Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
da261732
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
da261732
编写于
8月 24, 2021
作者:
R
ronnywang
提交者:
GitHub
8月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add pool2 op and tests (#34770)
* add pool2d_op_npu and test * update * update pool2d_backward_navie * clean headers
上级
10563791
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
980 addition
and
0 deletion
+980
-0
paddle/fluid/operators/pool_op_npu.cc
paddle/fluid/operators/pool_op_npu.cc
+294
-0
python/paddle/fluid/tests/unittests/npu/test_pool2d_op_npu.py
...on/paddle/fluid/tests/unittests/npu/test_pool2d_op_npu.py
+686
-0
未找到文件。
paddle/fluid/operators/pool_op_npu.cc
0 → 100644
浏览文件 @
da261732
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
NPUPoolOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>();
const
Tensor
*
in_x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
bool
global_pooling
=
ctx
.
Attr
<
bool
>
(
"global_pooling"
);
bool
ceil_mode
=
ctx
.
Attr
<
bool
>
(
"ceil_mode"
);
bool
exclusive
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
bool
adaptive
=
ctx
.
Attr
<
bool
>
(
"adaptive"
);
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
const
bool
channel_last
=
data_format
==
"NHWC"
;
auto
in_x_dims
=
in_x
->
dims
();
auto
out_dims
=
out
->
dims
();
framework
::
DDim
data_dims
;
framework
::
DDim
out_data_dims
;
Tensor
in_x_tensor
,
out_tensor
;
in_x_tensor
.
ShareDataWith
(
*
in_x
);
out_tensor
.
ShareDataWith
(
*
out
);
std
::
vector
<
int
>
ksize_vec
(
4
,
1
);
std
::
vector
<
int
>
strides_vec
(
4
,
1
);
if
(
channel_last
)
{
data_dims
=
framework
::
slice_ddim
(
in_x_dims
,
1
,
in_x_dims
.
size
()
-
1
);
out_data_dims
=
framework
::
slice_ddim
(
out_dims
,
1
,
out_dims
.
size
()
-
1
);
ksize_vec
[
1
]
=
ksize
[
0
];
ksize_vec
[
2
]
=
ksize
[
1
];
strides_vec
[
1
]
=
strides
[
0
];
strides_vec
[
2
]
=
strides
[
1
];
in_x_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
out_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
}
else
{
data_dims
=
framework
::
slice_ddim
(
in_x_dims
,
2
,
in_x_dims
.
size
());
out_data_dims
=
framework
::
slice_ddim
(
out_dims
,
2
,
out_dims
.
size
());
ksize_vec
[
2
]
=
ksize
[
0
];
ksize_vec
[
3
]
=
ksize
[
1
];
strides_vec
[
2
]
=
strides
[
0
];
strides_vec
[
3
]
=
strides
[
1
];
}
UpdatePadding
(
&
paddings
,
global_pooling
,
adaptive
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
PADDLE_ENFORCE_LT
(
std
::
max
(
paddings
[
0
],
paddings
[
1
]),
ksize
[
0
],
platform
::
errors
::
InvalidArgument
(
"Paddings should be less than %d, but max(pads[0], pads[1]) is %d."
,
ksize
[
0
],
std
::
max
(
paddings
[
0
],
paddings
[
1
])));
PADDLE_ENFORCE_LT
(
std
::
max
(
paddings
[
2
],
paddings
[
3
]),
ksize
[
1
],
platform
::
errors
::
InvalidArgument
(
"Paddings should be less than %d, but max(pads[2], pads[3]) is %d."
,
ksize
[
1
],
std
::
max
(
paddings
[
2
],
paddings
[
3
])));
if
(
adaptive
)
{
std
::
string
pooling_mode
=
"AdaptiveAvgPool2d"
;
if
(
pooling_type
==
"max"
)
{
pooling_mode
=
"AdaptiveMaxPool2d"
;
}
// AdaptiveAvgPool2d only support NCHW
Tensor
transformed_input
,
transformed_output
;
if
(
pooling_type
==
"avg"
&&
channel_last
)
{
transformed_input
.
mutable_data
<
T
>
(
framework
::
make_dim
(
in_x_dims
[
0
],
in_x_dims
[
3
],
in_x_dims
[
1
],
in_x_dims
[
2
]),
ctx
.
