Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d7be46b3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
“80c68d38ff3c59e12f48b4e4e88c24c89568fc0a”上不存在“paddle/gserver/layers/CudnnConvBaseLayer.cpp”
未验证
提交
d7be46b3
编写于
7月 08, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
7月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add implement of resnet_basic_block op for XPU2, test=kunlun (#44143)
上级
337bb47b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
997 addition
and
18 deletion
+997
-18
paddle/fluid/operators/fused/resnet_basic_block_op.cc
paddle/fluid/operators/fused/resnet_basic_block_op.cc
+19
-18
paddle/fluid/operators/fused/resnet_basic_block_op_xpu.cc
paddle/fluid/operators/fused/resnet_basic_block_op_xpu.cc
+970
-0
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+8
-0
未找到文件。
paddle/fluid/operators/fused/resnet_basic_block_op.cc
浏览文件 @
d7be46b3
...
@@ -258,24 +258,25 @@ class ResNetBasicBlockOp : public framework::OperatorWithKernel {
...
@@ -258,24 +258,25 @@ class ResNetBasicBlockOp : public framework::OperatorWithKernel {
class
ResNetBasicBlockOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
ResNetBasicBlockOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
void
Make
()
{
void
Make
()
{
// has_shortcut = True: X else: X
// has_shortcut = True: else:
// / /
// X X
// | | | |
// / /
// CONV1 | CONV1 |
// | | | |
// | | | |
// CONV1 | CONV1 |
// BN1 | BN1 |
// | | | |
// | | | |
// BN1 | BN1 |
// RELU1 | RELU1 |
// | | | |
// | | | |
// RELU1 | RELU1 |
// CONV2 CONV3 CONV2 |
// | | | |
// | | | |
// CONV2 CONV3 CONV2 |
// BN2 BN3 BN2 |
// | | | |
// \ / \ /
// BN2 BN3 BN2 |
// ADD ADD
// \ / \ /
// | |
// ADD ADD
// RELU RELU
// | |
// | |
// RELU RELU
// Y Y
// | |
// Y Y
AddInput
(
"X"
,
"Input tensor of conv 1"
);
AddInput
(
"X"
,
"Input tensor of conv 1"
);
AddInput
(
"Filter1"
,
"Filter tensor of conv 1"
);
AddInput
(
"Filter1"
,
"Filter tensor of conv 1"
);
AddInput
(
"Scale1"
,
"Scale tensor of bn 1"
);
AddInput
(
"Scale1"
,
"Scale tensor of bn 1"
);
...
...
paddle/fluid/operators/fused/resnet_basic_block_op_xpu.cc
0 → 100644
浏览文件 @
d7be46b3
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/phi/api/all.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
class
ResnetBasicBlockAttr
{
public:
explicit
ResnetBasicBlockAttr
(
const
framework
::
ExecutionContext
&
ctx
)
{
padding1
=
ctx
.
Attr
<
int
>
(
"padding1"
);
padding2
=
ctx
.
Attr
<
int
>
(
"padding2"
);
padding3
=
ctx
.
Attr
<
int
>
(
"padding3"
);
stride1
=
ctx
.
Attr
<
int
>
(
"stride1"
);
stride2
=
ctx
.
Attr
<
int
>
(
"stride2"
);
stride3
=
ctx
.
Attr
<
int
>
(
"stride3"
);
dilation1
=
ctx
.
Attr
<
int
>
(
"dilation1"
);
dilation2
=
ctx
.
Attr
<
int
>
(
"dilation2"
);
dilation3
=
ctx
.
Attr
<
int
>
(
"dilation3"
);
group
=
ctx
.
Attr
<
int
>
(
"group"
);
eps
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
momentum
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
has_shortcut
=
ctx
.
Attr
<
bool
>
(
"has_shortcut"
);
find_max
=
ctx
.
Attr
<
bool
>
(
"find_conv_input_max"
);
const
auto
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
const
auto
trainable_stats
=
ctx
.
Attr
<
bool
>
(
"trainable_statistics"
);
bool
test_mode
=
is_test
&&
(
!
trainable_stats
);
global_stats
=
test_mode
||
use_global_stats
;
// init shape
auto
input1
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
filter1
=
ctx
.
Input
<
Tensor
>
(
"Filter1"
);
auto
conv1_out
=
ctx
.
Output
<
Tensor
>
(
"Conv1"
);
auto
filter2
=
ctx
.
Input
<
Tensor
>
(
"Filter2"
);
auto
conv2_out
=
ctx
.
Output
<
Tensor
>
(
"Conv2"
);
conv1_input_shape
=
phi
::
vectorize
<
int
>
(
input1
->
dims
());
conv1_output_shape
=
phi
::
vectorize
<
int
>
(
conv1_out
->
dims
());
conv1_filter_shape
=
phi
::
vectorize
<
int
>
(
filter1
->
dims
());
conv1_filter_numel
=
filter1
->
numel
();
conv1_input_numel
=
input1
->
numel
();
conv1_output_numel
=
conv1_out
->
numel
();
conv2_input_shape
=
phi
::
vectorize
<
int
>
(
conv1_out
->
dims
());
conv2_output_shape
=
phi
::
vectorize
<
int
>
(
conv2_out
->
dims
());
conv2_filter_shape
=
phi
::
vectorize
<
int
>
(
filter2
->
dims
());
conv2_filter_numel
=
filter2
->
numel
();
conv2_input_numel
=
conv1_out
->
numel
();
conv2_output_numel
=
conv2_out
->
numel
();
if
(
has_shortcut
)
{
auto
filter3
=
ctx
.
Input
<
Tensor
>
(
"Filter3"
);
auto
conv3_out
=
ctx
.
Output
<
Tensor
>
(
"Conv3"
);
conv3_input_shape
=
phi
::
vectorize
<
int
>
(
input1
->
dims
());
conv3_output_shape
=
phi
::
vectorize
<
int
>
(
conv3_out
->
dims
());
conv3_filter_shape
=
phi
::
vectorize
<
int
>
(
filter3
->
dims
());
conv3_filter_numel
=
filter3
->
numel
();
conv3_input_numel
=
input1
->
numel
();
conv3_output_numel
=
conv3_out
->
numel
();
}
}
int
padding1
;
int
padding2
;
int
padding3
;
int
stride1
;
int
stride2
;
int
stride3
;
int
dilation1
;
int
dilation2
;
int
dilation3
;
int
group
;
double
eps
;
double
momentum
;
bool
has_shortcut
;
bool
find_max
;
bool
global_stats
;
std
::
vector
<
int
>
conv1_input_shape
;
std
::
vector
<
int
>
conv1_output_shape
;
std
::
vector
<
int
>
conv1_filter_shape
;
std
::
vector
<
int
>
conv2_input_shape
;
std
::
vector
<
int
>
conv2_output_shape
;
std
::
vector
<
int
>
conv2_filter_shape
;
std
::
vector
<
int
>
conv3_input_shape
;
std
::
vector
<
int
>
conv3_output_shape
;
std
::
vector
<
int
>
conv3_filter_shape
;
int
conv1_filter_numel
;
int
conv2_filter_numel
;
int
conv3_filter_numel
;
int
conv1_input_numel
;
int
conv2_input_numel
;
int
conv3_input_numel
;
int
conv1_output_numel
;
int
conv2_output_numel
;
int
conv3_output_numel
;
};
class
ResnetBasicBlockGradAttr
{
public:
explicit
ResnetBasicBlockGradAttr
(
const
framework
::
ExecutionContext
&
ctx
)
{
padding1
=
ctx
.
Attr
<
int
>
(
"padding1"
);
padding2
=
ctx
.
Attr
<
int
>
(
"padding2"
);
padding3
=
ctx
.
Attr
<
int
>
(
"padding3"
);
stride1
=
ctx
.
Attr
<
int
>
(
"stride1"
);
stride2
=
ctx
.
Attr
<
int
>
(
"stride2"
);
stride3
=
ctx
.
Attr
<
int
>
(
"stride3"
);
dilation1
=
ctx
.
Attr
<
int
>
(
"dilation1"
);
dilation2
=
ctx
.
Attr
<
int
>
(
"dilation2"
);
dilation3
=
ctx
.
Attr
<
int
>
(
"dilation3"
);
group
=
ctx
.
Attr
<
int
>
(
"group"
);
has_shortcut
=
ctx
.
Attr
<
bool
>
(
"has_shortcut"
);
find_max
=
ctx
.
Attr
<
bool
>
(
"find_conv_input_max"
);
// init shape
auto
input1
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
filter1
=
ctx
.
Input
<
Tensor
>
(
"Filter1"
);
auto
conv1_out
=
ctx
.
Input
<
Tensor
>
(
"Conv1"
);
auto
filter2
=
ctx
.
Input
<
Tensor
>
(
"Filter2"
);
auto
conv2_out
=
ctx
.
Input
<
Tensor
>
(
"Conv2"
);
conv1_input_shape
=
phi
::
vectorize
<
int
>
(
input1
->
dims
());
conv1_output_shape
=
phi
::
vectorize
<
int
>
(
conv1_out
->
dims
());
conv1_filter_shape
=
phi
::
vectorize
<
int
>
(
filter1
->
dims
());
conv1_filter_numel
=
filter1
->
numel
();
conv1_input_numel
=
input1
->
numel
();
conv1_output_numel
=
conv1_out
->
numel
();
conv2_input_shape
=
phi
::
vectorize
<
int
>
(
conv1_out
->
dims
());
conv2_output_shape
=
phi
::
vectorize
<
int
>
(
conv2_out
->
dims
());
conv2_filter_shape
=
phi
::
vectorize
<
int
>
(
filter2
->
dims
());
conv2_filter_numel
=
filter2
->
numel
();
conv2_input_numel
=
conv1_out
->
numel
();
conv2_output_numel
=
conv2_out
->
numel
();
if
(
has_shortcut
)
{
auto
filter3
=
ctx
.
Input
<
Tensor
>
(
"Filter3"
);
auto
conv3_out
=
ctx
.
Input
<
Tensor
>
(
"Conv3"
);
conv3_input_shape
=
phi
::
vectorize
<
int
>
(
input1
->
dims
());
conv3_output_shape
=
phi
::
vectorize
<
int
>
(
conv3_out
->
dims
());
conv3_filter_shape
=
phi
::
vectorize
<
int
>
(
filter3
->
dims
());
conv3_filter_numel
=
filter3
->
numel
();
conv3_input_numel
=
input1
->
numel
();
conv3_output_numel
=
conv3_out
->
numel
();
}
}
int
padding1
;
int
padding2
;
int
padding3
;
int
stride1
;
int
stride2
;
int
stride3
;
int
dilation1
;
int
dilation2
;
int
dilation3
;
int
group
;
bool
has_shortcut
;
bool
find_max
;
std
::
vector
<
int
>
conv1_input_shape
;
std
::
vector
<
int
>
conv1_output_shape
;
std
::
vector
<
int
>
conv1_filter_shape
;
std
::
vector
<
int
>
conv2_input_shape
;
std
::
vector
<
int
>
conv2_output_shape
;
std
::
vector
<
int
>
conv2_filter_shape
;
std
::
vector
<
int
>
conv3_input_shape
;
std
::
vector
<
int
>
conv3_output_shape
;
std
::
vector
<
int
>
conv3_filter_shape
;
int
conv1_filter_numel
;
int
conv2_filter_numel
;
int
conv3_filter_numel
;
int
conv1_input_numel
;
int
conv2_input_numel
;
int
conv3_input_numel
;
int
conv1_output_numel
;
int
conv2_output_numel
;
int
conv3_output_numel
;
};
template
<
typename
T
>
static
inline
void
xpu_conv2d
(
xpu
::
Context
*
ctx
,
const
T
*
input_data
,
const
T
*
filter_data
,
T
*
output_data
,
float
*
input_max_data
,
float
*
filter_max_data
,
const
std
::
vector
<
int
>&
input_shape
,
const
std
::
vector
<
int
>&
filter_shape
,
int
padding
,
int
stride
,
int
dilation
,
int
group
)
{
std
::
vector
<
int
>
ksize
{
filter_shape
[
2
],
filter_shape
[
3
]};
std
::
vector
<
int
>
stride_vec
{
stride
,
stride
};
std
::
vector
<
int
>
dilation_vec
{
dilation
,
dilation
};
std
::
vector
<
int
>
padding_vec
{
padding
,
padding
};
int
N
=
input_shape
[
0
];
int
C
=
input_shape
[
1
];
int
H
=
input_shape
[
2
];
int
W
=
input_shape
[
3
];
int
r
=
xpu
::
conv2d
<
T
,
T
,
T
,
int16_t
>
(
ctx
,
input_data
,
filter_data
,
output_data
,
N
,
C
,
H
,
W
,
filter_shape
[
0
],
ksize
,
stride_vec
,
padding_vec
,
dilation_vec
,
group
,
input_max_data
,
filter_max_data
,
nullptr
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d"
