未验证 提交 da892caf 编写于 作者: W wangguanzhong 提交者: GitHub

Refine api doc (#20037)

* refine doc, test=document_fix

* add API.spec,test=develop,test=document_fix
上级 1a3eef02
...@@ -204,7 +204,7 @@ paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], va ...@@ -204,7 +204,7 @@ paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], va
paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '95aa1972983f30fe9b5a3713e523e20f')) paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '95aa1972983f30fe9b5a3713e523e20f'))
paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)), ('document', '214f1dfbe95a628600bbe99e836319cf')) paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)), ('document', '214f1dfbe95a628600bbe99e836319cf'))
paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', '49368d724023a66b41b0071be41c0ba5')) paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', '49368d724023a66b41b0071be41c0ba5'))
paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '9a7a3b88a4fae41d58d3ca9b10ba0591')) paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', 'dc2e2fa3d6e3d30de0a81e8ee70de733'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '7e8e4bf1f0f8612961ed113e8af8f0c5')) paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '7e8e4bf1f0f8612961ed113e8af8f0c5'))
paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1, 'NCHW')), ('document', 'd29d829607b5ff12924197a3ba296c89')) paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1, 'NCHW')), ('document', 'd29d829607b5ff12924197a3ba296c89'))
paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', 'bd97ebfe4bdf5110a5fcb8ecb626a447')) paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', 'bd97ebfe4bdf5110a5fcb8ecb626a447'))
...@@ -232,7 +232,7 @@ paddle.fluid.layers.pow (ArgSpec(args=['x', 'factor', 'name'], varargs=None, key ...@@ -232,7 +232,7 @@ paddle.fluid.layers.pow (ArgSpec(args=['x', 'factor', 'name'], varargs=None, key
paddle.fluid.layers.stanh (ArgSpec(args=['x', 'scale_a', 'scale_b', 'name'], varargs=None, keywords=None, defaults=(0.6666666666666666, 1.7159, None)), ('document', '1e1efad868714425da15c785dfb533a1')) paddle.fluid.layers.stanh (ArgSpec(args=['x', 'scale_a', 'scale_b', 'name'], varargs=None, keywords=None, defaults=(0.6666666666666666, 1.7159, None)), ('document', '1e1efad868714425da15c785dfb533a1'))
paddle.fluid.layers.hard_sigmoid (ArgSpec(args=['x', 'slope', 'offset', 'name'], varargs=None, keywords=None, defaults=(0.2, 0.5, None)), ('document', '607d79ca873bee40eed1c79a96611591')) paddle.fluid.layers.hard_sigmoid (ArgSpec(args=['x', 'slope', 'offset', 'name'], varargs=None, keywords=None, defaults=(0.2, 0.5, None)), ('document', '607d79ca873bee40eed1c79a96611591'))
paddle.fluid.layers.swish (ArgSpec(args=['x', 'beta', 'name'], varargs=None, keywords=None, defaults=(1.0, None)), ('document', 'e0dc7bc66cba939033bc028d7a62c5f4')) paddle.fluid.layers.swish (ArgSpec(args=['x', 'beta', 'name'], varargs=None, keywords=None, defaults=(1.0, None)), ('document', 'e0dc7bc66cba939033bc028d7a62c5f4'))
paddle.fluid.layers.prelu (ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '2da40e447716338affebfe058d05d9a9')) paddle.fluid.layers.prelu (ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '1fadca6622c70bd33cc260817f4ff191'))
paddle.fluid.layers.brelu (ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs=None, keywords=None, defaults=(0.0, 24.0, None)), ('document', '49580538249a52c857fce75c94ad8af7')) paddle.fluid.layers.brelu (ArgSpec(args=['x', 't_min', 't_max', 'name'], varargs=None, keywords=None, defaults=(0.0, 24.0, None)), ('document', '49580538249a52c857fce75c94ad8af7'))
paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None)), ('document', '1eb3009c69060299ec87949ee0d4b9ae')) paddle.fluid.layers.leaky_relu (ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(0.02, None)), ('document', '1eb3009c69060299ec87949ee0d4b9ae'))
paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', '6455afd2498b00198f53f83d63d6c6a4')) paddle.fluid.layers.soft_relu (ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(40.0, None)), ('document', '6455afd2498b00198f53f83d63d6c6a4'))
...@@ -271,11 +271,11 @@ paddle.fluid.layers.logical_or (ArgSpec(args=['x', 'y', 'out', 'name'], varargs= ...@@ -271,11 +271,11 @@ paddle.fluid.layers.logical_or (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=
paddle.fluid.layers.logical_xor (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '77ccf37b710c507dd97e03f08ce8bb29')) paddle.fluid.layers.logical_xor (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '77ccf37b710c507dd97e03f08ce8bb29'))
paddle.fluid.layers.logical_not (ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6e2fe8a322ec69811f6507d22acf8f9f')) paddle.fluid.layers.logical_not (ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6e2fe8a322ec69811f6507d22acf8f9f'))
paddle.fluid.layers.clip (ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0ce33756573c572da67302499455dbcd')) paddle.fluid.layers.clip (ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0ce33756573c572da67302499455dbcd'))
paddle.fluid.layers.clip_by_norm (ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '99a1b9012d9c4495efc89d69958c3be7')) paddle.fluid.layers.clip_by_norm (ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '1fc6e217c7a6128df31b806c1a8067ff'))
paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '597257fb94d0597c404a6a5c91ab5258')) paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '597257fb94d0597c404a6a5c91ab5258'))
paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', '784b7e36cea88493f9e37a41b10fbf4d')) paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', '784b7e36cea88493f9e37a41b10fbf4d'))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '7637c974f2d749d359acae9062c4d96f')) paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '7637c974f2d749d359acae9062c4d96f'))
paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '22df6542f3f9aa3f34c0c2dab5dc1d80')) paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '169882eb87fb693198e0153629134c22'))
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '26decdea9376b6b9a0d3432d82ca207b')) paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '26decdea9376b6b9a0d3432d82ca207b'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f85b263b7b6698d000977529a28f202b')) paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'f85b263b7b6698d000977529a28f202b'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65c8362e48810b8226e311c5d046db51')) paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '65c8362e48810b8226e311c5d046db51'))
...@@ -412,30 +412,30 @@ paddle.fluid.layers.thresholded_relu (ArgSpec(args=['x', 'threshold'], varargs=N ...@@ -412,30 +412,30 @@ paddle.fluid.layers.thresholded_relu (ArgSpec(args=['x', 'threshold'], varargs=N
paddle.fluid.layers.prior_box (ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False)), ('document', '0fdf82762fd0a5acb2578a72771b5b44')) paddle.fluid.layers.prior_box (ArgSpec(args=['input', 'image', 'min_sizes', 'max_sizes', 'aspect_ratios', 'variance', 'flip', 'clip', 'steps', 'offset', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, [1.0], [0.1, 0.1, 0.2, 0.2], False, False, [0.0, 0.0], 0.5, None, False)), ('document', '0fdf82762fd0a5acb2578a72771b5b44'))
paddle.fluid.layers.density_prior_box (ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', 'flatten_to_2d', 'name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5, False, None)), ('document', '7a484a0da5e993a7734867a3dfa86571')) paddle.fluid.layers.density_prior_box (ArgSpec(args=['input', 'image', 'densities', 'fixed_sizes', 'fixed_ratios', 'variance', 'clip', 'steps', 'offset', 'flatten_to_2d', 'name'], varargs=None, keywords=None, defaults=(None, None, None, [0.1, 0.1, 0.2, 0.2], False, [0.0, 0.0], 0.5, False, None)), ('document', '7a484a0da5e993a7734867a3dfa86571'))
paddle.fluid.layers.multi_box_head (ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False)), ('document', 'fd58078fdfffd899b91f992ba224628f')) paddle.fluid.layers.multi_box_head (ArgSpec(args=['inputs', 'image', 'base_size', 'num_classes', 'aspect_ratios', 'min_ratio', 'max_ratio', 'min_sizes', 'max_sizes', 'steps', 'step_w', 'step_h', 'offset', 'variance', 'flip', 'clip', 'kernel_size', 'pad', 'stride', 'name', 'min_max_aspect_ratios_order'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, 0.5, [0.1, 0.1, 0.2, 0.2], True, False, 1, 0, 1, None, False)), ('document', 'fd58078fdfffd899b91f992ba224628f'))
paddle.fluid.layers.bipartite_match (ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '080ce0d54d3f1950ad5a3a8e5ae529e9')) paddle.fluid.layers.bipartite_match (ArgSpec(args=['dist_matrix', 'match_type', 'dist_threshold', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '409c351dee8a4a4ea02771dc691b49cb'))
paddle.fluid.layers.target_assign (ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'e9685f32d21bec8c013626c0254502c5')) paddle.fluid.layers.target_assign (ArgSpec(args=['input', 'matched_indices', 'negative_indices', 'mismatch_value', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'e9685f32d21bec8c013626c0254502c5'))
paddle.fluid.layers.detection_output (ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta', 'return_index'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0, False)), ('document', '5485bcaceb0cde2695565a2ffd5bbd40')) paddle.fluid.layers.detection_output (ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta', 'return_index'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0, False)), ('document', '5485bcaceb0cde2695565a2ffd5bbd40'))
paddle.fluid.layers.ssd_loss (ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None)), ('document', '14d1eeae0f41b6792be43c1c0be0589b')) paddle.fluid.layers.ssd_loss (ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None)), ('document', '14d1eeae0f41b6792be43c1c0be0589b'))
paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True)), ('document', '651d98d51879dfa1bc1cd40391786a41')) paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True)), ('document', '651d98d51879dfa1bc1cd40391786a41'))
paddle.fluid.layers.retinanet_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'gt_labels', 'is_crowd', 'im_info', 'num_classes', 'positive_overlap', 'negative_overlap'], varargs=None, keywords=None, defaults=(1, 0.5, 0.4)), ('document', 'fa1d1c9d5e0111684c0db705f86a2595')) paddle.fluid.layers.retinanet_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'gt_labels', 'is_crowd', 'im_info', 'num_classes', 'positive_overlap', 'negative_overlap'], varargs=None, keywords=None, defaults=(1, 0.5, 0.4)), ('document', 'fa1d1c9d5e0111684c0db705f86a2595'))
