diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 82f3d66ded9c12f6625cfe2cafeba956f5265efd..d55a1a6f6a89337e3756083dadff9c4c6f1f9b26 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -654,6 +654,29 @@ class WhileGuard(BlockGuard): class While(object): + """ + while loop control flow. + + Args: + cond (Variable): condition used to compare. + name (str): The name of this layer. + + Examples: + .. code-block:: python + + d0 = layers.data("d0", shape=[10], dtype='float32') + data_array = layers.array_write(x=d0, i=i) + array_len = layers.fill_constant(shape=[1],dtype='int64', value=3) + + cond = layers.less_than(x=i, y=array_len) + while_op = layers.While(cond=cond) + with while_op.block(): + d = layers.array_read(array=data_array, i=i) + i = layers.increment(x=i, in_place=True) + layers.array_write(result, i=i, array=d) + layers.less_than(x=i, y=array_len, cond=cond) + """ + BEFORE_WHILE_BLOCK = 0 IN_WHILE_BLOCK = 1 AFTER_WHILE_BLOCK = 2 diff --git a/python/paddle/fluid/layers/learning_rate_scheduler.py b/python/paddle/fluid/layers/learning_rate_scheduler.py index 716cc7824eff0c56cc55a055310fa8b1913ac5e6..fef1dca61b75bf0a7d696a57149a887706582368 100644 --- a/python/paddle/fluid/layers/learning_rate_scheduler.py +++ b/python/paddle/fluid/layers/learning_rate_scheduler.py @@ -209,15 +209,27 @@ def polynomial_decay(learning_rate, def piecewise_decay(boundaries, values): """Applies piecewise decay to the initial learning rate. - >>> boundaries = [10000, 20000] - >>> values = [1.0, 0.5, 0.1] - >>> - >>> if step < 10000: - >>> learning_rate = 1.0 - >>> elif 10000 <= step < 20000: - >>> learning_rate = 0.5 - >>> else: - >>> learning_rate = 0.1 + The algorithm can be described as the code below. + + .. code-block:: python + + boundaries = [10000, 20000] + values = [1.0, 0.5, 0.1] + if step < 10000: + learning_rate = 1.0 + elif 10000 <= step < 20000: + learning_rate = 0.5 + else: + learning_rate = 0.1 + Args: + boundaries: A list of steps numbers. + values: A list of learning rate values that will be picked during + different step boundaries. + + Returns: + The decayed learning rate. + + """ if len(values) - len(boundaries) != 1: