Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d881d690
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
d881d690
编写于
7月 15, 2022
作者:
R
RichardWooSJTU
提交者:
GitHub
7月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add fused token prune op and plugin (#44281)
* add fused token prune op and plugin
上级
d2e59e15
变更
16
显示空白变更内容
内联
并排
Showing
16 changed file
with
1789 addition
and
3 deletion
+1789
-3
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+2
-1
paddle/fluid/inference/tensorrt/convert/fused_token_prune_op.cc
.../fluid/inference/tensorrt/convert/fused_token_prune_op.cc
+76
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+2
-1
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
+9
-1
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
.../inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
+527
-0
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
...d/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
+159
-0
paddle/fluid/inference/tensorrt/plugin/test_fused_token_prune_plugin.cc
...nference/tensorrt/plugin/test_fused_token_prune_plugin.cc
+48
-0
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
+192
-0
paddle/fluid/operators/fused_token_prune_op.cc
paddle/fluid/operators/fused_token_prune_op.cc
+187
-0
paddle/fluid/operators/fused_token_prune_op.cu
paddle/fluid/operators/fused_token_prune_op.cu
+287
-0
paddle/fluid/operators/fused_token_prune_op.cu.h
paddle/fluid/operators/fused_token_prune_op.cu.h
+50
-0
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
.../paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
+7
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_fused_token_prune.py
...ttests/ir/inference/test_trt_convert_fused_token_prune.py
+129
-0
python/paddle/fluid/tests/unittests/test_fused_token_prune_op.py
...paddle/fluid/tests/unittests/test_fused_token_prune_op.py
+112
-0
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
d881d690
...
...
@@ -2089,6 +2089,7 @@ USE_TRT_CONVERTER(top_k)
USE_TRT_CONVERTER
(
top_k_v2
)
USE_TRT_CONVERTER
(
squeeze2
)
USE_TRT_CONVERTER
(
unsqueeze2
)
USE_TRT_CONVERTER
(
fused_token_prune
)
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER
(
sparse_fc
)
USE_TRT_CONVERTER
(
sparse_multihead_matmul
)
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
d881d690
...
...
@@ -68,7 +68,8 @@ list(
c_allreduce_op.cc
top_k_op.cc
squeeze2_op.cc
unsqueeze2_op.cc
)
unsqueeze2_op.cc
fused_token_prune_op.cc
)
if
(
CUSPARSELT_FOUND AND
${
TENSORRT_MAJOR_VERSION
}
GREATER_EQUAL 8
)
list
(
APPEND CONVERT_FILES sparse_fc_op.cc sparse_multihead_matmul_op.cc
)
...
...
paddle/fluid/inference/tensorrt/convert/fused_token_prune_op.cc
0 → 100644
浏览文件 @
d881d690
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
FusedTokenPruneOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
auto
*
Attn
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Attn"
).
front
());
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
auto
*
Mask
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Mask"
).
front
());
auto
*
NewMask
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"NewMask"
).
front
());
bool
keep_first_token
=
op_desc
.
HasAttr
(
"keep_first_token"
)
?
BOOST_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"keep_first_token"
))
:
true
;
bool
keep_order
=
op_desc
.
HasAttr
(
"keep_order"
)
?
BOOST_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"keep_order"
))
:
false
;
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
Attn
,
X
,
Mask
,
NewMask
};
auto
output_name
=
op_desc
.
Output
(
"SlimmedX"
)[
0
];
auto
out_inds_name
=
op_desc
.
Output
(
"CLSInds"
)[
0
];
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
bool
with_fp16
=
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
if
(
engine_
->
precision
()
==
AnalysisConfig
::
Precision
::
kInt8
)
{
with_fp16
=
true
;
}
plugin
::
FusedTokenPrunePluginDynamic
*
plugin
=
new
plugin
::
FusedTokenPrunePluginDynamic
(
with_fp16
,
keep_first_token
,
keep_order
);
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
4
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the Ernie(Bert) model in static shape mode, which "
"is not supported for the time being.
\n
"
"You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
"the shape information to run the dynamic shape mode."
));
}
RreplenishLayerAndOutput
(
layer
,
"fused_token_prune"
,
{
output_name
,
out_inds_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
fused_token_prune
,
FusedTokenPruneOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
d881d690
...
...
@@ -275,7 +275,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"recover_padding"
,
"remove_padding"
,
"squeeze2"
,
"unsqueeze2"
};
"unsqueeze2"
,
"fused_token_prune"
};
};
bool
OpTeller
::
Tell
(
const
framework
::
ir
::
Node
*
node
,
...
...
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
浏览文件 @
d881d690
...
...
@@ -29,7 +29,8 @@ list(
remove_padding_plugin.cu
recover_padding_plugin.cu
c_allreduce_op_plugin.cu
preln_residual_bias_plugin.cu
)
preln_residual_bias_plugin.cu
fused_token_prune_op_plugin.cu
)
if
(
CUSPARSELT_FOUND AND
${
TENSORRT_MAJOR_VERSION
}
GREATER_EQUAL 8
)
list
(
APPEND TRT_FILES spmm_plugin.cu
)
...
...
@@ -44,3 +45,10 @@ nv_test(
test_split_plugin
SRCS test_split_plugin.cc
DEPS paddle_framework
${
GLOB_OPERATOR_DEPS
}
tensorrt_plugin
)
if
(
NOT WIN32
)
nv_test
(
test_fused_token_prune_plugin
SRCS test_fused_token_prune_plugin.cc
DEPS paddle_framework
${
GLOB_OPERATOR_DEPS
}
tensorrt_plugin
)
endif
()
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
0 → 100644
浏览文件 @
d881d690
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#include "cub/cub.cuh"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h"
#include "paddle/fluid/operators/fused_token_prune_op.cu.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
#if IS_TRT_VERSION_GE(6000)
template
<
typename
T
>
__global__
void
ElementwiseMask
(
const
T
*
a
,
const
T
*
b
,
T
*
res
,
int
num_elements
)
{
auto
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
tid
>=
num_elements
)
return
;
const
T
zero
=
0
;
res
[
tid
]
=
b
[
tid
]
>=
zero
?
a
[
tid
]
:
zero
;
}
template
<
typename
T
>
__global__
void
FillZero
(
T
*
data
,
int
len
)
{
auto
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
tid
>=
len
)
return
;
const
T
zero
=
0
;
data
[
tid
]
=
zero
;
}
__global__
void
FillIndex
(
int32_t
*
indices
,
int
num_raws
,
int
num_cols
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
tid
>=
num_raws
*
num_cols
)
return
;
int
col
=
tid
%
num_cols
;
int
raw
=
tid
/
num_cols
;
indices
[
tid
]
=
col
;
}
template
<
typename
T
>
__global__
void
MaximumFirst
(
T
*
mat
,
int
num_raws
,
int
num_cols
,
T
max_value
)
{
auto
raw
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
raw
>=
num_raws
)
return
;
mat
[
raw
*
num_cols
]
=
max_value
;
}
__global__
void
FillOffsets
(
int
*
offsets
,
int
num_raws
,
int
num_cols
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
tid
>
num_raws
)
return
;
offsets
[
tid
]
=
tid
*
num_cols
;
}
template
<
typename
T
>
__global__
void
Slice
(
const
T
*
src
,
T
*
dst
,
int
num_raws
,
int
src_num_cols
,
int
dst_num_cols
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
tid
>=
num_raws
*
dst_num_cols
)
return
;
int
raw
=
tid
/
dst_num_cols
;
int
col
=
tid
%
dst_num_cols
;
dst
[
tid
]
=
src
[
raw
*
src_num_cols
+
col
];
}
template
<
typename
T
>
__global__
void
ReduceSum2
(
const
T
*
src
,
T
*
dst
,
int
bsz
,
int
nb_head
,
int
max_seq_len
)
{
int
tid
=
threadIdx
.
x
;
int
bid
=
blockIdx
.
x
;
int
num_blocks_per_head
=
((
max_seq_len
/
blockDim
.