GetPlace
());
transformed_output
.
mutable_data
<
T
>
(
framework
::
make_dim
(
out_dims
[
0
],
out_dims
[
3
],
out_dims
[
1
],
out_dims
[
2
]),
ctx
.
GetPlace
());
const
auto
&
trans_runner
=
NpuOpRunner
(
"TransData"
,
{
in_x_tensor
},
{
transformed_input
},
{{
"src_format"
,
std
::
string
(
"NHWC"
)},
{
"dst_format"
,
std
::
string
(
"NCHW"
)}});
trans_runner
.
Run
(
dev_ctx
.
stream
());
}
else
{
transformed_input
.
ShareDataWith
(
in_x_tensor
);
transformed_output
.
ShareDataWith
(
out_tensor
);
}
const
auto
&
runner
=
NpuOpRunner
(
pooling_mode
,
{
transformed_input
},
{
transformed_output
},
{{
"output_size"
,
framework
::
vectorize
<
int
>
(
out_data_dims
)}});
runner
.
Run
(
dev_ctx
.
stream
());
if
(
pooling_type
==
"avg"
&&
channel_last
)
{
const
auto
&
trans_runner
=
NpuOpRunner
(
"TransData"
,
{
transformed_output
},
{
out_tensor
},
{{
"src_format"
,
std
::
string
(
"NCHW"
)},
{
"dst_format"
,
std
::
string
(
"NHWC"
)}});
trans_runner
.
Run
(
dev_ctx
.
stream
());
}
}
else
{
std
::
string
pooling_mode
=
"AvgPoolV2"
;
if
(
pooling_type
==
"max"
)
{
PADDLE_ENFORCE_EQ
(
exclusive
,
true
,
platform
::
errors
::
InvalidArgument
(
"MaxPool only support exclusive=false, but got true"
));
pooling_mode
=
"MaxPoolV3"
;
}
const
auto
&
runner
=
NpuOpRunner
(
pooling_mode
,
{
in_x_tensor
},
{
out_tensor
},
{{
"ksize"
,
ksize_vec
},
{
"strides"
,
strides_vec
},
{
"padding_mode"
,
std
::
string
(
"CALCULATED"
)},
{
"pads"
,
paddings
},
{
"data_format"
,
data_format
},
{
"global_pooling"
,
global_pooling
},
{
"ceil_mode"
,
ceil_mode
},
{
"exclusive"
,
exclusive
}});
runner
.
Run
(
dev_ctx
.
stream
());
}
}
};
template
<
typename
T
>
class
NPUPoolGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>();
const
Tensor
*
in_x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
out
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
const
Tensor
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
in_x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
ceil_mode
=
ctx
.
Attr
<
bool
>
(
"ceil_mode"
);
bool
exclusive
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
bool
adaptive
=
ctx
.
Attr
<
bool
>
(
"adaptive"
);
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
bool
global_pooling
=
ctx
.
Attr
<
bool
>
(
"global_pooling"
);
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
const
bool
channel_last
=
data_format
==
"NHWC"
;
// update paddings
auto
in_x_dims
=
in_x
->
dims
();
auto
out_dims
=
out
->
dims
();
framework
::
DDim
data_dims
;
framework
::
DDim
out_data_dims
;
std
::
vector
<
int
>
ksize_vec
(
4
,
1
);
std
::
vector
<
int
>
strides_vec
(
4
,
1
);
Tensor
in_x_tensor
,
out_tensor
,
out_grad_tensor
,
in_x_grad_tensor
;
in_x_tensor
.
ShareDataWith
(
*
in_x
);
out_tensor
.
ShareDataWith
(
*
out
);
out_grad_tensor
.
ShareDataWith
(
*
out_grad
);
in_x_grad_tensor
.
ShareDataWith
(
*
in_x_grad
);
if
(
channel_last
)
{
data_dims
=
framework
::
slice_ddim
(
in_x_dims
,
1
,
in_x_dims
.
size
()
-
1
);
out_data_dims
=
framework
::
slice_ddim
(
out_dims
,
1
,
out_dims
.
size
()
-
1
);
ksize_vec
[
1
]
=
ksize
[
0
];
ksize_vec
[
2
]
=
ksize
[
1
];
strides_vec
[
1
]
=
strides
[
0
];
strides_vec
[
2
]
=
strides
[
1
];
in_x_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
out_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
out_grad_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
in_x_grad_tensor
.
set_layout
(
DataLayout
::
kNHWC
);
}
else
{
data_dims
=
framework
::
slice_ddim
(
in_x_dims
,
2
,
in_x_dims
.
size
());
out_data_dims
=
framework
::
slice_ddim
(
out_dims
,
2
,
out_dims
.
size
());
ksize_vec
[
2
]
=
ksize
[
0
];
ksize_vec
[
3
]
=
ksize
[
1
];
strides_vec
[
2
]
=
strides
[
0
];
strides_vec
[
3
]
=
strides
[
1
];
}
UpdatePadding
(
&
paddings
,
global_pooling
,
adaptive
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
PADDLE_ENFORCE_LT
(
std
::
max
(
paddings
[
0
],
paddings
[
1
]),
ksize
[
0
],
platform
::
errors
::
InvalidArgument
(
"Paddings should be less than %d, but max(pads[0], pads[1]) is %d."
,
ksize
[
0
],
std
::
max
(
paddings
[
0
],
paddings
[
1
])));
PADDLE_ENFORCE_LT
(
std
::
max
(
paddings
[
2
],
paddings
[
3
]),
ksize
[
1
],
platform
::
errors
::
InvalidArgument
(
"Paddings should be less than %d, but max(pads[2], pads[3]) is %d."
,
ksize
[
1
],
std
::
max
(
paddings
[
2
],
paddings
[
3
])));
if
(
adaptive
||
(
global_pooling
&&
pooling_type
==
"max"
))
{
PADDLE_ENFORCE_EQ
(
data_dims
[
0
]
%
out_data_dims
[
0
],
0
,
platform
::
errors
::
InvalidArgument
(
"When adaptive = True, H and W must be divisible, "
"but input dims is %s, output dims is %s"
,
data_dims
,
out_data_dims
));
PADDLE_ENFORCE_EQ
(
data_dims
[
1
]
%
out_data_dims
[
1
],
0
,
platform
::
errors
::
InvalidArgument
(
"When adaptive = True, H and W must be divisible, "
"but input dims is %s, output dims is %s"
,
data_dims
,
out_data_dims
));
if
(
channel_last
)
{
strides_vec
[
1
]
=
data_dims
[
0
]
/
out_data_dims
[
0
];
strides_vec
[
2
]
=
data_dims
[
1
]
/
out_data_dims
[
1
];
ksize_vec
[
1
]
=
strides_vec
[
1
];
ksize_vec
[
2
]
=
strides_vec
[
2
];
}
else
{
strides_vec
[
2
]
=
data_dims
[
0
]
/
out_data_dims
[
0
];
strides_vec
[
3
]
=
data_dims
[
1
]
/
out_data_dims
[
1
];
ksize_vec
[
2
]
=
strides_vec
[
2
];
ksize_vec
[
3
]
=
strides_vec
[
3
];
}
}
NPUAttributeMap
attrs
=
{{
"ksize"
,
ksize_vec
},
{
"strides"
,
strides_vec
},
{
"padding_mode"
,
std
::
string
(
"CALCULATED"
)},
{
"pads"
,
paddings
},
{
"data_format"
,
data_format
},
{
"global_pooling"
,
global_pooling
},
{
"ceil_mode"
,
ceil_mode
},
{
"exclusive"
,
exclusive
}};
if
(
pooling_type
==
"max"
)
{
if
(
global_pooling
)
{
for
(
auto
&
s
:
strides_vec
)
{
s
=
1
;
}
PADDLE_ENFORCE_LT
(
std
::
max
(
data_dims
[
0
],
data_dims
[
1
]),
255
,
platform
::
errors
::
InvalidArgument
(
"MaxPoolGrad H, W must be less than 255 when "
"global_pooling = True, but got %s"
,
data_dims
));
attrs
[
"global_pooling"
]
=
false
;
}
const
auto
&
runner
=
NpuOpRunner
(
"MaxPoolV3Grad"
,
{
in_x_tensor
,
out_tensor
,
out_grad_tensor
},
{
in_x_grad_tensor
},
attrs
);
// 0: floor, 1: ceil
runner
.
Run
(
dev_ctx
.
stream
());
}
else
if
(
pooling_type
==
"avg"
)
{
PADDLE_ENFORCE
(
strides
[
0
]
==
strides
[
1
],
platform
::
errors
::
InvalidArgument
(
"AvgPoolGrad dose not support Asymmetric strides. but "
"strides = (%d, %d)"
,
strides
[
0
],
strides
[
1
]));
NpuOpRunner
runner
;
runner
.
