From d92c671d5f7fd8a14492856a2800c9e407078144 Mon Sep 17 00:00:00 2001 From: caoying03 Date: Tue, 10 Oct 2017 10:10:37 +0800 Subject: [PATCH] add python forward unittest. --- paddle/operators/crf_op.cc | 48 ------ paddle/operators/linear_chain_crf_op.cc | 141 ++++++++++++++++++ .../{crf_op.h => linear_chain_crf_op.h} | 4 +- .../softmax_with_cross_entropy_op.cc | 6 +- .../paddle/v2/framework/tests/test_crf_op.py | 13 -- .../tests/test_linear_chain_crf_op.py | 122 +++++++++++++++ 6 files changed, 268 insertions(+), 66 deletions(-) delete mode 100644 paddle/operators/crf_op.cc create mode 100644 paddle/operators/linear_chain_crf_op.cc rename paddle/operators/{crf_op.h => linear_chain_crf_op.h} (90%) delete mode 100644 python/paddle/v2/framework/tests/test_crf_op.py create mode 100644 python/paddle/v2/framework/tests/test_linear_chain_crf_op.py diff --git a/paddle/operators/crf_op.cc b/paddle/operators/crf_op.cc deleted file mode 100644 index 21ffcf48c0c..00000000000 --- a/paddle/operators/crf_op.cc +++ /dev/null @@ -1,48 +0,0 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. */ - -#include "paddle/operators/crf_op.h" - -namespace paddle { -namespace operators { - -class CrfOpMaker : public framework::OpProtoAndCheckerMaker { - public: - CrfOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) {} -}; - -class CrfOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(framework::InferShapeContextBase* ctx) const override {} -}; - -class CrfGradOp : public framework::OperatorWithKernel { - public: - using framework::OperatorWithKernel::OperatorWithKernel; - - protected: - void InferShape(framework::InferShapeContextBase* ctx) const override {} -}; - -} // namespace operators -} // namespace paddle - -namespace ops = paddle::operators; -REGISTER_OP(crf, ops::CrfOp, ops::CrfOpMaker, crf_grad, ops::CrfGradOp); -REGISTER_OP_CPU_KERNEL(crf, ops::CrfOpKernel); -REGISTER_OP_CPU_KERNEL(crf_grad, ops::CrfGradOpKernel); diff --git a/paddle/operators/linear_chain_crf_op.cc b/paddle/operators/linear_chain_crf_op.cc new file mode 100644 index 00000000000..434382a72fe --- /dev/null +++ b/paddle/operators/linear_chain_crf_op.cc @@ -0,0 +1,141 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/linear_chain_crf_op.h" + +namespace paddle { +namespace operators { + +class LinearChainCrfOpMaker : public framework::OpProtoAndCheckerMaker { + public: + LinearChainCrfOpMaker(framework::OpProto* proto, + framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "Emission", + "(LoDTensor, default: LoDTensor). " + "The unscaled emission weight matrix for the linear chain CRF. " + "This input is a LoDTensor with shape [N x D] where N is the total " + "element number of all input squences in a mini-batch, " + "and D is the total tag number."); + AddInput( + "Transition", + "(Tensor, default: Tensor). A Tensor with shape [(D + 2) x D]. " + "The learnable parameter for linear_chain_crf operator. " + "See more details in the operator's comments."); + AddInput( + "Label", + "(LoDTensor, default: LoDTensor). The ground truth which is a 2-D " + "LoDTensor with shape [N x 1], where N is the total element number in " + "a mini-batch."); + AddOutput( + "Alpha", + "Tensor, default: Tensor. The forward vectors for the entire " + "batch. A two dimensional tensor with shape [N x D], " + "denoted as \f$\alpha\f$. \f$\alpha$\f is a memo table used to " + "calculate the normalization factor in CRF. \f$\alpha[k, v]$\f stores " + "the unnormalized probabilites of all possible unfinished sequences of " + "tags that end at position \f$k$\f with tag \f$v$\f. For each \f$k$\f, " + "\f$\alpha[k, v]$\f is a vector of length \f$D$\f with a component for " + "each tag value \f$v$\f. This vector is called a forward vecotr and " + "will also be used in backward computations.") + .AsIntermediate(); + AddOutput( + "LogLikelihood", + "(Tensor, default: Tensor). The logarithm of the conditional " + "likelihood of each training sample in a mini-batch. This is a 2-D " + "tensor with shape [S x 1], where S is the sequence number in a " + "mini-batch. " + "Note: S is equal to the sequence number in a mini-batch. The output " + "is no longer a LoDTensor."); + AddComment(R"DOC( +Conditional Random Field defines an undirected probabilistic graph with nodes +denoting random