x
)
*
max_seq_len
);
int
batch
=
bid
/
(
nb_head
*
num_blocks_per_head
);
int
col
=
bid
%
max_seq_len
;
int
head
=
(
bid
/
num_blocks_per_head
)
%
nb_head
;
extern
__shared__
T
res_float
[];
res_float
[
tid
]
=
src
[
batch
*
(
nb_head
*
max_seq_len
*
max_seq_len
)
+
head
*
(
max_seq_len
*
max_seq_len
)
+
col
+
tid
*
max_seq_len
];
__syncthreads
();
for
(
int
offset
=
blockDim
.
x
>>
1
;
offset
>
0
;
offset
>>=
1
)
{
if
(
tid
<
offset
)
{
res_float
[
tid
]
+=
res_float
[
tid
+
offset
];
}
__syncthreads
();
if
(
offset
%
2
==
1
&&
tid
==
offset
-
2
)
{
res_float
[
tid
]
+=
res_float
[
tid
+
1
];
}
}
if
(
tid
==
0
)
{
auto
*
dst_addr
=
dst
+
batch
*
max_seq_len
+
col
;
atomicAdd
(
dst_addr
,
res_float
[
0
]);
}
}
template
<
>
__global__
void
ReduceSum2
<
half
>
(
const
half
*
src
,
half
*
dst
,
int
bsz
,
int
nb_head
,
int
max_seq_len
)
{
int
tid
=
threadIdx
.
x
;
int
bid
=
blockIdx
.
x
;
int
num_blocks_per_head
=
((
max_seq_len
/
blockDim
.
x
)
*
max_seq_len
);
int
batch
=
bid
/
(
nb_head
*
num_blocks_per_head
);
int
col
=
bid
%
max_seq_len
;
int
head
=
(
bid
/
num_blocks_per_head
)
%
nb_head
;
extern
__shared__
half
res_half
[];
res_half
[
tid
]
=
src
[
batch
*
(
nb_head
*
max_seq_len
*
max_seq_len
)
+
head
*
(
max_seq_len
*
max_seq_len
)
+
col
+
tid
*
max_seq_len
];
__syncthreads
();
for
(
int
offset
=
blockDim
.
x
>>
1
;
offset
>
0
;
offset
>>=
1
)
{
if
(
tid
<
offset
)
{
res_half
[
tid
]
+=
res_half
[
tid
+
offset
];
}
__syncthreads
();
if
(
offset
%
2
==
1
&&
tid
==
offset
-
2
)
{
res_half
[
tid
]
+=
res_half
[
tid
+
1
];
}
__syncthreads
();
}
if
(
tid
==
0
)
{
platform
::
fastAtomicAdd
<
platform
::
float16
>
(
reinterpret_cast
<
platform
::
float16
*>
(
dst
),
static_cast
<
size_t
>
(
batch
*
max_seq_len
+
col
),
static_cast
<
size_t
>
(
bsz
*
max_seq_len
),
static_cast
<
platform
::
float16
>
(
res_half
[
0
]));
}
}
template
<
typename
T
>
__global__
void
TakeAlongAxis
(
const
T
*
src
,
T
*
dst
,
int32_t
*
indices
,
int
num_raws
,
int
src_num_cols
,
int
dst_num_cols
,
int
num_elements
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
tid
>=
num_raws
*
dst_num_cols
)
return
;
int
raw
=
tid
/
dst_num_cols
;
int
col
=
tid
%
dst_num_cols
;
for
(
int
i
=
0
;
i
<
num_elements
;
++
i
)
{
dst
[
tid
*
num_elements
+
i
]
=
*
(
src
+
(
raw
*
src_num_cols
+
indices
[
tid
])
*
num_elements
+
i
);
}
}
nvinfer1
::
DimsExprs
FusedTokenPrunePluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
auto
x_dims
=
inputs
[
1
],
new_mask_dims
=
inputs
[
3
];
if
(
output_index
==
0
)
{
nvinfer1
::
DimsExprs
ret
=
x_dims
;
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
}
else
{
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
2
;
ret
.
d
[
0
]
=
new_mask_dims
.
d
[
0
];
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
return
ret
;
}
}
bool
FusedTokenPrunePluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
TRT_NOEXCEPT
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
if
(
with_fp16_
)
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
else
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
}
}
else
if
(
pos
<=
4
)
{
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
else
{
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
return
in
.
type
==
nvinfer1
::
DataType
::
kINT32
&&
in
.
format
==
prev
.
format
;
}
}
nvinfer1
::
DataType
FusedTokenPrunePluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
TRT_NOEXCEPT
{
if
(
index
==
0
)
{
return
input_types
[
1
];
}
else
if
(
index
==
1
)
{
return
nvinfer1
::
DataType
::
kINT32
;
}
}
size_t
FusedTokenPrunePluginDynamic
::
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nb_inputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nb_outputs
)
const
TRT_NOEXCEPT
{
auto
attn_dims
=
inputs
[
0
].
dims
;
auto
x_dims
=
inputs
[
1
].
dims
;
auto
new_mask_dims
=
inputs
[
3
].
dims
;
auto
bsz
=
attn_dims
.
d
[
0
],
nb_head
=
attn_dims
.
d
[
1
],
max_seq_len
=
attn_dims
.
d
[
2
];
int
slimmed_x_len
=
new_mask_dims
.
d
[
2
];
int
total
=
bsz
*
nb_head
*
max_seq_len
*
max_seq_len
;
size_t
size
=
total
*
sizeof
(
float
);
size
+=
bsz
*
max_seq_len
*
sizeof
(
float
);
size
+=
bsz
*
max_seq_len
*
sizeof
(
int32_t
);
size
+=
bsz
*
max_seq_len
*
sizeof
(
float
);
size
+=
bsz
*
max_seq_len
*
sizeof
(
int32_t
);
size
+=
(
bsz
+
1
)
*
sizeof
(
int
);
size
+=
bsz
*
slimmed_x_len
*
sizeof
(
int32_t
);
return
size
;
}
template
<
typename
T
>
int
FusedTokenPrunePluginDynamic
::
enqueueImpl
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace_ptr
,
cudaStream_t
stream
,
int
device_id
,
T
max_value
)
{
// Dims
auto
attn_dims
=
input_desc
[
0
].
dims
;
auto
x_dims
=
input_desc
[
1
].
dims
;
auto
new_mask_dims
=
input_desc
[
3
].
dims
;
auto
bsz
=
attn_dims
.
d
[
0
],
nb_head
=
attn_dims
.
d
[
1
],
max_seq_len
=
attn_dims
.
d
[
2
];
auto
c
=
x_dims
.
d
[
2
];
auto
slimmed_x_len
=
new_mask_dims
.