paddle.fluid.layers.sigmoid_focal_loss (ArgSpec(args=['x', 'label', 'fg_num', 'gamma', 'alpha'], varargs=None, keywords=None, defaults=(2, 0.25)), ('document', 'aeac6aae100173b3fc7f102cf3023a3d')) paddle.fluid.layers.sigmoid_focal_loss (ArgSpec(args=['x', 'label', 'fg_num', 'gamma', 'alpha'], varargs=None, keywords=None, defaults=(2, 0.25)), ('document', 'aeac6aae100173b3fc7f102cf3023a3d'))
paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', '0aaacaf9858b8270a8ab5b0aacdd94b7')) paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', 'd25e5e90f9a342764f32b5cd48657148'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', 'a82016342789ba9d85737e405f824ff1')) paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', 'a82016342789ba9d85737e405f824ff1'))
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random', 'is_cls_agnostic', 'is_cascade_rcnn'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True, False, False)), ('document', '69def376b42ef0681d0cc7f53a2dac4b')) paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random', 'is_cls_agnostic', 'is_cascade_rcnn'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True, False, False)), ('document', '69def376b42ef0681d0cc7f53a2dac4b'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', 'b7d707822b6af2a586bce608040235b1')) paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', 'b7d707822b6af2a586bce608040235b1'))
paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'b319b10ddaf17fb4ddf03518685a17ef')) paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'b319b10ddaf17fb4ddf03518685a17ef'))
paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '72fca4a39ccf82d5c746ae62d1868a99')) paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '72fca4a39ccf82d5c746ae62d1868a99'))
paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '4c6225fc1a1c0b84955a8f0013008243')) paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0)), ('document', '1d5144c3856673d05c29c752c7c8f821'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e308ce1661cb722b220a6f482f85b9e4')) paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e308ce1661cb722b220a6f482f85b9e4'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '400403175718d5a632402cdae88b01b8')) paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', '400403175718d5a632402cdae88b01b8'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ed56ff21536ca5c8ad418d0cfaf6a7b9')) paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ed56ff21536ca5c8ad418d0cfaf6a7b9'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '9ddee76cb808db83768bf68010e39b2b')) paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '882c99ed2adad54f612a40275b881850'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'f6e333d76922c6e564413b4d216c245c')) paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'f6e333d76922c6e564413b4d216c245c'))
paddle.fluid.layers.multiclass_nms2 (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'return_index', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, False, None)), ('document', 'be156186ee7a2ee56ab30b964acb15e5')) paddle.fluid.layers.multiclass_nms2 (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'return_index', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, False, None)), ('document', 'be156186ee7a2ee56ab30b964acb15e5'))
paddle.fluid.layers.retinanet_detection_output (ArgSpec(args=['bboxes', 'scores', 'anchors', 'im_info', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0.05, 1000, 100, 0.3, 1.0)), ('document', '078d28607ce261a0cba2b965a79f6bb8')) paddle.fluid.layers.retinanet_detection_output (ArgSpec(args=['bboxes', 'scores', 'anchors', 'im_info', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0.05, 1000, 100, 0.3, 1.0)), ('document', '078d28607ce261a0cba2b965a79f6bb8'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6c023b9401214ae387a8b2d92638e5e4')) paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'be432c9b5f19ccba7aca38789ead29e4'))
paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3619a7847709f5868f5e929065947b38')) paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5203935538d06a6d47b8630ad80cb2b0'))
paddle.fluid.layers.collect_fpn_proposals (ArgSpec(args=['multi_rois', 'multi_scores', 'min_level', 'max_level', 'post_nms_top_n', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '80a75103e001ca1ba056fbbe0c6a19f3')) paddle.fluid.layers.collect_fpn_proposals (ArgSpec(args=['multi_rois', 'multi_scores', 'min_level', 'max_level', 'post_nms_top_n', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '808fcca082e0040e2b77dbc53a0cf9d5'))
paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', 'ef799022a6040597462ae2b3d2f1c407')) paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', 'ef799022a6040597462ae2b3d2f1c407'))
paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', '34b4575807f955f7e8698b8dead23858')) paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', '34b4575807f955f7e8698b8dead23858'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', 'eaf430c5a0380fb11bfe9a8922cd6295')) paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', 'eaf430c5a0380fb11bfe9a8922cd6295'))
......
...@@ -105,10 +105,11 @@ class ClipByNormOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -105,10 +105,11 @@ class ClipByNormOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("X", AddInput("X",
"(Tensor) The input of clip_by_norm op." "(Tensor) The input of clip_by_norm op and data type is float32."
"The number of dimensions must be between [1, 9]."); "The number of dimensions must be between [1, 9].");
AddOutput("Out", AddOutput("Out",
"(Tensor) The output of clip_by_norm op with shape as input(X)"); "(Tensor) The output of clip_by_norm op with shape as input(X)"
"The data type is float32.");
AddAttr<float>("max_norm", "(float) The maximum norm value."); AddAttr<float>("max_norm", "(float) The maximum norm value.");
AddComment(R"DOC( AddComment(R"DOC(
ClipByNorm Operator. ClipByNorm Operator.
......
...@@ -25,11 +25,13 @@ class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -25,11 +25,13 @@ class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
void Make() override { void Make() override {
AddInput( AddInput(
"X", "X",
"(Tensor) The input tensor of maxout operator. " "(Tensor) The input tensor of maxout operator with data type of "
"The format of input tensor is NCHW. Where N is batch size, C is the " "float32. The format of input tensor is NCHW. Where N is batch size,"
"number of channels, H and W is the height and width of feature."); " C is the number of channels, H and W is the height and width of "
"feature.");
AddOutput("Out", AddOutput("Out",
"(Tensor) The output tensor of maxout operator." "(Tensor) The output tensor of maxout operator."
"The data type is float32."
"The format of output tensor is also NCHW." "The format of output tensor is also NCHW."
"Where N is batch size, C is " "Where N is batch size, C is "
"the number of channels, H and W is the height and " "the number of channels, H and W is the height and "
......
...@@ -95,7 +95,7 @@ class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -95,7 +95,7 @@ class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker {
void Make() override { void Make() override {
AddInput("X", AddInput("X",
"(Tensor), " "(Tensor), "
"The input of ROIAlignOp. " "The input of ROIAlignOp. The data type is float32 or float64."
"The format of input tensor is NCHW. Where N is batch size, " "The format of input tensor is NCHW. Where N is batch size, "
"C is the number of input channels, " "C is the number of input channels, "
"H is the height of the feature, and " "H is the height of the feature, and "
...@@ -110,7 +110,8 @@ class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -110,7 +110,8 @@ class ROIAlignOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput("Out", AddOutput("Out",
"(Tensor), " "(Tensor), "
"The output of ROIAlignOp is a 4-D tensor with shape " "The output of ROIAlignOp is a 4-D tensor with shape "
"(num_rois, channels, pooled_h, pooled_w)."); "(num_rois, channels, pooled_h, pooled_w). The data type is "
"float32 or float64.");
AddAttr<float>("spatial_scale", AddAttr<float>("spatial_scale",
"(float, default 1.0), " "(float, default 1.0), "
"Multiplicative spatial scale factor " "Multiplicative spatial scale factor "
......
...@@ -672,64 +672,78 @@ def box_coder(prior_box, ...@@ -672,64 +672,78 @@ def box_coder(prior_box,
Args: Args:
prior_box(Variable): Box list prior_box is a 2-D Tensor with shape prior_box(Variable): Box list prior_box is a 2-D Tensor with shape
[M, 4] holds M boxes, each box is represented as [M, 4] holds M boxes and data type is float32 or float64. Each box
[xmin, ymin, xmax, ymax], [xmin, ymin] is the is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the
left top coordinate of the anchor box, if the left top coordinate of the anchor box, if the input is image feature
input is image feature map, they are close to map, they are close to the origin of the coordinate system.
the origin of the coordinate system. [xmax, ymax] [xmax, ymax] is the right bottom coordinate of the anchor box.
is the right bottom coordinate of the anchor box. prior_box_var(List|Variable|None): prior_box_var supports three types
prior_box_var(Variable|list|None): prior_box_var supports two types of input. One is variable with shape [M, 4] which holds M group and
of input. One is variable with shape [M, 4] data type is float32 or float64. The second is list consist of
holds M group. The other one is list consist of 4 elements shared by all boxes and data type is float32 or float64.