SetType
(
"AvgPoolV2Grad"
);
runner
.
AddInput
(
framework
::
vectorize
<
int
>
(
in_x
->
dims
()));
runner
.
AddInput
(
out_grad_tensor
);
runner
.
AddOutput
(
in_x_grad_tensor
);
runner
.
AddAttrs
(
attrs
);
runner
.
Run
(
dev_ctx
.
stream
());
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
pool2d
,
ops
::
NPUPoolOpKernel
<
float
>
,
ops
::
NPUPoolOpKernel
<
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
pool2d_grad
,
ops
::
NPUPoolGradOpKernel
<
float
>
,
ops
::
NPUPoolGradOpKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_pool2d_op_npu.py
0 → 100644
浏览文件 @
da261732
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
import
unittest
import
numpy
as
np
sys
.
path
.
append
(
".."
)
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
test_pool2d_op
import
pool2D_forward_naive
,
avg_pool2D_forward_naive
,
max_pool2D_forward_naive
,
adaptive_start_index
,
adaptive_end_index
from
paddle.nn.functional
import
avg_pool2d
,
max_pool2d
paddle
.
enable_static
()
def
create_test_padding_SAME_class
(
parent
):
class
TestPaddingSMAECase
(
parent
):
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
self
.
padding_algorithm
=
"SAME"
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"PaddingSAMEOp"
)
TestPaddingSMAECase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPaddingSMAECase
def
create_test_use_ceil_class
(
parent
):
class
TestPool2DUseCeilCase
(
parent
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"CeilModeCast"
)
TestPool2DUseCeilCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPool2DUseCeilCase
def
create_test_padding_VALID_class
(
parent
):
class
TestPaddingVALIDCase
(
parent
):
def
init_paddings
(
self
):
self
.
paddings
=
[
1
,
1
]
self
.
padding_algorithm
=
"VALID"
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"PaddingVALIDOp"
)
TestPaddingVALIDCase
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestPaddingVALIDCase
def
create_test_fp16_class
(
parent
):
class
TestFp16Case
(
parent
):
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
False
self
.
dtype
=
np
.
float16
def
test_check_grad
(
self
):
return
cls_name
=
"{0}_{1}"
.
format
(
parent
.
__name__
,
"Fp16Op"
)
TestFp16Case
.
__name__
=
cls_name
globals
()[
cls_name
]
=
TestFp16Case
def
pool2d_backward_navie
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
,
exclusive
=
True
,
adaptive
=
False
,
data_format
=
'NCHW'
,
pool_type
=
"max"
,
padding_algorithm
=
"EXPLICIT"
):
# update paddings
def
_get_padding_with_SAME
(
input_shape
,
pool_size
,
pool_stride
):
padding
=
[]
for
input_size
,
filter_size
,
stride_size
in
zip
(
input_shape
,
pool_size
,
pool_stride
):
out_size
=
int
((
input_size
+
stride_size
-
1
)
/
stride_size
)
pad_sum
=
np
.
max
((
(
out_size
-
1
)
*
stride_size
+
filter_size
-
input_size
,
0
))
pad_0
=
int
(
pad_sum
/
2
)
pad_1
=
int
(
pad_sum
-
pad_0
)
padding
.
append
(
pad_0
)
padding
.
append
(
pad_1
)
return
padding
if
isinstance
(
padding_algorithm
,
str
):
padding_algorithm
=
padding_algorithm
.
upper
()
if
padding_algorithm
not
in
[
"SAME"
,
"VALID"
,
"EXPLICIT"
]:
raise
ValueError
(
"Unknown Attr(padding_algorithm): '%s'. "
"It can only be 'SAME' or 'VALID'."
%
str
(
padding_algorithm
))
if
padding_algorithm
==
"VALID"
:
paddings
=
[
0
,
0
,
0
,
0
]
if
ceil_mode
!=
False
:
raise
ValueError
(
"When Attr(pool_padding) is
\"
VALID
\"
, Attr(ceil_mode)"
" must be False. "
"Received ceil_mode: True."