);
}
template
<
typename
T
>
static
inline
void
xpu_conv2d_grad
(
xpu
::
Context
*
ctx
,
const
T
*
input_data
,
const
T
*
filter_data
,
const
T
*
output_grad_data
,
T
*
input_grad_data
,
T
*
filter_grad_data
,
const
float
*
input_max_data
,
const
float
*
filter_max_data
,
const
std
::
vector
<
int
>&
input_shape
,
const
std
::
vector
<
int
>&
filter_shape
,
int
padding
,
int
stride
,
int
dilation
,
int
group
)
{
std
::
vector
<
int
>
ksize
{
filter_shape
[
2
],
filter_shape
[
3
]};
std
::
vector
<
int
>
stride_vec
{
stride
,
stride
};
std
::
vector
<
int
>
dilation_vec
{
dilation
,
dilation
};
std
::
vector
<
int
>
padding_vec
{
padding
,
padding
};
int
N
=
input_shape
[
0
];
int
C
=
input_shape
[
1
];
int
H
=
input_shape
[
2
];
int
W
=
input_shape
[
3
];
int
r
=
xpu
::
conv2d_grad
<
T
,
T
,
T
,
int16_t
>
(
ctx
,
input_data
,
filter_data
,
output_grad_data
,
input_grad_data
,
filter_grad_data
,
N
,
C
,
H
,
W
,
filter_shape
[
0
],
ksize
,
stride_vec
,
padding_vec
,
dilation_vec
,
group
,
input_max_data
,
filter_max_data
,
nullptr
,
nullptr
,
nullptr
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"conv2d_grad"
);
}
template
<
typename
T
>
class
ResNetBasicBlockXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
using
XPUT
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"It must use XPUPlace."
));
// input
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
filter1
=
ctx
.
Input
<
Tensor
>
(
"Filter1"
);
const
Tensor
*
scale1
=
ctx
.
Input
<
Tensor
>
(
"Scale1"
);
const
Tensor
*
bias1
=
ctx
.
Input
<
Tensor
>
(
"Bias1"
);
const
Tensor
*
filter2
=
ctx
.
Input
<
Tensor
>
(
"Filter2"
);
const
Tensor
*
scale2
=
ctx
.
Input
<
Tensor
>
(
"Scale2"
);
const
Tensor
*
bias2
=
ctx
.
Input
<
Tensor
>
(
"Bias2"
);
// output
Tensor
*
conv1_output
=
ctx
.
Output
<
Tensor
>
(
"Conv1"
);
Tensor
*
conv2_output
=
ctx
.
Output
<
Tensor
>
(
"Conv2"
);
Tensor
*
conv2_input
=
ctx
.
Output
<
Tensor
>
(
"Conv2Input"
);
Tensor
*
output
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
place
=
ctx
.
GetPlace
();
auto
x_data
=
reinterpret_cast
<
const
XPUT
*>
(
x
->
data
<
T
>
());
auto
conv1_filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter1
->
data
<
T
>
());
auto
conv2_filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter2
->
data
<
T
>
());
auto
conv1_output_data
=
reinterpret_cast
<
XPUT
*>
(
conv1_output
->
mutable_data
<
T
>
(
place
));
auto
conv2_input_data
=
reinterpret_cast
<
XPUT
*>
(
conv2_input
->
mutable_data
<
T
>
(
place
));
auto
conv2_output_data
=
reinterpret_cast
<
XPUT
*>
(
conv2_output
->
mutable_data
<
T
>
(
place
));
auto
scale1_data
=
scale1
->
data
<
float
>
();
auto
scale2_data
=
scale2
->
data
<
float
>
();
auto
bias1_data
=
bias1
->
data
<
float
>
();
auto
bias2_data
=
bias2
->
data
<
float
>
();
auto
output_data
=
reinterpret_cast
<
XPUT
*>
(
output
->
mutable_data
<
T
>
(
place
));
float
*
conv1_input_max_data
=
nullptr
;
float
*
conv1_filter_max_data
=
nullptr
;
float
*
conv2_input_max_data
=
nullptr
;
float
*
conv2_filter_max_data
=
nullptr
;
float
*
conv3_input_max_data
=
nullptr
;
float
*
conv3_filter_max_data
=
nullptr
;
ResnetBasicBlockAttr
attr
(
ctx
);
// init find max
if
(
attr
.
find_max
)
{
Tensor
*
max_input1
=
ctx
.