4 elements shared by all boxes. Other is None and not involved in calculation.
target_box(Variable): This input can be a 2-D LoDTensor with shape target_box(Variable): This input can be a 2-D LoDTensor with shape
[N, 4] when code_type is 'encode_center_size'. [N, 4] when code_type is 'encode_center_size'. This input also can
This input also can be a 3-D Tensor with shape be a 3-D Tensor with shape [N, M, 4] when code_type is
[N, M, 4] when code_type is 'decode_center_size'. 'decode_center_size'. Each box is represented as
Each box is represented as [xmin, ymin, xmax, ymax]. The data type is float32 or float64.
[xmin, ymin, xmax, ymax]. This tensor can This tensor can contain LoD information to represent a batch of inputs.
contain LoD information to represent a batch code_type(str): The code type used with the target box. It can be
of inputs. `encode_center_size` or `decode_center_size`. `encode_center_size`
code_type(string): The code type used with the target box. It can be by default.
encode_center_size or decode_center_size box_normalized(bool): Whether treat the priorbox as a noramlized box.
box_normalized(int): Whether treat the priorbox as a noramlized box.
Set true by default. Set true by default.
name(string): The name of box coder. name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
axis(int): Which axis in PriorBox to broadcast for box decode, axis(int): Which axis in PriorBox to broadcast for box decode,
for example, if axis is 0 and TargetBox has shape for example, if axis is 0 and TargetBox has shape [N, M, 4] and
[N, M, 4] and PriorBox has shape [M, 4], then PriorBox PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4]
will broadcast to [N, M, 4] for decoding. It is only valid for decoding. It is only valid when code type is
when code type is decode_center_size. Set 0 by default. `decode_center_size`. Set 0 by default.
Returns: Returns:
Variable:
output_box(Variable): When code_type is 'encode_center_size', the output_box(Variable): When code_type is 'encode_center_size', the
output tensor of box_coder_op with shape output tensor of box_coder_op with shape [N, M, 4] representing the
[N, M, 4] representing the result of N target result of N target boxes encoded with M Prior boxes and variances.
boxes encoded with M Prior boxes and variances. When code_type is 'decode_center_size', N represents the batch size
When code_type is 'decode_center_size', and M represents the number of deocded boxes.
N represents the batch size and M represents
the number of deocded boxes.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
prior_box = fluid.layers.data(name='prior_box', # For encode
prior_box_encode = fluid.layers.data(name='prior_box_encode',
shape=[512, 4],
dtype='float32',
append_batch_size=False)
target_box_encode = fluid.layers.data(name='target_box_encode',
shape=[81,4],
dtype='float32',
append_batch_size=False)
output_encode = fluid.layers.box_coder(prior_box=prior_box_encode,
prior_box_var=[0.1,0.1,0.2,0.2],
target_box=target_box_encode,
code_type="encode_center_size")
# For decode
prior_box_decode = fluid.layers.data(name='prior_box_decode',
shape=[512, 4], shape=[512, 4],
dtype='float32', dtype='float32',
append_batch_size=False) append_batch_size=False)
target_box = fluid.layers.data(name='target_box', target_box_decode = fluid.layers.data(name='target_box_decode',
shape=[512,81,4], shape=[512,81,4],
dtype='float32', dtype='float32',
append_batch_size=False) append_batch_size=False)
output = fluid.layers.box_coder(prior_box=prior_box, output_decode = fluid.layers.box_coder(prior_box=prior_box_decode,
prior_box_var=[0.1,0.1,0.2,0.2], prior_box_var=[0.1,0.1,0.2,0.2],
target_box=target_box, target_box=target_box_decode,
code_type="decode_center_size", code_type="decode_center_size",
box_normalized=False, box_normalized=False,
axis=1) axis=1)
""" """
helper = LayerHelper("box_coder", **locals()) helper = LayerHelper("box_coder", **locals())
...@@ -1105,7 +1119,7 @@ def bipartite_match(dist_matrix, ...@@ -1105,7 +1119,7 @@ def bipartite_match(dist_matrix,
also can find the matched row for each column. And this operator only also can find the matched row for each column. And this operator only
calculate matched indices from column to row. For each instance, calculate matched indices from column to row. For each instance,
the number of matched indices is the column number of the input distance the number of matched indices is the column number of the input distance
matrix. matrix. **The OP only supports CPU**.
There are two outputs, matched indices and distance. There are two outputs, matched indices and distance.
A simple description, this algorithm matched the best (maximum distance) A simple description, this algorithm matched the best (maximum distance)
...@@ -1122,33 +1136,35 @@ def bipartite_match(dist_matrix, ...@@ -1122,33 +1136,35 @@ def bipartite_match(dist_matrix,
Args: Args:
dist_matrix(Variable): This input is a 2-D LoDTensor with shape dist_matrix(Variable): This input is a 2-D LoDTensor with shape
[K, M]. It is pair-wise distance matrix between the entities [K, M]. The data type is float32 or float64. It is pair-wise
represented by each row and each column. For example, assumed one distance matrix between the entities represented by each row and
entity is A with shape [K], another entity is B with shape [M]. The each column. For example, assumed one entity is A with shape [K],
dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger another entity is B with shape [M]. The dist_matrix[i][j] is the
the distance is, the better matching the pairs are. distance between A[i] and B[j]. The bigger the distance is, the
better matching the pairs are. NOTE: This tensor can contain LoD
NOTE: This tensor can contain LoD information to represent a batch information to represent a batch of inputs. One instance of this
of inputs. One instance of this batch can contain different numbers batch can contain different numbers of entities.
of entities. match_type(str, optional): The type of matching method, should be
match_type(string|None): The type of matching method, should be 'bipartite' or 'per_prediction'. None ('bipartite') by default.
'bipartite' or 'per_prediction'. [default 'bipartite']. dist_threshold(float32, optional): If `match_type` is 'per_prediction',
dist_threshold(float|None): If `match_type` is 'per_prediction',
this threshold is to determine the extra matching bboxes based this threshold is to determine the extra matching bboxes based
on the maximum distance, 0.5 by default. on the maximum distance, 0.5 by default.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
tuple: a tuple with two elements is returned. The first is Tuple:
matched_indices, the second is matched_distance.
The matched_indices is a 2-D Tensor with shape [N, M] in int type. matched_indices(Variable): A 2-D Tensor with shape [N, M]. The data
N is the batch size. If match_indices[i][j] is -1, it type is int32. N is the batch size. If match_indices[i][j] is -1, it
means B[j] does not match any entity in i-th instance. means B[j] does not match any entity in i-th instance.
Otherwise, it means B[j] is matched to row Otherwise, it means B[j] is matched to row
match_indices[i][j] in i-th instance. The row number of match_indices[i][j] in i-th instance. The row number of
i-th instance is saved in match_indices[i][j]. i-th instance is saved in match_indices[i][j].
The matched_distance is a 2-D Tensor with shape [N, M] in float type matched_distance(Variable): A 2-D Tensor with shape [N, M]. The data
. N is batch size. If match_indices[i][j] is -1, type is float32. N is batch size. If match_indices[i][j] is -1,
match_distance[i][j] is also -1.0. Otherwise, assumed match_distance[i][j] is also -1.0. Otherwise, assumed
match_distance[i][j] = d, and the row offsets of each instance match_distance[i][j] = d, and the row offsets of each instance
are called LoD. Then match_distance[i][j] = are called LoD. Then match_distance[i][j] =
...@@ -2028,31 +2044,35 @@ def anchor_generator(input, ...@@ -2028,31 +2044,35 @@ def anchor_generator(input,
is firstly aspect_ratios loop then anchor_sizes loop. is firstly aspect_ratios loop then anchor_sizes loop.
Args: Args:
input(Variable): The input feature map, the format is NCHW. input(Variable): 4-D Tensor with shape [N,C,H,W]. The input feature map.
anchor_sizes(list|tuple|float): The anchor sizes of generated anchors, anchor_sizes(float32|list|tuple, optional): The anchor sizes of generated
given in absolute pixels e.g. [64., 128., 256., 512.]. anchors, given in absolute pixels e.g. [64., 128., 256., 512.].
For instance, the anchor size of 64 means the area of this anchor equals to 64**2. For instance, the anchor size of 64 means the area of this anchor
aspect_ratios(list|tuple|float): The height / width ratios of generated equals to 64**2. None by default.
anchors, e.g. [0.5, 1.0, 2.0]. aspect_ratios(float32|list|tuple, optional): The height / width ratios
variance(list|tuple): The variances to be used in box regression deltas. of generated anchors, e.g. [0.5, 1.0, 2.0]. None by default.
Default:[0.1, 0.1, 0.2, 0.2]. variance(list|tuple, optional): The variances to be used in box
stride(list|tuple): The anchors stride across width and height,e.g. [16.0, 16.0] regression deltas. The data type is float32, [0.1, 0.1, 0.2, 0.2] by
offset(float): Prior boxes center offset. Default: 0.5 default.
name(str): Name of the prior box op. Default: None. stride(list|tuple, optional): The anchors stride across width and height.
The data type is float32. e.g. [16.0, 16.0]. None by default.
offset(float32, optional): Prior boxes center offset. 0.5 by default.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and None
by default.
Returns: Returns:
Anchors(Variable),Variances(Variable): Tuple:
two variables:
- Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \ Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4].
H is the height of input, W is the width of input, \ H is the height of input, W is the width of input,
num_anchors is the box count of each position. \ num_anchors is the box count of each position.
Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
- Variances(Variable): The expanded variances of anchors \
with a layout of [H, W, num_priors, 4]. \ Variances(Variable): The expanded variances of anchors
H is the height of input, W is the width of input \ with a layout of [H, W, num_priors, 4].
num_anchors is the box count of each position. \ H is the height of input, W is the width of input
num_anchors is the box count of each position.