)
elif
padding_algorithm
==
"SAME"
:
input_data_shape
=
[]
if
data_format
==
"NCHW"
:
input_data_shape
=
x
.
shape
[
2
:
4
]
elif
data_format
==
"NHWC"
:
input_data_shape
=
x
.
shape
[
1
:
3
]
paddings
=
_get_padding_with_SAME
(
input_data_shape
,
ksize
,
strides
)
assert
len
(
paddings
)
==
2
or
len
(
paddings
)
==
4
is_sys
=
True
if
len
(
paddings
)
==
2
else
False
if
data_format
==
"NHWC"
:
x
=
x
.
transpose
([
0
,
3
,
1
,
2
])
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
H
,
W
]
paddings
=
[
0
for
_
in
range
(
len
(
paddings
))]
pad_h_up
=
paddings
[
0
]
if
is_sys
else
paddings
[
0
]
pad_h_down
=
paddings
[
0
]
if
is_sys
else
paddings
[
1
]
pad_w_left
=
paddings
[
1
]
if
is_sys
else
paddings
[
2
]
pad_w_right
=
paddings
[
1
]
if
is_sys
else
paddings
[
3
]
if
adaptive
:
H_out
,
W_out
=
ksize
else
:
H_out
=
(
H
-
ksize
[
0
]
+
pad_h_up
+
pad_h_down
+
strides
[
0
]
-
1
)
//
strides
[
0
]
+
1
\
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
pad_h_up
+
pad_h_down
)
//
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
pad_w_left
+
pad_w_right
+
strides
[
1
]
-
1
)
//
strides
[
1
]
+
1
\
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
pad_w_left
+
pad_w_right
)
//
strides
[
1
]
+
1
x_grad
=
np
.
zeros_like
(
x
)
for
i
in
range
(
H_out
):
if
adaptive
:
in_h_start
=
adaptive_start_index
(
i
,
H
,
ksize
[
0
])
in_h_end
=
adaptive_end_index
(
i
,
H
,
ksize
[
0
])
else
:
in_h_start
=
np
.
max
((
i
*
strides
[
0
]
-
pad_h_up
,
0
))
in_h_end
=
np
.
min
((
i
*
strides
[
0
]
+
ksize
[
0
]
-
pad_h_up
,
H
))
for
j
in
range
(
W_out
):
if
adaptive
:
in_w_start
=
adaptive_start_index
(
j
,
W
,
ksize
[
1
])
in_w_end
=
adaptive_end_index
(
j
,
W
,
ksize
[
1
])
else
:
in_h_start
=
i
*
strides
[
0
]
-
pad_h_up
in_w_start
=
j
*
strides
[
1
]
-
pad_w_left
in_h_end
=
i
*
strides
[
0
]
+
ksize
[
0
]
-
pad_h_up
in_w_end
=
j
*
strides
[
1
]
+
ksize
[
1
]
-
pad_w_left
field_size
=
(
in_h_end
-
in_h_start
)
*
(
in_w_end
-
in_w_start
)
in_h_start
=
np
.
max
((
in_h_start
,
0
))
in_w_start
=
np
.
max
((
in_w_start
,
0
))
in_h_end
=
np
.
min
((
in_h_end
,
H
))
in_w_end
=
np
.
min
((
in_w_end
,
W
))
if
pool_type
==
'avg'
:
if
(
exclusive
or
adaptive
):
field_size
=
(
in_h_end
-
in_h_start
)
*
(
in_w_end
-
in_w_start
)
x_grad
[:,
:,
in_h_start
:
in_h_end
,
in_w_start
:
in_w_end
]
+=
1
/
field_size
elif
pool_type
==
'max'
:
for
n
in
range
(
N
):
for
c
in
range
(
C
):
idx
=
np
.
argmax
(
x
[
n
,
c
,
in_h_start
:
in_h_end
,
in_w_start
:
in_w_end
].
flatten
())
idx_h
=
idx
//
(
in_w_end
-
in_w_start
)
idx_w
=
idx
%
(
in_w_end
-
in_w_start
)
x_grad
[
n
,
c
,
in_h_start
+
idx_h
,
in_w_start
+
idx_w
]
+=
1
if
data_format
==
"NHWC"
:
x_grad
=
x_grad
.
transpose
([
0
,
2
,
3
,
1
])
return
x_grad
class
TestPool2D_Op
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"pool2d"
self
.
init_kernel_type
()
self
.
init_data_type
()
self
.
init_test_case
()
self
.
padding_algorithm
=
"EXPLICIT"
self
.
init_paddings
()
self
.
init_global_pool
()
self
.
init_kernel_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
self
.
init_exclusive
()
self
.
init_adaptive
()
self
.
init_data_format
()
self
.
init_shape
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
if
self
.
pool_type
==
"max"
:
input
=
np
.
array
([
x
for
x
in
range
(
np
.
prod
(
self
.
shape
))]).
reshape
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusive
,
self
.
adaptive
,
self
.
data_format
,
self
.
pool_type
,
self
.
padding_algorithm
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling_type'
:
self
.
pool_type
,
'global_pooling'
:
self
.
global_pool
,
'use_cudnn'
:
False
,
'use_mkldnn'
:
False
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
self
.
data_format
,
'exclusive'
:
self
.
exclusive
,
'adaptive'
:
self
.
adaptive
,
"padding_algorithm"
:
self
.
padding_algorithm
,
}
self
.
outputs
=
{
'Out'
:
output
}
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
False
def
init_data_type
(
self
):
self
.
dtype
=
np
.
float32
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
True
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
False
def
init_exclusive
(
self
):
self
.
exclusive
=
True
def
init_adaptive
(
self
):
self
.
adaptive
=
False
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
test_check_output
(
self
):
self
.
check_output_with_place
(
fluid
.
NPUPlace
(
0
),
atol
=
1e-3
)
def
test_check_grad
(
self
):
x_grad
=
pool2d_backward_navie
(
self
.
inputs
[
"X"
],
ksize
=
self
.
ksize
,
strides
=
self
.
strides
,
paddings
=
self
.
paddings
,
global_pool
=
self
.
global_pool
,
ceil_mode
=
False
,
exclusive
=
self
.
exclusive
,
adaptive
=
self
.
adaptive
,
data_format
=
self
.
data_format
,
pool_type
=
self
.
pool_type
,
padding_algorithm
=
self
.
padding_algorithm
)
x_grad
=
x_grad
/
np
.
prod
(
self
.
outputs
[
'Out'
].
shape
)
self
.
check_grad_with_place
(
fluid
.
NPUPlace
(
0
),
set
([
'X'
]),
'Out'
,
max_relative_error
=
0.06
,
user_defined_grads
=
[
x_grad
])
class
TestCase1
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
1
,
1
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3
(
TestPool2D_Op
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase4
(
TestCase1
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase5
(
TestCase2
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestAvgInclude
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
class
TestAvgPoolAdaptive
(
TestCase1
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
def
init_test_case
(
self
):
self
.
ksize
=
[
7
,
7
]
self
.
strides
=
[
7
,
7
]
self
.
paddings
=
[
0
,
0
,
0
,
0
]
class
TestAvgPoolAdaptiveAsyOutSize
(
TestCase1
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
8
,
8
]
def
init_test_case
(
self
):
self
.
ksize
=
[
2
,
4
]
# fixme: CANN AvgPoolGradV3 dose not support asymmetric strides
# self.strides = [2, 4]
self
.
strides
=
[
4
,
4
]
self
.
paddings
=
[
0
,
0
,
0
,
0
]
#-------test pool2d with asymmetric padding-----
class
TestPool2D_AsyPadding
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase1_AsyPadding
(
TestCase1
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2_AsyPadding
(
TestCase2
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3_AsyPadding
(
TestCase3
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase4_AsyPadding
(
TestCase4
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase5_AsyPadding
((
TestCase5
)):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
2
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestAvgInclude_AsyPadding
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestAvgPoolAdaptive_AsyPadding
(
TestCase1
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
def
init_test_case
(
self
):
self
.
ksize
=
[
2
,
2
]
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
1
,
1
,
0
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
8
,
8
]
#----------- test channel_last --------------
class
TestPool2D_channel_last
(
TestPool2D_Op
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
5
,
5
,
3
]
class
TestCase1_channel_last
(
TestCase1
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase2_channel_last
(
TestCase2
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase3_channel_last
(
TestCase3
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
5
,
5
,
3
]
class
TestCase4_channel_last
(
TestCase4
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase5_channel_last
(
TestCase5
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase5_Max
(
TestCase2
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
class
TestCase5_channel_last_Max
(
TestCase5_Max
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestAvgInclude_channel_last
(
TestCase2_channel_last
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
class
TestAvgPoolAdaptive_channel_last
(
TestCase1_channel_last
):
def
init_adaptive
(
self
):
self
.