variables and edges denoting dependencies between these +variables. CRF learns the conditional probability \f$P(Y|X)\f$, where +\f$X = (x_1, x_2, ... , x_n)\f$ are structured inputs and +\f$Y = (y_1, y_2, ... , y_n)\f$ are labels for the inputs. + +Linear chain CRF is a special case of CRF that is useful for sequence labeling +task. Sequence labeling tasks do not assume a lot of conditional +independences among inputs. They only concern about the input and the output +being linear sequences. Thus, the graph model of CRF is a simple chain or +a line, which results in a linear chain CRF. + +This operator implements the Forward-Backward algorithm for linear chain CRF. +Please see http://www.cs.columbia.edu/~mcollins/fb.pdf for reference. + +Equation: + +- Denote the first input of this operator (Emission) as \f$x\f$ here. +- The first D values of the second input (Transition) of this operator are for +starting weights, denoted as \f$a\f$ here. +- The next D values of the second input (Transition) of this operator are for +ending weights, denoted as \f$b\f$ here. +- The remaning values of the second input (Transition) are for transition +weights, denoted as \f$w\f$ here. +- Denote the third input of this operator (Label) as \f$s\f$ here. + +The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as: +\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L} + + \sum_{l=1}^L x_{s_l} + + \sum_{l=2}^L w_{s_{l-1},s_l})\f$ +where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over +all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight +to the linear chain CRF. + +Finaly, the linear chain CRF operator outputs the logarithm of the conditional +likelihood of each training sample in a mini-batch. + +NOTE: +1. The feature function for a CRF is made up of the emission features and the +transition features. The emission feature weights are NOT computed in +this operator. They MUST be computed first before this operator is called. + +2. Because this operator performs globally normaliztion over all possible +sequences internally, it expects UNSCALED emission feature weights. +Please do not call this op with the emission feature being output of any +nonlinear activation. + +3. The 2nd dimension of the first input of this operator (Emission) MUST be +equal to the tag number. + +)DOC"); + } +}; + +class LinearChainCrfOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override {} +}; + +class LinearChainCrfGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContextBase* ctx) const override {} +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(linear_chain_crf, ops::LinearChainCrfOp, ops::LinearChainCrfOpMaker, + linear_chain_crf_grad, ops::LinearChainCrfGradOp); +REGISTER_OP_CPU_KERNEL(linear_chain_crf, ops::LinearChainCrfOpKernel); +REGISTER_OP_CPU_KERNEL(linear_chain_crf_grad, + ops::LinearChainCrfGradOpKernel); diff --git a/paddle/operators/crf_op.h b/paddle/operators/linear_chain_crf_op.h similarity index 90% rename from paddle/operators/crf_op.h rename to paddle/operators/linear_chain_crf_op.h index cb34c5c6a34..1c0749114fd 100644 --- a/paddle/operators/crf_op.h +++ b/paddle/operators/linear_chain_crf_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { template -class CrfOpKernel : public framework::OpKernel { +class LinearChainCrfOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), @@ -29,7 +29,7 @@ class CrfOpKernel : public framework::OpKernel { }; template -class CrfGradOpKernel : public framework::OpKernel { +class LinearChainCrfGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), diff --git a/paddle/operators/softmax_with_cross_entropy_op.cc b/paddle/operators/softmax_with_cross_entropy_op.cc index 42c1ba6fdf1..ba81dd4c2d1 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/operators/softmax_with_cross_entropy_op.cc @@ -32,9 +32,9 @@ class SoftmaxWithCrossEntropyOpMaker AddInput("Label", "(Tensor, default: Tensor), The ground truth which is a 2-D " "tensor. " - "If softLable is set to 0, Label is a Tensor with shape [N x " - "1]. " - "If softLable is set to 1, Label is a Tensor " + "If softLabel is set to false, Label is a Tensor with shape " + "[N x 1]." + "If softLabel is set to true, Label is a Tensor " "with shape [N x K]."); AddOutput( "Softmax", diff --git a/python/paddle/v2/framework/tests/test_crf_op.py