Each variance is in (xcenter, ycenter, w, h) format. Each variance is in (xcenter, ycenter, w, h) format.
...@@ -2566,15 +2586,22 @@ def box_clip(input, im_info, name=None): ...@@ -2566,15 +2586,22 @@ def box_clip(input, im_info, name=None):
im_w = round(weight / scale) im_w = round(weight / scale)
Args: Args:
input(variable): The input box, the last dimension is 4. input(Variable): The input Tensor with shape :math:`[N_1, N_2, ..., N_k, 4]`,
im_info(variable): The information of image with shape [N, 3] with the last dimension is 4 and data type is float32 or float64.
layout (height, width, scale). height and width im_info(Variable): The 2-D Tensor with shape [N, 3] with layout
is the input size and scale is the ratio of input (height, width, scale) represeting the information of image.
size and original size. height and width is the input size and scale is the ratio of input
name (str): The name of this layer. It is optional. size and original size. The data type is float32 or float64.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
Variable: The cliped tensor variable. Variable:
output(Variable): The cliped tensor with data type float32 or float64.
The shape is same as input.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -2984,12 +3011,12 @@ def distribute_fpn_proposals(fpn_rois, ...@@ -2984,12 +3011,12 @@ def distribute_fpn_proposals(fpn_rois,
refer_scale, refer_scale,
name=None): name=None):
""" """
In Feature Pyramid Networks (FPN) models, it is needed to distribute all **This op only takes LoDTensor as input.** In Feature Pyramid Networks
proposals into different FPN level, with respect to scale of the proposals, (FPN) models, it is needed to distribute all proposals into different FPN
the referring scale and the referring level. Besides, to restore the order level, with respect to scale of the proposals, the referring scale and the
of proposals, we return an array which indicates the original index of rois referring level. Besides, to restore the order of proposals, we return an
in current proposals. To compute FPN level for each roi, the formula is array which indicates the original index of rois in current proposals.
given as follows: To compute FPN level for each roi, the formula is given as follows:
.. math:: .. math::
...@@ -3000,22 +3027,31 @@ def distribute_fpn_proposals(fpn_rois, ...@@ -3000,22 +3027,31 @@ def distribute_fpn_proposals(fpn_rois,
where BBoxArea is a function to compute the area of each roi. where BBoxArea is a function to compute the area of each roi.
Args: Args:
fpn_rois(variable): The input fpn_rois, the second dimension is 4.
min_level(int): The lowest level of FPN layer where the proposals come fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is
float32 or float64. The input fpn_rois.
min_level(int32): The lowest level of FPN layer where the proposals come
from. from.
max_level(int): The highest level of FPN layer where the proposals max_level(int32): The highest level of FPN layer where the proposals
come from. come from.
refer_level(int): The referring level of FPN layer with specified scale. refer_level(int32): The referring level of FPN layer with specified scale.
refer_scale(int): The referring scale of FPN layer with specified level. refer_scale(int32): The referring scale of FPN layer with specified level.
name(str|None): The name of this operator. name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
tuple: Tuple:
A tuple(multi_rois, restore_ind) is returned. The multi_rois is
a list of segmented tensor variables. The restore_ind is a 2D multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4]
Tensor with shape [N, 1], N is the number of total rois. It is and data type of float32 and float64. The length is
max_level-min_level+1. The proposals in each FPN level.
restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is
the number of total rois. The data type is int32. It is
used to restore the order of fpn_rois. used to restore the order of fpn_rois.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -3066,14 +3102,17 @@ def box_decoder_and_assign(prior_box, ...@@ -3066,14 +3102,17 @@ def box_decoder_and_assign(prior_box,
target_box(${target_box_type}): ${target_box_comment} target_box(${target_box_type}): ${target_box_comment}
box_score(${box_score_type}): ${box_score_comment} box_score(${box_score_type}): ${box_score_comment}
box_clip(${box_clip_type}): ${box_clip_comment} box_clip(${box_clip_type}): ${box_clip_comment}
name(str|None): The name of this operator name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
decode_box(Variable), output_assign_box(Variable): Tuple:
decode_box(${decode_box_type}): ${decode_box_comment}
two variables: output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
- decode_box(${decode_box_type}): ${decode_box_comment}
- output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -3122,8 +3161,9 @@ def collect_fpn_proposals(multi_rois, ...@@ -3122,8 +3161,9 @@ def collect_fpn_proposals(multi_rois,
post_nms_top_n, post_nms_top_n,
name=None): name=None):
""" """
Concat multi-level RoIs (Region of Interest) and select N RoIs **This OP only supports LoDTensor as input**. Concat multi-level RoIs
with respect to multi_scores. This operation performs the following steps: (Region of Interest) and select N RoIs with respect to multi_scores.