d
[
2
];
// Inputs
const
T
*
attn_data
=
static_cast
<
const
T
*>
(
inputs
[
0
]);
const
T
*
x_data
=
static_cast
<
const
T
*>
(
inputs
[
1
]);
const
T
*
mask_data
=
static_cast
<
const
T
*>
(
inputs
[
2
]);
// Outputs
T
*
output_data
=
static_cast
<
T
*>
(
outputs
[
0
]);
int32_t
*
output_indices_data
=
static_cast
<
int32_t
*>
(
outputs
[
1
]);
int
total
=
bsz
*
nb_head
*
max_seq_len
*
max_seq_len
;
int
block
=
operators
::
ComputeBlockSize
(
max_seq_len
);
int
grid
=
operators
::
CeilDivide
(
total
,
block
);
// Workspace for intermediate variable
char
*
workspace
=
static_cast
<
char
*>
(
workspace_ptr
);
T
*
attn_tmp_data
=
reinterpret_cast
<
T
*>
(
workspace
);
size_t
offset
=
total
*
sizeof
(
T
);
T
*
attn_accu_data
=
reinterpret_cast
<
T
*>
(
workspace
+
offset
);
offset
+=
bsz
*
max_seq_len
*
sizeof
(
T
);
int32_t
*
attn_accu_indices_data
=
reinterpret_cast
<
int32_t
*>
(
workspace
+
offset
);
offset
+=
bsz
*
max_seq_len
*
sizeof
(
int32_t
);
T
*
sort_attn_accu_data
=
reinterpret_cast
<
T
*>
(
workspace
+
offset
);
offset
+=
bsz
*
max_seq_len
*
sizeof
(
T
);
int32_t
*
sort_attn_accu_indices_data
=
reinterpret_cast
<
int32_t
*>
(
workspace
+
offset
);
offset
+=
bsz
*
max_seq_len
*
sizeof
(
int32_t
);
int
*
offsets_data
=
reinterpret_cast
<
int
*>
(
workspace
+
offset
);
offset
+=
(
bsz
+
1
)
*
sizeof
(
int
);
int32_t
*
slimmed_sort_attn_accu_indices_data
=
reinterpret_cast
<
int32_t
*>
(
workspace
+
offset
);
// 1. Filter attn by mask
ElementwiseMask
<
T
>
<<<
grid
,
block
,
0
,
stream
>>>
(
attn_data
,
mask_data
,
attn_tmp_data
,
total
);
total
=
bsz
*
max_seq_len
;
block
=
operators
::
ComputeBlockSize
(
max_seq_len
);
grid
=
operators
::
CeilDivide
(
total
,
block
);
FillZero
<
T
><<<
grid
,
block
,
0
,
stream
>>>
(
attn_accu_data
,
total
);
// 2. Reduce sum
total
=
bsz
*
nb_head
*
max_seq_len
*
max_seq_len
;
int
block_tmp
=
max_seq_len
;
while
(
block_tmp
>
1024
)
block_tmp
/=
2
;
// if max seq len > 1024, it must be 2^n
block
=
block_tmp
;
// make sure max_seq_len is an integral multiple of block_size
grid
=
operators
::
CeilDivide
(
total
,
block
);
ReduceSum2
<
T
><<<
grid
,
block
,
block
*
sizeof
(
T
),
stream
>>>
(
attn_tmp_data
,
attn_accu_data
,
bsz
,
nb_head
,
max_seq_len
);
// 3. Prepare token indices
total
=
bsz
*
max_seq_len
;
block
=
operators
::
ComputeBlockSize
(
max_seq_len
);
grid
=
operators
::
CeilDivide
(
total
,
block
);
FillIndex
<<<
grid
,
block
,
0
,
stream
>>>
(
attn_accu_indices_data
,
bsz
,
max_seq_len
);
// 4. Sort token indices by attn
if
(
keep_first_token_
)
{
MaximumFirst
<
T
>
<<<
bsz
,
1
,
0
,
stream
>>>
(
attn_accu_data
,
bsz
,
max_seq_len
,
max_value
);
}
size_t
temp_storage_bytes
=
-
1
;
int
num_items
=
bsz
*
max_seq_len
;
int
num_segments
=
bsz
;
FillOffsets
<<<
bsz
+
1
,
1
,
0
,
stream
>>>
(
offsets_data
,
bsz
,
max_seq_len
);
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceSegmentedRadixSort
::
SortPairsDescending
(
nullptr
,
temp_storage_bytes
,
attn_accu_data
,
sort_attn_accu_data
,
attn_accu_indices_data
,
sort_attn_accu_indices_data
,
num_items
,
num_segments
,
offsets_data
,
offsets_data
+
1
,
0
,
sizeof
(
T
)
*
8
,
stream
));
int64_t
temp_size
=
temp_storage_bytes
;
framework
::
Tensor
temp_storage
;
auto
*
temp_storage_data
=
temp_storage
.
mutable_data
<
uint8_t
>
(
{
temp_size
},
platform
::
CUDAPlace
(
device_id
));
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceSegmentedRadixSort
::
SortPairsDescending
(
temp_storage_data
,
temp_storage_bytes
,
attn_accu_data
,
sort_attn_accu_data
,
attn_accu_indices_data
,
sort_attn_accu_indices_data
,
num_items
,
num_segments
,
offsets_data
,
offsets_data
+
1
,
0
,
sizeof
(
T
)
*
8
,
stream
));
// 5. Slice
total
=
bsz
*
slimmed_x_len
;
block
=
operators
::
ComputeBlockSize
(
slimmed_x_len
);
grid
=
operators
::
CeilDivide
(
total
,
block
);
Slice
<
int32_t
>
<<<
grid
,
block
,
0
,
stream
>>>
(
sort_attn_accu_indices_data
,
slimmed_sort_attn_accu_indices_data
,
bsz
,
max_seq_len
,
slimmed_x_len
);
if
(
keep_order_
)
{
// 6. reorder
num_items
=
bsz
*
slimmed_x_len
;
FillOffsets
<<<
bsz
+
1
,
1
,
0
,
stream
>>>
(
offsets_data
,
bsz
,
slimmed_x_len
);
temp_storage_bytes
=
-
1
;
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceSegmentedRadixSort
::
SortKeys
(
nullptr
,
temp_storage_bytes
,
slimmed_sort_attn_accu_indices_data
,
output_indices_data
,
num_items
,
num_segments
,
offsets_data
,
offsets_data
+
1
,
0
,
sizeof
(
int32_t
)
*
8
,
stream
));
temp_size
=
temp_storage_bytes
;
temp_storage
.
Resize
({
temp_size
});
temp_storage_data
=
temp_storage
.
mutable_data
<
uint8_t
>
(
platform
::
CUDAPlace
(
device_id
));
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceSegmentedRadixSort
::
SortKeys
(
temp_storage_data
,
temp_storage_bytes
,
slimmed_sort_attn_accu_indices_data
,
output_indices_data
,
num_items
,
num_segments
,
offsets_data
,
offsets_data
+
1
,
0
,
sizeof
(
int32_t
)
*
8
,
stream
));
TakeAlongAxis
<
T
><<<
grid
,
block
,
0
,
stream
>>>
(
x_data
,
output_data
,
output_indices_data
,
bsz
,
max_seq_len
,
slimmed_x_len
,
c
);
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaMemcpy
(
output_indices_data
,
slimmed_sort_attn_accu_indices_data
,
bsz
*
slimmed_x_len
*
sizeof
(
int32_t
),
cudaMemcpyDeviceToDevice
));
TakeAlongAxis
<
T
>
<<<
grid
,
block
,
0
,
stream
>>>
(
x_data
,
output_data
,
slimmed_sort_attn_accu_indices_data
,
bsz
,
max_seq_len
,
slimmed_x_len
,
c
);
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
int
FusedTokenPrunePluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
auto
input_type
=
input_desc
[
0
].
type
;
auto
attn_dims
=
input_desc
[
0
].
dims
;
auto
bsz
=
attn_dims
.
d
[
0
],
nb_head
=
attn_dims
.
d
[
1
],
max_seq_len
=
attn_dims
.
d
[
2
];
int
device_id
;
cudaGetDevice
(
&
device_id
);
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
VLOG
(
1
)
<<
"TRT Plugin DataType selected. FusedTokenPrune-->fp32"
;
float
max
=
std
::
numeric_limits
<
float
>::
max
();
return
enqueueImpl
<
float
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
VLOG
(
1
)
<<
"TRT Plugin DataType selected. FusedTokenPrune-->fp16"
;
half
max
=
65504.0
;
return
enqueueImpl
<
half
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The Ernie(Bert) TensorRT Plugin should be "
"complied with CUDA version >= 10.0 when running with fp16. "
"Please recomplie it or try to use fp32 by set "
"config.SetTRTDynamicShapeInfo(min_input_shape, "
"max_input_shape, opt_input_shape, true"
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The FusedTokenPrune TRT Plugin's input type "
"should be float or half."
));
}
}
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
0 → 100644
浏览文件 @
d881d690
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
#if IS_TRT_VERSION_GE(6000)
class
FusedTokenPrunePluginDynamic
:
public
DynamicPluginTensorRT
{
public:
explicit
FusedTokenPrunePluginDynamic
(
bool
with_fp16
,
bool
keep_first_token
,
bool
keep_order
)
:
keep_first_token_
(
keep_first_token
),
keep_order_
(
keep_order
)
{
with_fp16_
=
with_fp16
;
}
FusedTokenPrunePluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
)
{
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
with_fp16_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
keep_first_token_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
keep_order_
);
}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
TRT_NOEXCEPT
override
{
return
new
FusedTokenPrunePluginDynamic
(
with_fp16_
,
keep_first_token_
,
keep_order_
);
}
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
{
return
"fused_token_prune_plugin_dynamic"
;
}
int
getNbOutputs
()
const
TRT_NOEXCEPT
override
{
return
2
;
}
int
initialize
()
TRT_NOEXCEPT
override
{
return
0
;
}
size_t
getSerializationSize
()
const
TRT_NOEXCEPT
override
{
return
SerializedSize
(
with_fp16_
)
+
SerializedSize
(
keep_first_token_
)
+
SerializedSize
(
keep_order_
);
}
void
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
override
{
SerializeValue
(
&
buffer
,
with_fp16_
);
SerializeValue
(
&
buffer
,
keep_first_token_
);
SerializeValue
(
&
buffer
,
keep_order_
);
}
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
// NOLINT
TRT_NOEXCEPT
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
TRT_NOEXCEPT
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nb_inputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nb_outputs
)
TRT_NOEXCEPT
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nb_inputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nb_outputs
)
const
TRT_NOEXCEPT
override
;
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
TRT_NOEXCEPT
override
;
void
destroy
()
TRT_NOEXCEPT
override
{
delete
this
;
}
private:
template
<
typename
T
>
int
enqueueImpl
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
,
int
device_id
,
T
max_value
);
bool
keep_first_token_
;
bool
keep_order_
;
};
class
FusedTokenPrunePluginDynamicCreator
:
public
nvinfer1
::
IPluginCreator
{
public:
FusedTokenPrunePluginDynamicCreator
()
{}
const
char
*
getPluginName
()
const
TRT_NOEXCEPT
override
{
return
"fused_token_prune_plugin_dynamic"
;
}
const
char
*
getPluginVersion
()
const
TRT_NOEXCEPT
override
{
return
"1"
;
}
const
nvinfer1
::
PluginFieldCollection
*
getFieldNames
()
TRT_NOEXCEPT
override
{
return
&
field_collection_
;
}
nvinfer1
::
IPluginV2
*
createPlugin
(
const
char
*
name
,
const
nvinfer1
::
PluginFieldCollection
*
fc
)
TRT_NOEXCEPT
override
{
return
nullptr
;
}
nvinfer1
::
IPluginV2
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
TRT_NOEXCEPT
override
{
auto
plugin
=
new
FusedTokenPrunePluginDynamic
(
serial_data
,
serial_length
);
return
plugin
;
}
void
setPluginNamespace
(
const
char
*
lib_namespace
)
TRT_NOEXCEPT
override
{
plugin_namespace_
=
lib_namespace
;
}
const
char
*
getPluginNamespace
()
const
TRT_NOEXCEPT
override
{
return
plugin_namespace_
.
c_str
();
}
private:
std
::
string
plugin_namespace_
;
std
::
string
plugin_name_
;
nvinfer1
::
PluginFieldCollection
field_collection_
;
std
::
vector
<
nvinfer1
::
PluginField
>
plugin_attributes_
;
};
REGISTER_TRT_PLUGIN_V2
(
FusedTokenPrunePluginDynamicCreator
);
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/test_fused_token_prune_plugin.cc
0 → 100644
浏览文件 @
d881d690
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
TEST
(
fused_token_prune_op_plugin
,
test_plugin
)
{
FusedTokenPrunePluginDynamic
plugin
(
true
,
/*keep_first_token*/
false
,
/*keep_order*/
true
);
plugin
.
configurePlugin
(
nullptr
,
4
,
nullptr
,
2
);
plugin
.
initialize
();
plugin
.
getPluginType
();
plugin
.
getNbOutputs
();
auto
clone_plugin
=
plugin
.
clone
();
clone_plugin
->
destroy
();
size_t
buf_size
=
plugin
.
getSerializationSize
();
std
::
vector
<
char
>
buf
(
buf_size
);
plugin
.
serialize
(
buf
.
data
());
}
TEST
(
fused_token_prune_op_plugin
,
test_plugin_creater
)
{
FusedTokenPrunePluginDynamicCreator
creator
;
creator
.
getFieldNames
();
creator
.
createPlugin
(
"test"
,
nullptr
);
creator
.
setPluginNamespace
(
"test"
);
}
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/test_dynamic_engine.cc
浏览文件 @
d881d690
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
#include "paddle/fluid/inference/tensorrt/plugin/spmm_plugin.h"
#endif
#include "paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/common/float16.h"
...
...
@@ -195,6 +196,197 @@ TEST_F(TensorRTDynamicEngineTest, test_spmm) {
return
;
}
class
TensorRTDynamicTestFusedTokenPrune
:
public
::
testing
::
Test
{
protected:
void
SetUp
()
override
{
ctx_
=
new
platform
::
CUDADeviceContext
(
platform
::
CUDAPlace
(
0
));
ctx_
->
SetAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
platform
::
CUDAPlace
(
0
),
ctx_
->
stream
())
.
get
());
ctx_
->
SetHostAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CPUPlace
())
.
get
());
ctx_
->
SetZeroAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetZeroAllocator
(
platform
::
CUDAPlace
(
0
))
.
get
());
ctx_
->
SetPinnedAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CUDAPinnedPlace
())
.
get
());
ctx_
->
PartialInitWithAllocator
();
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"attn"
,
{
4
,
1
,
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"attn"
,
{
4
,
1
,
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
optim_input_shape
=
{
{
"attn"
,
{
4
,
1
,
4
,
4
}},
{
"x"
,
{
4
,
4
,
1
}},
{
"mask"
,
{
4
,
1
,
4
,
4
}},
{
"new_mask"
,
{
4
,
1
,
2
,
2
}}};
engine_
=
new
TensorRTEngine
(
16
,
1
<<
10
,
AnalysisConfig
::
Precision
::
kHalf
,
nullptr
,
0
,
min_input_shape
,
max_input_shape
,
optim_input_shape
,
false
,
phi
::
DataType
::
FLOAT32
,
NaiveLogger
::
Global
());
engine_
->
InitNetwork
();
}
void
TearDown
()
override
{
if
(
engine_
)
{
delete
engine_
;
engine_
=
nullptr
;
}
}
void
PrepareInputOutput
(
const
std
::
vector
<
std
::
vector
<
float16
>>
inputs
,
std
::
vector
<
std
::
vector
<
int
>>
output_shapes
)
{
LOG
(
INFO
)
<<
"PrepareInputOutput"
;
int
num_inputs
=
inputs
.
size
();
int
num_outputs
=
output_shapes
.
size
();
inputs_
.
resize
(
num_inputs
);
outputs_
.
resize
(
num_outputs
);
for
(
int
i
=
0
;
i
<
num_inputs
;
++
i
)
{
paddle
::
framework
::
TensorFromVector
(
inputs
[
i
],
*
ctx_
,
&
inputs_
[
i
]);
}
for
(
int
i
=
0
;
i
<
num_outputs
;
++
i
)
{
outputs_
[
i
].