adaptive
=
True
def
init_shape
(
self
):
self
.
shape
=
[
2
,
8
,
8
,
3
]
def
init_test_case
(
self
):
self
.
ksize
=
[
2
,
2
]
self
.
strides
=
[
2
,
2
]
class
TestPool2D_AsyPadding_channel_last
(
TestPool2D_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
5
,
5
,
3
]
class
TestCase1_AsyPadding_channel_last
(
TestCase1_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase2_AsyPadding_channel_last
(
TestCase2_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase3_AsyPadding_channel_last
(
TestCase3_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
5
,
5
,
3
]
class
TestCase4_AsyPadding_channel_last
(
TestCase4_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestCase5_AsyPadding_channel_last
(
TestCase5_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestAvgInclude_AsyPadding_channel_last
(
TestAvgInclude_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
7
,
7
,
3
]
class
TestAvgPoolAdaptive_AsyPadding_channel_last
(
TestAvgPoolAdaptive_AsyPadding
):
def
init_data_format
(
self
):
self
.
data_format
=
"NHWC"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
8
,
8
,
3
]
class
TestCase1_strides
(
TestCase1
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
# fixme: CANN AvgPoolGradV3 dose not support asymmetric strides
# self.strides = [1, 2]
self
.
strides
=
[
2
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
4
,
5
]
create_test_padding_SAME_class
(
TestPool2D_Op
)
create_test_padding_SAME_class
(
TestCase1
)
create_test_padding_SAME_class
(
TestCase2
)
create_test_padding_SAME_class
(
TestCase3
)
create_test_padding_SAME_class
(
TestCase4
)
create_test_padding_SAME_class
(
TestCase5
)
create_test_padding_SAME_class
(
TestPool2D_channel_last
)
create_test_padding_SAME_class
(
TestCase1_channel_last
)
create_test_padding_SAME_class
(
TestCase2_channel_last
)
create_test_padding_SAME_class
(
TestCase3_channel_last
)
create_test_padding_SAME_class
(
TestCase4_channel_last
)
create_test_padding_SAME_class
(
TestCase5_channel_last
)
create_test_padding_SAME_class
(
TestCase1_strides
)
create_test_padding_VALID_class
(
TestPool2D_Op
)
create_test_padding_VALID_class
(
TestCase1
)
create_test_padding_VALID_class
(
TestCase2
)
create_test_padding_VALID_class
(
TestCase3
)
create_test_padding_VALID_class
(
TestCase4
)
create_test_padding_VALID_class
(
TestCase5
)
create_test_padding_VALID_class
(
TestPool2D_channel_last
)
create_test_padding_VALID_class
(
TestCase1_channel_last
)
create_test_padding_VALID_class
(
TestCase2_channel_last
)
create_test_padding_VALID_class
(
TestCase3_channel_last
)
create_test_padding_VALID_class
(
TestCase4_channel_last
)
create_test_padding_VALID_class
(
TestCase5_channel_last
)
create_test_use_ceil_class
(
TestCase1
)
create_test_use_ceil_class
(
TestCase2
)
create_test_use_ceil_class
(
TestCase1_AsyPadding
)
create_test_use_ceil_class
(
TestCase2_AsyPadding
)
create_test_use_ceil_class
(
TestCase1_channel_last
)
create_test_use_ceil_class
(
TestCase2_channel_last
)
create_test_use_ceil_class
(
TestCase1_AsyPadding_channel_last
)
create_test_use_ceil_class
(
TestCase2_AsyPadding_channel_last
)
create_test_fp16_class
(
TestPool2D_Op
)
create_test_fp16_class
(
TestCase1
)
create_test_fp16_class
(
TestCase2
)
create_test_fp16_class
(
TestCase3
)
create_test_fp16_class
(
TestCase4
)
create_test_fp16_class
(
TestCase5
)
create_test_fp16_class
(
TestPool2D_channel_last
)
create_test_fp16_class
(
TestCase1_channel_last
)
create_test_fp16_class
(
TestCase2_channel_last
)
create_test_fp16_class
(
TestCase3_channel_last
)
create_test_fp16_class
(
TestCase4_channel_last
)
create_test_fp16_class
(
TestCase5_channel_last
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录