This operation performs the following steps:
1. Choose num_level RoIs and scores as input: num_level = max_level - min_level 1. Choose num_level RoIs and scores as input: num_level = max_level - min_level
2. Concat multi-level RoIs and scores 2. Concat multi-level RoIs and scores
...@@ -3132,15 +3172,25 @@ def collect_fpn_proposals(multi_rois, ...@@ -3132,15 +3172,25 @@ def collect_fpn_proposals(multi_rois,
5. Re-sort RoIs by corresponding batch_id 5. Re-sort RoIs by corresponding batch_id
Args: Args:
multi_ros(list): List of RoIs to collect multi_rois(list): List of RoIs to collect. Element in list is 2-D
multi_scores(list): List of scores LoDTensor with shape [N, 4] and data type is float32 or float64,
N is the number of RoIs.
multi_scores(list): List of scores of RoIs to collect. Element in list
is 2-D LoDTensor with shape [N, 1] and data type is float32 or
float64, N is the number of RoIs.
min_level(int): The lowest level of FPN layer to collect min_level(int): The lowest level of FPN layer to collect
max_level(int): The highest level of FPN layer to collect max_level(int): The highest level of FPN layer to collect
post_nms_top_n(int): The number of selected RoIs post_nms_top_n(int): The number of selected RoIs
name(str|None): A name for this layer(optional) name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
Variable: Output variable of selected RoIs. Variable:
fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is
float32 or float64. Selected RoIs.
Examples: Examples:
.. code-block:: python .. code-block:: python
......
...@@ -8154,17 +8154,24 @@ def roi_align(input, ...@@ -8154,17 +8154,24 @@ def roi_align(input,
Args: Args:
input (Variable): ${x_comment} input (Variable): ${x_comment}
rois (Variable): ROIs (Regions of Interest) to pool over.It should be rois (Variable): ROIs (Regions of Interest) to pool over.It should be
a 2-D LoDTensor of shape (num_rois, 4), the lod level a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The
is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is data type is float32 or float64. Given as [[x1, y1, x2, y2], ...],
the top left coordinates, and (x2, y2) is the bottom (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
right coordinates. right coordinates.
pooled_height (integer): ${pooled_height_comment} Default: 1 pooled_height (int32, optional): ${pooled_height_comment} Default: 1
pooled_width (integer): ${pooled_width_comment} Default: 1 pooled_width (int32, optional): ${pooled_width_comment} Default: 1
spatial_scale (float): ${spatial_scale_comment} Default: 1.0 spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
sampling_ratio(intger): ${sampling_ratio_comment} Default: -1 sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
Variable: ${out_comment}. Variable:
Output: ${out_comment}.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -10498,15 +10505,20 @@ def prelu(x, mode, param_attr=None, name=None): ...@@ -10498,15 +10505,20 @@ def prelu(x, mode, param_attr=None, name=None):
element: All elements do not share alpha. Each element has its own alpha. element: All elements do not share alpha. Each element has its own alpha.
Args: Args:
x (Variable): The input tensor. x (Variable): The input Tensor or LoDTensor with data type float32.
mode (string): The mode for weight sharing. mode (str): The mode for weight sharing.
param_attr(ParamAttr|None): The parameter attribute for the learnable param_attr(ParamAttr|None): The parameter attribute for the learnable
weight (alpha), it can be create by ParamAttr. weight (alpha), it can be create by ParamAttr. None by default.
name(str|None): A name for this layer(optional). If set None, the layer For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
will be named automatically. name(str|None): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
Variable: The output tensor with the same shape as input. Variable:
output(Variable): The tensor or LoDTensor with the same shape as input.
The data type is float32.
Examples: Examples:
...@@ -12561,11 +12573,16 @@ def clip_by_norm(x, max_norm, name=None): ...@@ -12561,11 +12573,16 @@ def clip_by_norm(x, max_norm, name=None):
Args: Args:
x(${x_type}): ${x_comment} x(${x_type}): ${x_comment}
max_norm(${max_norm_type}): ${max_norm_comment} max_norm(${max_norm_type}): ${max_norm_comment}
name(basestring|None): Name of the output. name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
Variable:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -12771,11 +12788,16 @@ def maxout(x, groups, name=None): ...@@ -12771,11 +12788,16 @@ def maxout(x, groups, name=None):
Args: Args:
x(${x_type}): ${x_comment} x(${x_type}): ${x_comment}
groups(${groups_type}): ${groups_comment} groups(${groups_type}): ${groups_comment}
name(basestring|None): Name of the output. name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns: Returns:
Variable:
out(${out_type}): ${out_comment} out(${out_type}): ${out_comment}
Examples: Examples:
.. code-block:: python .. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册