Resize
(
phi
::
make_ddim
(
output_shapes
[
i
]));
}
}
void
GetOutput
(
std
::
vector
<
float
>
&
slimmed_x
,
// NOLINT
std
::
vector
<
int32_t
>
&
cls_inds
)
{
// NOLINT
paddle
::
framework
::
TensorToVector
(
outputs_
[
0
],
*
ctx_
,
&
slimmed_x
);
paddle
::
framework
::
TensorToVector
(
outputs_
[
1
],
*
ctx_
,
&
cls_inds
);
}
protected:
std
::
vector
<
framework
::
Tensor
>
inputs_
;
std
::
vector
<
framework
::
Tensor
>
outputs_
;
TensorRTEngine
*
engine_
;
platform
::
CUDADeviceContext
*
ctx_
;
};
TEST_F
(
TensorRTDynamicTestFusedTokenPrune
,
test_fused_token_prune
)
{
#if IS_TRT_VERSION_GE(8000)
auto
*
attn
=
engine_
->
DeclareInput
(
"attn"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
4
,
4
});
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims3
{
-
1
,
4
,
1
});
auto
*
mask
=
engine_
->
DeclareInput
(
"mask"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
4
,
4
});
auto
*
new_mask
=
engine_
->
DeclareInput
(
"new_mask"
,
nvinfer1
::
DataType
::
kHALF
,
nvinfer1
::
Dims4
{
-
1
,
1
,
2
,
2
});
plugin
::
FusedTokenPrunePluginDynamic
*
plugin
=
new
plugin
::
FusedTokenPrunePluginDynamic
(
true
,
/*keep_first_token*/
false
,
/*keep_order*/
true
);
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
attn
,
x
,
mask
,
new_mask
};
auto
*
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
4
,
plugin
);
PADDLE_ENFORCE_NOT_NULL
(
layer
,
platform
::
errors
::
InvalidArgument
(
"TRT fused_token_prune layer building failed."
));
std
::
vector
<
std
::
string
>
output_tensor_names
{
"out_slimmed_x"
,
"out_cls_inds"
};
for
(
size_t
i
=
0
;
i
<
2
;
i
++
)
{
layer
->
getOutput
(
i
)
->
setName
(
output_tensor_names
[
i
].
c_str
());
engine_
->
DeclareOutput
(
layer
,
i
,
output_tensor_names
[
i
]);
}
engine_
->
FreezeNetwork
();
ASSERT_EQ
(
engine_
->
engine
()
->
getNbBindings
(),
6
);
LOG
(
INFO
)
<<
"create input"
;
std
::
vector
<
float16
>
attn_v
(
64
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
attn_v
[
i
*
16
+
j
*
4
+
k
]
=
k
;
}
}
}
std
::
vector
<
float16
>
x_v
(
16
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
x_v
[
i
*
4
+
j
]
=
1
;
}
}
std
::
vector
<
float16
>
mask_v
(
64
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
for
(
int
k
=
0
;
k
<
4
;
++
k
)
{
mask_v
[
i
*
16
+
j
*
4
+
k
]
=
1
;
}
}
}
std
::
vector
<
float16
>
new_mask_v
(
16
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
for
(
int
j
=
0
;
j
<
2
;
++
j
)
{
for
(
int
k
=
0
;
k
<
2
;
++
k
)
{
new_mask_v
[
i
*
4
+
j
*
2
+
k
]
=
1
;
}
}
}
LOG
(
INFO
)
<<
"create output"
;
std
::
vector
<
int
>
out_slimmed_x_shape
{
4
,
2
,
1
};
std
::
vector
<
int
>
out_cls_ins_shape
{
4
,
2
};
PrepareInputOutput
({
attn_v
,
x_v
,
mask_v
,
new_mask_v
},
{
out_slimmed_x_shape
,
out_cls_ins_shape
});
auto
*
attn_gpu_data
=
inputs_
[
0
].
mutable_data
<
float16
>
(
ctx_
->
GetPlace
());
auto
*
x_gpu_data
=
inputs_
[
1
].
mutable_data
<
float16
>
(
ctx_
->
GetPlace
());
auto
*
mask_gpu_data
=
inputs_
[
2
].
mutable_data
<
float16
>
(
ctx_
->
GetPlace
());
auto
*
new_mask_gpu_data
=
inputs_
[
3
].
mutable_data
<
float16
>
(
ctx_
->
GetPlace
());
auto
*
slimmed_x_gpu_data
=
outputs_
[
0
].
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
cls_inds_gpu_data
=
outputs_
[
1
].
mutable_data
<
int32_t
>
(
ctx_
->
GetPlace
());
LOG
(
INFO
)
<<
"create buffers"
;
std
::
vector
<
void
*>
buffers
(
6
);
buffers
[
0
]
=
reinterpret_cast
<
void
*>
(
attn_gpu_data
);
buffers
[
1
]
=
reinterpret_cast
<
void
*>
(
x_gpu_data
);
buffers
[
2
]
=
reinterpret_cast
<
void
*>
(
mask_gpu_data
);
buffers
[
3
]
=
reinterpret_cast
<
void
*>
(
new_mask_gpu_data
);
buffers
[
4
]
=
reinterpret_cast
<
void
*>
(
slimmed_x_gpu_data
);
buffers
[
5
]
=
reinterpret_cast
<
void
*>
(
cls_inds_gpu_data
);
LOG
(
INFO
)
<<
"Execute"
;
engine_
->
Execute
(
4
,
&
buffers
,
ctx_
->
stream
());
std
::
vector
<
float
>
slimmed_x_v
;
std
::
vector
<
int32_t
>
cls_inds_v
;
LOG
(
INFO
)
<<
"GetOutput"
;
GetOutput
(
slimmed_x_v
,
cls_inds_v
);
ASSERT_EQ
(
cls_inds_v
[
0
],
2
);
ASSERT_EQ
(
cls_inds_v
[
1
],
3
);
ASSERT_EQ
(
cls_inds_v
[
2
],
2
);
ASSERT_EQ
(
cls_inds_v
[
3
],
3
);
ASSERT_EQ
(
cls_inds_v
[
4
],
2
);
ASSERT_EQ
(
cls_inds_v
[
5
],
3
);
ASSERT_EQ
(
cls_inds_v
[
6
],
2
);
ASSERT_EQ
(
cls_inds_v
[
7
],
3
);
LOG
(
INFO
)
<<
"finish"
;
#endif
}
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/operators/fused_token_prune_op.cc
0 → 100644
浏览文件 @
d881d690
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
FusedTokenPruneOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Attn"
,
"(Tensor)"
"The input of fused_token_prune op, whose shape should be [bsz, "
"num_head, max_seq_len, max_seq_len] and dtype should be "
"float32/float64,"
"Attn is attention scores of input sequences which will be used "
"to sort another input tensor: X's indices so that "
"some elements of X with lower attention score will not be "
"considered after this op."
);
AddInput
(
"X"
,
"(Tensor)"
"The input of fused_token_prune op, whose shape should be [bsz, "
"max_seq_len, c] and dtype should be float32/float64."
);
AddInput
(
"Mask"
,
"(Tensor)"
"The input of fused_token_prune op, whose shape should be [bsz, "
"num_head, "
"max_seq_len, max_seq_len] and dtype should be float32/float64."
"Mask is corresponding to Attn's elemnts one by one. Elements of Attn "
"will be set to zero if their corresponding mask is smaller than 0."
"This process happens before sorting X by attn."
);
AddInput
(
"NewMask"
,
"(Tensor)"
"The input of fused_token_prune op, whose shape should be [bsz, "
"num_head, slimmed_seq_len, slimmed_seq_len]."
"NewMask is just used to get slimmed_seq_len, so the value of "
"this input is not important in this op."
);
AddOutput
(
"SlimmedX"
,
"(Tensor)"
"The output of fused_token_prune op, whose shape should be [bsz, "
"slimmed_seq_len, C]."
"The tokens of X will be sorted by Attn firstly and then the "
"last (max_seq_len - slimmed_seq_len)"
"tokens will be deleted. SlimmedX is the remainning part of X. "
""
);
AddOutput
(
"CLSInds"
,
"(Tensor)"
"The output of fused_token_prune op, whose shape should be [bsz, "
"slimmed_seq_len] and dtype is int64. CLSInds contains token indices "
" of each batch after sorting and pruning. "
);
AddAttr
<
bool
>
(
"keep_first_token"
,
"If keep_first_token is True, the element located in "
"CLSInds[:, 1] must be 0."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"keep_order"
,
"If keep_order is True, the relative order of SlimmedX and "
"CLSInds remains unchanged"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
fused_token_prune op is used to fuse multiple ops to perform token pruning.
