未验证 提交 dbf07982 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #13498 from luotao1/for_test

use clone(for_test=True) replace get_inference_program
...@@ -73,7 +73,6 @@ paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program', ...@@ -73,7 +73,6 @@ paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program',
paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, True)) paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, True))
paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename', 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename', 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False)) paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False))
paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0)) paddle.fluid.initializer.UniformInitializer.__init__ ArgSpec(args=['self', 'low', 'high', 'seed'], varargs=None, keywords=None, defaults=(-1.0, 1.0, 0))
paddle.fluid.initializer.NormalInitializer.__init__ ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0)) paddle.fluid.initializer.NormalInitializer.__init__ ArgSpec(args=['self', 'loc', 'scale', 'seed'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0))
......
...@@ -46,7 +46,7 @@ from . import transpiler ...@@ -46,7 +46,7 @@ from . import transpiler
from .param_attr import ParamAttr, WeightNormParamAttr from .param_attr import ParamAttr, WeightNormParamAttr
from .data_feeder import DataFeeder from .data_feeder import DataFeeder
from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope
from .transpiler import DistributeTranspiler, InferenceTranspiler, \ from .transpiler import DistributeTranspiler, \
memory_optimize, release_memory, DistributeTranspilerConfig memory_optimize, release_memory, DistributeTranspilerConfig
from .lod_tensor import create_lod_tensor, create_random_int_lodtensor from .lod_tensor import create_lod_tensor, create_random_int_lodtensor
from . import clip from . import clip
......
...@@ -27,8 +27,7 @@ from . import core ...@@ -27,8 +27,7 @@ from . import core
__all__ = [ __all__ = [
'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params', 'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
'load_persistables', 'save_inference_model', 'load_inference_model', 'load_persistables', 'save_inference_model', 'load_inference_model'
'get_inference_program'
] ]
...@@ -504,23 +503,6 @@ def load_persistables(executor, dirname, main_program=None, filename=None): ...@@ -504,23 +503,6 @@ def load_persistables(executor, dirname, main_program=None, filename=None):
filename=filename) filename=filename)
def get_inference_program(target_vars, main_program=None):
if main_program is None:
main_program = default_main_program()
if not isinstance(target_vars, list):
target_vars = [target_vars]
vars = []
for var in target_vars:
if isinstance(var, Evaluator):
vars.extend(var.states)
vars.extend(var.metrics)
else:
vars.append(var)
pruned_program = main_program._prune(targets=vars)
inference_program = pruned_program._inference_optimize()
return inference_program
def prepend_feed_ops(inference_program, def prepend_feed_ops(inference_program,
feed_target_names, feed_target_names,
feed_holder_name='feed'): feed_holder_name='feed'):
......
...@@ -437,13 +437,8 @@ def split_data(data, num_part): ...@@ -437,13 +437,8 @@ def split_data(data, num_part):
] ]
def test_context(train_progm, avg_cost, train_exe, dev_count, data_input_names, def test_context(test_program, avg_cost, train_exe, dev_count, data_input_names,
sum_cost, token_num): sum_cost, token_num):
# Context to do validation.
test_program = train_progm.clone()
with fluid.program_guard(test_program):
test_program = fluid.io.get_inference_program([avg_cost])
val_data = DataReader( val_data = DataReader(
src_vocab_fpath=TrainTaskConfig.src_vocab_fpath, src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath, trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
...@@ -505,7 +500,7 @@ def test_context(train_progm, avg_cost, train_exe, dev_count, data_input_names, ...@@ -505,7 +500,7 @@ def test_context(train_progm, avg_cost, train_exe, dev_count, data_input_names,
def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
token_num, predict): token_num, predict, test_program):
# Initialize the parameters. # Initialize the parameters.
if TrainTaskConfig.ckpt_path: if TrainTaskConfig.ckpt_path:
lr_scheduler.current_steps = TrainTaskConfig.start_step lr_scheduler.current_steps = TrainTaskConfig.start_step
...@@ -554,7 +549,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, ...@@ -554,7 +549,7 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
-1] + label_data_input_fields -1] + label_data_input_fields
if TrainTaskConfig.val_file_pattern is not None: if TrainTaskConfig.val_file_pattern is not None:
test = test_context(train_progm, avg_cost, train_exe, dev_count, test = test_context(test_program, avg_cost, train_exe, dev_count,
data_input_names, sum_cost, token_num) data_input_names, sum_cost, token_num)
# the best cross-entropy value with label smoothing # the best cross-entropy value with label smoothing
...@@ -1647,6 +1642,8 @@ def get_model(is_dist, is_async): ...@@ -1647,6 +1642,8 @@ def get_model(is_dist, is_async):
local_lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model, local_lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
TrainTaskConfig.warmup_steps, TrainTaskConfig.warmup_steps,
TrainTaskConfig.learning_rate) TrainTaskConfig.learning_rate)
# Context to do validation.
test_program = fluid.default_main_program().clone(for_test=True)
if not is_dist: if not is_dist:
optimizer = fluid.optimizer.Adam( optimizer = fluid.optimizer.Adam(
...@@ -1671,7 +1668,7 @@ def get_model(is_dist, is_async): ...@@ -1671,7 +1668,7 @@ def get_model(is_dist, is_async):
epsilon=TrainTaskConfig.eps) epsilon=TrainTaskConfig.eps)
optimizer.minimize(sum_cost) optimizer.minimize(sum_cost)
return sum_cost, avg_cost, predict, token_num, local_lr_scheduler return sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program
def update_args(): def update_args():
...@@ -1705,7 +1702,7 @@ class DistTransformer2x2(TestDistRunnerBase): ...@@ -1705,7 +1702,7 @@ class DistTransformer2x2(TestDistRunnerBase):
def run_trainer(self, use_cuda, args): def run_trainer(self, use_cuda, args):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
TrainTaskConfig.use_gpu = use_cuda TrainTaskConfig.use_gpu = use_cuda
sum_cost, avg_cost, predict, token_num, local_lr_scheduler = get_model( sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program = get_model(
args.is_dist, not args.sync_mode) args.is_dist, not args.sync_mode)
if args.is_dist: if args.is_dist:
...@@ -1726,7 +1723,7 @@ class DistTransformer2x2(TestDistRunnerBase): ...@@ -1726,7 +1723,7 @@ class DistTransformer2x2(TestDistRunnerBase):
TrainTaskConfig.local = not args.is_dist TrainTaskConfig.local = not args.is_dist
train_loop(startup_exe, trainer_prog, 1, sum_cost, avg_cost, train_loop(startup_exe, trainer_prog, 1, sum_cost, avg_cost,
local_lr_scheduler, token_num, predict) local_lr_scheduler, token_num, predict, test_program)
if __name__ == "__main__": if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册