b/python/paddle/v2/framework/tests/test_crf_op.py deleted file mode 100644 index 47c9341fa0b..00000000000 --- a/python/paddle/v2/framework/tests/test_crf_op.py +++ /dev/null @@ -1,13 +0,0 @@ -import unittest -import numpy as np - - -class TestCrfOp(OpTest): - def setUp(self): - self.op_type = "crf" - batch_size = 3 - class_num = 37 - - -if __name__ == "__main__": - unittest.main() diff --git a/python/paddle/v2/framework/tests/test_linear_chain_crf_op.py b/python/paddle/v2/framework/tests/test_linear_chain_crf_op.py new file mode 100644 index 00000000000..b16c4d40b96 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_linear_chain_crf_op.py @@ -0,0 +1,122 @@ +import unittest +import random +import numpy as np + +from op_test import OpTest + + +class LinearChainCrfForward(object): + def __init__(self, seq_start_positions, emission_weights, + transition_weights, labels): + self.tag_num = emission_weights.shape[1] + self.seq_num = len(seq_start_positions) - 1 + + self.seq_start_positions = seq_start_positions + self.labels = labels + self.x = emission_weights + + self.x_row_max = np.amax(self.x, axis=1, keepdims=True) + self.x_exps = np.exp(self.x - self.x_row_max) + + # unnormalized logits of the transition weights for the start mark. + self.a = transition_weights[0, :] + self.a_exps = np.exp(self.a) + # unnormalized logits of the transition weights for the end mark. + self.b = transition_weights[1, :] + self.b_exps = np.exp(self.b) + # unnormalized logits of the transition weights for all the other tags. + self.w = transition_weights[2:, :] + self.w_exps = np.exp(self.w) + + # The output of linear chain crf operator. + # alpha is a memo table in dynamic programming to caculate + # nomalization factor. + self.alpha = np.zeros( + (seq_start_positions[-1], self.tag_num), dtype="float32") + self.log_likelihood = np.zeros((self.tag_num, 1)) + + def _l1_norm(self, x): + s = np.sum(x) + x /= s + return s + + def _forward_a_sequence(self, x, x_row_max, x_exps, label, alpha): + seq_len = x_row_max.shape[0] + log_likelihood = 0. + + for i in range(self.tag_num): + alpha[0, i] = self.a_exps[i] * x_exps[0, i] + log_likelihood = -x_row_max[0] - np.log(self._l1_norm(alpha[0, :])) + + # calculate the unnormalized logits of the normalization factor. + for k in range(1, seq_len): + for i in range(self.tag_num): + s = 0. + for j in range(self.tag_num): + s += alpha[k - 1, j] * self.w_exps[j, i] + alpha[k, i] = x_exps[k, i] * s + log_likelihood -= x_row_max[k] + np.log(self._l1_norm(alpha[k, :])) + s = 0. + for i in range(self.tag_num): + s += alpha[-1, i] * self.b_exps[i] + log_likelihood -= np.log(s) + + # calculate the noninator part. + log_likelihood += ( + self.a[label[0]] + self.x[0, label[0]] + self.b[label[-1]]) + for k in range(1, seq_len): + log_likelihood += ( + self.x[k, label[k]] + self.w[label[k - 1], label[k]]) + return log_likelihood + + def crf_forward_compute(self): + for i in range(self.seq_num): + start = self.seq_start_positions[i] + end = self.seq_start_positions[i + 1] + + self.log_likelihood[i] = self._forward_a_sequence( + self.x[start:end], self.x_row_max[start:end, :], + self.x_exps[start:end, :], self.labels[start:end, :], + self.alpha[start:end, :]) + return self.alpha, self.log_likelihood + + +class TestLinearChainCrfOp(OpTest): + def set_test_data(self): + SEQ_NUM = 3 + TAG_NUM = 17 + MAX_SEQ_LEN = 13 + + # the linear_chain_crf operator only supports sequence (LoD level = 1) + lod = [[0]] + for i in range(SEQ_NUM): + lod[-1].append(lod[-1][-1] + random.randint(1, MAX_SEQ_LEN)) + + emission = np.random.uniform(-1, 1, + [lod[-1][-1], TAG_NUM]).astype("float32") + transition = np.random.uniform(-0.5, 0.5, + [TAG_NUM + 2, TAG_NUM]).astype("float32") + labels = np.random.randint( + low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int32") + + self.inputs = { + "Emission": (emission, lod), + "Transition": transition, + "label": (labels, lod) + } + + crf = LinearChainCrfForward(lod[0], emission, transition, labels) + alpha, log_likelihood = crf.crf_forward_compute() + + self.outputs = {"Alpha": alpha, "LogLikelihood": log_likelihood} + + def setUp(self): + self.op_type = "linear_chain_crf" + self.set_test_data() + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() -- GitLab