In this op:
1. Elements of Attn will be set to zero if their corresponding mask is smaller than 0.
2. The second dimension of X will be sorted by Attn.
3. The last (max_seq_len - slimmed_seq_len) lines of X will be pruned.
4. The remainning part of sorted X will output.
)DOC"
);
}
};
class
FusedTokenPruneOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Attn"
),
"Input"
,
"Attn"
,
"FusedTokenPrune"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FusedTokenPrune"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Mask"
),
"Input"
,
"Mask"
,
"FusedTokenPrune"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"NewMask"
),
"Input"
,
"NewMask"
,
"FusedTokenPrune"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"SlimmedX"
),
"Output"
,
"SlimmedX"
,
"FusedTokenPrune"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"CLSInds"
),
"Output"
,
"CLSInds"
,
"FusedTokenPrune"
);
auto
mask_dim
=
ctx
->
GetInputDim
(
"Mask"
);
auto
attn_dim
=
ctx
->
GetInputDim
(
"Attn"
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
new_mask_dim
=
ctx
->
GetInputDim
(
"NewMask"
);
// check input dims number
PADDLE_ENFORCE_EQ
(
mask_dim
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The input mask must be 4-dimention"
));
PADDLE_ENFORCE_EQ
(
attn_dim
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The input attn must be 4-dimention"
));
PADDLE_ENFORCE_EQ
(
x_dim
.
size
(),
3
,
platform
::
errors
::
InvalidArgument
(
"The input x must be 4-dimention"
));
PADDLE_ENFORCE_EQ
(
new_mask_dim
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The input attn must be 4-dimention"
));
// check input dims relations
PADDLE_ENFORCE_EQ
(
mask_dim
[
0
],
attn_dim
[
0
],
platform
::
errors
::
InvalidArgument
(
"The first dim of mask and attn should be the same"
"which is batch size"
));
PADDLE_ENFORCE_EQ
(
mask_dim
[
1
],
attn_dim
[
1
],
platform
::
errors
::
InvalidArgument
(
"The second dim of mask and attn should be the same"
"which is nb_head"
));
PADDLE_ENFORCE_EQ
(
mask_dim
[
0
],
x_dim
[
0
],
platform
::
errors
::
InvalidArgument
(
"The first dim of mask and x should be the same"
"which is batch size"
));
PADDLE_ENFORCE_EQ
(
mask_dim
[
2
],
mask_dim
[
3
],
platform
::
errors
::
InvalidArgument
(
"The third dim and the fourth dim of mask should be the same"
"which is max seq len"
));
PADDLE_ENFORCE_EQ
(
attn_dim
[
2
],
attn_dim
[
3
],
platform
::
errors
::
InvalidArgument
(
"The third dim and the fourth dim of mask should be the same"
"which is max seq len"
));
PADDLE_ENFORCE_EQ
(
attn_dim
[
2
],
mask_dim
[
2
],
platform
::
errors
::
InvalidArgument
(
"The third dim of mask and attn should be the same"
"which is max seq len"
));
PADDLE_ENFORCE_EQ
(
attn_dim
[
2
],
x_dim
[
1
],
platform
::
errors
::
InvalidArgument
(
"The third dim of mask and the second dim of attn"
"should be the same which is max seq len"
));
auto
bsz
=
mask_dim
[
0
];
auto
c
=
x_dim
[
2
];
auto
slim_seq_len
=
new_mask_dim
[
2
];
ctx
->
SetOutputDim
(
"SlimmedX"
,
{
bsz
,
slim_seq_len
,
c
});
ctx
->
SetOutputDim
(
"CLSInds"
,
{
bsz
,
slim_seq_len
});
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fused_token_prune
,
ops
::
FusedTokenPruneOp
,
ops
::
FusedTokenPruneOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
paddle/fluid/operators/fused_token_prune_op.cu
0 → 100644
浏览文件 @
d881d690
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <limits>
#ifdef __NVCC__
#include <cub/cub.cuh>
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace
cub
=
hipcub
;
#endif
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/fused_token_prune_op.cu.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
template
<
typename
T
>
struct
AttnMaskFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
>=
0
?
a
:
0
;
}
};
__global__
void
FillIndex
(
int64_t
*
indices
,
int
num_raws
,
int
num_cols
)
{
int
num_threads
=
num_raws
*
num_cols
;
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
num_threads
;
tid
+=
stride
)
{
int
col
=
tid
%
num_cols
;
indices
[
tid
]
=
(
int64_t
)
col
;
}
}
template
<
typename
T
>
__global__
void
TakeAlongAxis
(
const
T
*
src
,
T
*
dst
,
int64_t
*
indices
,
int
num_raws
,
int
src_num_cols
,
int
dst_num_cols
,
int
num_elements
)
{
int
num_threads
=
num_raws
*
dst_num_cols
;
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
num_threads
;
tid
+=
stride
)
{
int
raw
=
tid
/
dst_num_cols
;
int
col
=
tid
%
dst_num_cols
;
for
(
int
i
=
0
;
i
<
num_elements
;
++
i
)
{
dst
[
tid
*
num_elements
+
i
]
=
*
(
src
+
(
raw
*
src_num_cols
+
indices
[
tid
])
*
num_elements
+
i
);
}
}
}
template
<
typename
T
>
__global__
void
MaximumFirst
(
T
*
mat
,
int
num_raws
,
int
num_cols
,
T
max_value
)
{
int
num_threads
=
num_raws
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
for
(;
tid
<
num_threads
;
tid
+=
stride
)
{
mat
[
tid
*
num_cols
]
=
max_value
;
}
}
template
<
typename
T
>
class
FusedTokenPruneOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
dev_ctx
=
context
.
cuda_device_context
();
// Inouts
const
Tensor
*
attn
=
context
.
Input
<
Tensor
>
(
"Attn"
);
const
Tensor
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
mask
=
context
.
Input
<
Tensor
>
(
"Mask"
);
const
Tensor
*
new_mask
=
context
.
Input
<
Tensor
>
(
"NewMask"
);
// Input dims
auto
attn_dims
=
attn
->
dims
();
auto
x_dims
=
x
->
dims
();
auto
new_mask_dims
=
new_mask
->
dims
();
auto
bsz
=
attn_dims
[
0
];
auto
num_heads
=
attn_dims
[
1
];
auto
max_seq_len
=
attn_dims
[
2
];
auto
c
=
x_dims
[
2
];
int
slimmed_x_len
=
new_mask_dims
[
2
];
// Attrs
const
bool
keep_first_token
=
context
.
Attr
<
bool
>
(
"keep_first_token"
);
const
bool
keep_order
=
context
.
Attr
<
bool
>
(
"keep_order"
);
// Outputs
Tensor
*
out_slimmed_x
=
context
.
Output
<
Tensor
>
(
"SlimmedX"
);
Tensor
*
slimmed_indices
=
context
.
Output
<
Tensor
>
(
"CLSInds"
);
auto
*
out_slimmed_x_data
=
out_slimmed_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
slimmed_indices_data
=
slimmed_indices
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
// Intermediate variable
Tensor
attn_tmp
;
auto
*
attn_tmp_data
=
attn_tmp
.
mutable_data
<
T
>
(
attn_dims
,
context
.
GetPlace
());
Tensor
attn_accu
;
auto
*
attn_accu_data
=
attn_accu
.
mutable_data
<
T
>
({
bsz
,
max_seq_len
},
context
.
GetPlace
());
Tensor
attn_accu_indices
;
auto
*
attn_accu_indices_data
=
attn_accu_indices
.
mutable_data
<
int64_t
>
(
{
bsz
,
max_seq_len
},
context
.
GetPlace
());
Tensor
sort_attn_accu
;
auto
*
sort_attn_accu_data
=
sort_attn_accu
.
mutable_data
<
T
>
({
bsz
,
max_seq_len
},
context
.
