
:
0
;
// paddle uses beta but mkldnn uses alpha for swish
if
(
algorithm
==
mkldnn
::
algorithm
::
eltwise_swish
)
{
std
::
swap
(
alpha
,
beta
);
}
else
if
(
algorithm
==
dnnl
::
algorithm
::
eltwise_bounded_relu
)
{
alpha
=
ctx
.
Attr
<
float
>
(
"threshold"
);
}
auto
diff_dst_tz
=
framework
::
vectorize
<
int64_t
>
(
out_grad
->
dims
());
auto
diff_dst_tz
=
framework
::
vectorize
<
int64_t
>
(
out_grad
->
dims
());
auto
src_fmt
=
diff_dst_tz
.
size
()
==
2
?
MKLDNNMemoryFormat
::
nc
:
in_x
->
format
();
auto
diff_fmt
=
diff_dst_tz
.
size
()
==
2
?
MKLDNNMemoryFormat
::
nc
:
out_grad
->
format
();
auto
src_fmt
=
diff_dst_tz
.
size
()
==
2
?
MKLDNNMemoryFormat
::
nc
:
in_x
->
format
();
auto
diff_fmt
=
diff_dst_tz
.
size
()
==
2
?
MKLDNNMemoryFormat
::
nc
:
out_grad
->
format
();
auto
dims
=
framework
::
vectorize
(
in_x
->
dims
());
auto
diff_dst_md
=
platform
::
MKLDNNMemDesc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
diff_fmt
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
src_fmt
);
auto
dims
=
framework
::
vectorize
(
in_x
->
dims
());
auto
diff_dst_md
=
platform
::
MKLDNNMemDesc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
diff_fmt
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
src_fmt
);
this
->
AcquireForwardPrimitiveDescriptor
(
mkldnn
::
prop_kind
::
forward_training
,
algorithm
,
src_md
,
alpha
,
beta
);
this
->
AcquireBackwardPrimitiveDescriptor
(
algorithm
,
diff_dst_md
,
src_md
,
alpha
,
beta
);
this
->
AcquireForwardPrimitiveDescriptor
(
mkldnn
::
prop_kind
::
forward_training
,
algorithm
,
src_md
,
alpha
,
beta
);
this
->
AcquireBackwardPrimitiveDescriptor
(
algorithm
,
diff_dst_md
,
src_md
,
alpha
,
beta
);
}
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBackwardSrcMemory
(
const
framework
::
Tensor
*
input
)
{
const
T
*
input_data
=
input
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
this
->
bwd_pd_
->
src_desc
(),
to_void_cast
<
T
>
(
input_data
));
to_void_cast
<
T
>
(
input_data
),
"@bwd-src_mem_p"
);
}
};
...
...
@@ -1619,6 +1430,11 @@ using ConvMKLDNNHandler =
mkldnn
::
convolution_backward_data
,
mkldnn
::
convolution_backward_weights
>
;
using
ConvTransposeMKLDNNHandler
=
ConvMKLDNNTemplateHandler
<
mkldnn
::
deconvolution_forward
,
mkldnn
::
deconvolution_backward_data
,
mkldnn
::
deconvolution_backward_weights
>
;
template
<
typename
T
>
static
std
::
shared_ptr
<
mkldnn
::
memory
>
SetDstMemory
(
const
framework
::
ExecutionContext
&
ctx
,
framework
::
Tensor
*
output
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录