GetPlace
());
Tensor
sort_attn_accu_indices
;
auto
*
sort_attn_accu_indices_data
=
sort_attn_accu_indices
.
mutable_data
<
int64_t
>
({
bsz
,
max_seq_len
},
context
.
GetPlace
());
Tensor
temp_storage
;
// 1. Filter attn by mask
std
::
vector
<
const
Tensor
*>
ins
;
std
::
vector
<
Tensor
*>
outs
;
ins
.
emplace_back
(
attn
);
ins
.
emplace_back
(
mask
);
outs
.
emplace_back
(
&
attn_tmp
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
dev_ctx
,
ins
,
&
outs
,
-
1
,
AttnMaskFunctor
<
T
>
());
// 2. Reduce sum
const
std
::
vector
<
int64_t
>
reduce_dims
{
1
,
2
};
phi
::
Reduce
<
T
,
kps
::
AddFunctor
,
kps
::
IdentityFunctor
>
(
dev_ctx
,
attn_tmp
,
false
,
reduce_dims
,
false
,
attn_accu
.
dtype
(),
&
attn_accu
);
// 3. Prepare token indices
phi
::
backends
::
gpu
::
GpuLaunchConfig
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
bsz
*
max_seq_len
);
FillIndex
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
attn_accu_indices_data
,
bsz
,
max_seq_len
);
// 4. Sort token indices by attn
if
(
keep_first_token
)
{
T
max
=
std
::
numeric_limits
<
T
>::
max
();
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
bsz
);
MaximumFirst
<
T
>
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
attn_accu_data
,
bsz
,
max_seq_len
,
max
);
}
size_t
temp_storage_bytes
=
-
1
;
int
num_items
=
bsz
*
max_seq_len
;
int
num_segments
=
bsz
;
cub
::
CountingInputIterator
<
int64_t
>
counting_iter
(
0
);
cub
::
TransformInputIterator
<
int64_t
,
SegmentOffsetIter
,
cub
::
CountingInputIterator
<
int64_t
>>
segment_offsets_t
(
counting_iter
,
SegmentOffsetIter
(
max_seq_len
));
// Determine temporary device storage requirements
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceSegmentedRadixSort
::
SortPairsDescending
(
nullptr
,
temp_storage_bytes
,
attn_accu_data
,
sort_attn_accu_data
,
attn_accu_indices_data
,
sort_attn_accu_indices_data
,
num_items
,
num_segments
,
segment_offsets_t
,
segment_offsets_t
+
1
,
0
,
sizeof
(
T
)
*
8
,
dev_ctx
.
stream
()));
// Allocate temporary storage
int64_t
temp_size
=
temp_storage_bytes
;
auto
*
temp_storage_data
=
temp_storage
.
mutable_data
<
uint8_t
>
({
temp_size
},
context
.
GetPlace
());
// Run sorting operation
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceSegmentedRadixSort
::
SortPairsDescending
(
temp_storage_data
,
temp_storage_bytes
,
attn_accu_data
,
sort_attn_accu_data
,
attn_accu_indices_data
,
sort_attn_accu_indices_data
,
num_items
,
num_segments
,
segment_offsets_t
,
segment_offsets_t
+
1
,
0
,
sizeof
(
T
)
*
8
,
dev_ctx
.
stream
()));
// 5. Slice
auto
slimmed_indices_tmp
=
phi
::
funcs
::
Slice
<
int64_t
>
(
dev_ctx
,
sort_attn_accu_indices
,
{
1
}
/*axes*/
,
{
0
}
/*starts*/
,
{
slimmed_x_len
}
/*ends*/
);
if
(
keep_order
)
{
// 6. reorder
num_items
=
bsz
*
slimmed_x_len
;
temp_storage_bytes
=
-
1
;
cub
::
TransformInputIterator
<
int64_t
,
SegmentOffsetIter
,
cub
::
CountingInputIterator
<
int64_t
>>
segment_offsets_t2
(
counting_iter
,
SegmentOffsetIter
(
slimmed_x_len
));
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceSegmentedRadixSort
::
SortKeys
(
nullptr
,
temp_storage_bytes
,
static_cast
<
int64_t
*>
(
slimmed_indices_tmp
.
data
()),
static_cast
<
int64_t
*>
(
slimmed_indices
->
data
()),
num_items
,
num_segments
,
segment_offsets_t2
,
segment_offsets_t2
+
1
,
0
,
sizeof
(
int64_t
)
*
8
,
dev_ctx
.
stream
()));
temp_size
=
temp_storage_bytes
;
temp_storage
.
Resize
({
temp_size
});
temp_storage_data
=
temp_storage
.
mutable_data
<
uint8_t
>
(
context
.
GetPlace
());
PADDLE_ENFORCE_GPU_SUCCESS
(
cub
::
DeviceSegmentedRadixSort
::
SortKeys
(
temp_storage_data
,
temp_storage_bytes
,
static_cast
<
int64_t
*>
(
slimmed_indices_tmp
.
data
()),
static_cast
<
int64_t
*>
(
slimmed_indices
->
data
()),
num_items
,
num_segments
,
segment_offsets_t2
,
segment_offsets_t2
+
1
,
0
,
sizeof
(
int64_t
)
*
8
,
dev_ctx
.
stream
()));
}
else
{
framework
::
TensorCopy
(
slimmed_indices_tmp
,
context
.
GetPlace
(),
slimmed_indices
);
}
// 7. Get slimmed X by indices
config
=
phi
::
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
bsz
*
slimmed_x_len
);
TakeAlongAxis
<
T
><<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
x
->
data
<
T
>
(),
out_slimmed_x_data
,
slimmed_indices
->
data
<
int64_t
>
(),
bsz
,
max_seq_len
,
slimmed_x_len
,
c
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
fused_token_prune
,
ops
::
FusedTokenPruneOpCUDAKernel
<
float
>
,
ops
::
FusedTokenPruneOpCUDAKernel
<
double
>
);
paddle/fluid/operators/fused_token_prune_op.cu.h
0 → 100644
浏览文件 @
d881d690
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/phi/kernels/funcs/slice.h"
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/primitive/functor_primitives.h"
namespace
paddle
{
namespace
operators
{
HOSTDEVICE
inline
int
CeilDivide
(
int
n
,
int
m
)
{
return
(
n
+
m
-
1
)
/
m
;
}
inline
int
ComputeBlockSize
(
int
col
)
{
if
(
col
>
512
)
return
1024
;
else
if
(
col
>
256
&&
col
<=
512
)
return
512
;
else
if
(
col
>
128
&&
col
<=
256
)
return
256
;
else
if
(
col
>
64
&&
col
<=
128
)
return
128
;
else
return
64
;
}
// Iter for move to next row
struct
SegmentOffsetIter
{
EIGEN_DEVICE_FUNC
explicit
SegmentOffsetIter
(
int
num_cols
)
:
num_cols_
(
num_cols
)
{}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE
int
operator
()(
int
idx
)
const
{
return
idx
*
num_cols_
;
}
int
num_cols_
;
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
浏览文件 @
d881d690
...
...
@@ -28,6 +28,13 @@ if(NOT WITH_DISTRIBUTE)
list
(
REMOVE_ITEM TEST_TRT_CONVERTER
"test_trt_convert_c_allreduce"
)
endif
()
if
(
WIN32
)
list
(
REMOVE_ITEM TEST_INFERENCE_IR_PASSES
"test_trt_convert_fused_token_prune"
)
list
(
REMOVE_ITEM TEST_TRT_IR_PASSES
"test_trt_convert_fused_token_prune"
)
list
(
REMOVE_ITEM TEST_TRT_CONVERTER
"test_trt_convert_fused_token_prune"
)
endif
()
# Only for cpu(mkl + openblas)
set
(
TEST_INFERENCE_CPU_UT
"test_mul_lstm_fuse_pass"
"test_mul_gru_fuse_pass"
)
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_fused_token_prune.py
0 → 100644
浏览文件 @
d881d690
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
class
TrtConvertFusedTokenPruneTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
self
.
trt_param
.
workspace_size
=
1073741824
def
generate_attn_or_mask
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
4
,
12
,
64
,
64
]).
astype
(
np
.
float32
)
def
generate_x
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
4
,
64
,
76
]).
astype
(
np
.
float32
)
def
generate_new_mask
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
random
([
4
,
12
,
32
,
32
]).
astype
(
np
.
float32
)
for
keep_first_token
in
[
True
,
False
]:
for
keep_order
in
[
True
,
False
]:
dics
=
[{
"keep_first_token"
:
keep_first_token
,
"keep_order"
:
keep_order
}]
ops_config
=
[{
"op_type"
:
"fused_token_prune"
,
"op_inputs"
:
{
"Attn"
:
[
"attn"
],
"X"
:
[
"x"
],
"Mask"
:
[
"mask"
],
"NewMask"
:
[
"new_mask"
]
},
"op_outputs"
:
{
"SlimmedX"
:
[
"slimmed_x"
],
"CLSInds"
:
[
"cls_inds"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"attn"
:
TensorConfig
(
data_gen
=
partial
(
generate_attn_or_mask
,
dics
)),
"x"
:
TensorConfig
(
data_gen
=
partial
(
generate_x
,
dics
)),
"mask"
:
TensorConfig
(
data_gen
=
partial
(
generate_attn_or_mask
,
dics
)),
"new_mask"
:
TensorConfig
(
data_gen
=
partial
(
generate_new_mask
,
dics
))
},
outputs
=
[
"slimmed_x"
,
"cls_inds"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"attn"
:
[
4
,
12
,
64
,
64
],
"x"
:
[
4
,
64
,
76
],
"mask"
:
[
4
,
12
,
64
,
64
],
"new_mask"
:
[
4
,
12
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"attn"
:
[
4
,
12
,
64
,
64
],
"x"
:
[
4
,
64
,
76
],
"mask"
:
[
4
,
12
,
64
,
64
],
"new_mask"
:
[
4
,
12
,
32
,
32
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"attn"
:
[
4
,
12
,
64
,
64
],
"x"
:
[
4
,
64
,
76
],
"mask"
:
[
4
,
12
,
64
,
64
],
"new_mask"
:
[
4
,
12
,
32
,
32
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
6
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
,
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
,
1e-5
,
1e-5
)
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fused_token_prune_op.py
0 → 100644
浏览文件 @
d881d690
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
from
op_test
import
OpTest
from
paddle.framework
import
core
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFusedTokenPruneOp
(
OpTest
):
def
setDtype
(
self
):
self
.
dtype
=
np
.
float32
def
setInouts
(
self
):
attn
=
[[
1
,
2
],
[
3
,
4
]]
attn
=
np
.
array
(
attn
,
dtype
=
self
.
dtype
)
attn
=
np
.
expand_dims
(
attn
,
axis
=
0
)
self
.
attn
=
np
.
expand_dims
(
attn
,
axis
=
0
)
# [1,1,2,2] bsz = 1, nd_head=1, max_seq_len=2
mask
=
[[
1
,
1
],
[
-
1
,
-
1
]]
mask
=
np
.
array
(
mask
,
dtype
=
self
.
dtype
)
mask
=
np
.
expand_dims
(
mask
,
axis
=
0
)
self
.
mask
=
np
.
expand_dims
(
mask
,
axis
=
0
)
# same as attn
x
=
[[
1
,
2
,
3
],
[
4
,
5
,
6
]]
x
=
np
.
array
(
x
,
dtype
=
self
.
dtype
)
self
.
x
=
np
.
expand_dims
(
x
,
axis
=
0
)
# [1, 2, 3] bsz = 1, max_seq_len=2, c=3
new_mask
=
[[
1
]]
new_mask
=
np
.
array
(
new_mask
,
dtype
=
self
.
dtype
)
new_mask
=
np
.
expand_dims
(
new_mask
,
axis
=
0
)
self
.
new_mask
=
np
.
expand_dims
(
new_mask
,
axis
=
0
)
#[1, 1, 1, 1]
out_slimmedx_py
=
[[[
1
,
2
,
3
]]]
self
.
out_slimmedx_py
=
np
.
array
(
out_slimmedx_py
,
dtype
=
self
.
dtype
)
out_cls_inds_py
=
[[
0
]]
self
.
out_cls_inds_py
=
np
.
array
(
out_cls_inds_py
,
dtype
=
'int64'
)
def
setUp
(
self
):
self
.
op_type
=
'fused_token_prune'
self
.
setDtype
()
self
.
setInouts
()
self
.
inputs
=
{
'Attn'
:
self
.
attn
,
'Mask'
:
self
.
mask
,
'X'
:
self
.
x
,
'NewMask'
:
self
.
new_mask
}
self
.
outputs
=
{
'SlimmedX'
:
self
.
out_slimmedx_py
,
'CLSInds'
:
self
.
out_cls_inds_py
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
core
.
CUDAPlace
(
0
))
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFusedTokenPruneOpFloat64
(
TestFusedTokenPruneOp
):
def
setDtype
(
self
):
self
.
dtype
=
np
.
float64
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestFusedTokenPruneOp2
(
TestFusedTokenPruneOp
):
def
setInouts
(
self
):
attn
=
[[[[
1
,
2
,
3
,
4
],
[
4
,
3
,
2
,
1
],
[
5
,
9
,
5
,
4
],
[
9
,
6
,
5
,
4
]],
[[
8
,
5
,
2
,
0
],
[
1
,
0
,
2
,
3
],
[
2
,
2
,
3
,
2
],
[
7
,
4
,
1
,
8
]]]]
self
.
attn
=
np
.
array
(
attn
,
dtype
=
self
.
dtype
)
# [1,2,4,4] bsz = 1, nd_head=2, max_seq_len=4
mask
=
[[[[
-
1
,
-
1
,
-
1
,
1
],
[
-
1
,
-
1
,
1
,
1
],
[
-
1
,
-
1
,
1
,
1
],
[
-
1
,
-
1
,
1
,
1
]],
[[
-
1
,
-
1
,
1
,
1
],
[
-
1
,
-
1
,
1
,
1
],
[
-
1
,
-
1
,
1
,
1
],
[
-
1
,
-
1
,
1
,
1
]]]]
self
.
mask
=
np
.
array
(
mask
,
dtype
=
self
.
dtype
)
# same as attn
x
=
[[[
1.1
,
1.1
,
1.1
],
[
2.2
,
2.2
,
2.2
],
[
3.3
,
3.3
,
3.3
],
[
4.4
,
4.4
,
4.4
]]]
self
.
x
=
np
.
array
(
x
,
dtype
=
self
.
dtype
)
# [1, 4, 3] bsz = 1, max_seq_len=4, c=3
self
.
new_mask
=
np
.
random
.
rand
(
1
,
2
,
2
,
2
).
astype
(
self
.
dtype
)
#[1, 2, 2, 2]
out_slimmedx_py
=
[[[
1.1
,
1.1
,
1.1
],
[
4.4
,
4.4
,
4.4
]]]
#[1, 2, 3]
self
.
out_slimmedx_py
=
np
.
array
(
out_slimmedx_py
,
dtype
=
self
.
dtype
)
out_cls_inds_py
=
[[
0
,
3
]]
self
.
out_cls_inds_py
=
np
.
array
(
out_cls_inds_py
,
dtype
=
'int64'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
tools/static_mode_white_list.py
浏览文件 @
d881d690
...
...
@@ -233,6 +233,7 @@ STATIC_MODE_TESTING_LIST = [
'test_fused_elemwise_activation_op'
,
'test_fused_emb_seq_pool_op'
,
'test_fused_embedding_fc_lstm_op'
,
'test_fused_token_prune_op'
,
'test_fusion_gru_op'
,
'test_fusion_lstm_op'
,
'test_fusion_repeated_fc_relu_op'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录