Output
<
Tensor
>
(
"MaxInput1"
);
Tensor
*
max_filter1
=
ctx
.
Output
<
Tensor
>
(
"MaxFilter1"
);
conv1_input_max_data
=
max_input1
->
mutable_data
<
float
>
(
place
);
conv1_filter_max_data
=
max_filter1
->
mutable_data
<
float
>
(
place
);
Tensor
*
max_input2
=
ctx
.
Output
<
Tensor
>
(
"MaxInput2"
);
Tensor
*
max_filter2
=
ctx
.
Output
<
Tensor
>
(
"MaxFilter2"
);
conv2_input_max_data
=
max_input2
->
mutable_data
<
float
>
(
place
);
conv2_filter_max_data
=
max_filter2
->
mutable_data
<
float
>
(
place
);
if
(
attr
.
has_shortcut
)
{
Tensor
*
max_input3
=
ctx
.
Output
<
Tensor
>
(
"MaxInput3"
);
Tensor
*
max_filter3
=
ctx
.
Output
<
Tensor
>
(
"MaxFilter3"
);
conv3_input_max_data
=
max_input3
->
mutable_data
<
float
>
(
place
);
conv3_filter_max_data
=
max_filter3
->
mutable_data
<
float
>
(
place
);
}
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
r
=
XPU_SUCCESS
;
// 1. short
const
XPUT
*
z_out_data
=
nullptr
;
if
(
attr
.
has_shortcut
)
{
Tensor
*
conv3_out
=
ctx
.
Output
<
Tensor
>
(
"Conv3"
);
const
Tensor
*
filter3
=
ctx
.
Input
<
Tensor
>
(
"Filter3"
);
auto
conv3_filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter3
->
data
<
T
>
());
auto
conv3_output_data
=
reinterpret_cast
<
XPUT
*>
(
conv3_out
->
mutable_data
<
T
>
(
place
));
XPUT
*
conv3_input_l3_data
=
nullptr
;
XPUT
*
conv3_filter_l3_data
=
RAII_GUARD
.
alloc_l3
<
XPUT
>
(
attr
.
conv3_filter_numel
);
if
(
attr
.
find_max
)
{
r
=
xpu
::
findmax_copy_fusion
(
dev_ctx
.
x_context
(),
x_data
,
conv3_input_max_data
,
conv3_input_l3_data
,
attr
.
conv3_input_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"findmax_copy_fusion"
);
r
=
xpu
::
findmax_copy_fusion
(
dev_ctx
.
x_context
(),
conv3_filter_data
,
conv3_filter_max_data
,
conv3_filter_l3_data
,
attr
.
conv3_filter_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"findmax_copy_fusion"
);
}
xpu_conv2d
(
dev_ctx
.
x_context
(),
conv3_input_l3_data
!=
nullptr
?
conv3_input_l3_data
:
x_data
,
conv3_filter_l3_data
,
conv3_output_data
,
conv3_input_max_data
,
conv3_filter_max_data
,
attr
.
conv3_input_shape
,
attr
.
conv3_filter_shape
,
attr
.
padding3
,
attr
.
stride3
,
attr
.
dilation3
,
attr
.
group
);
// bn3
const
Tensor
*
scale3
=
ctx
.
Input
<
Tensor
>
(
"Scale3"
);
const
Tensor
*
bias3
=
ctx
.
Input
<
Tensor
>
(
"Bias3"
);
auto
bias3_data
=
bias3
->
data
<
float
>
();
auto
scale3_data
=
scale3
->
data
<
float
>
();
auto
bn3_output_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv3_output_numel
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
bn3_output_data
);
if
(
!
attr
.
global_stats
)
{
Tensor
*
saved_mean3
=
ctx
.
Output
<
Tensor
>
(
"SavedMean3"
);
Tensor
*
saved_invstd3
=
ctx
.
Output
<
Tensor
>
(
"SavedInvstd3"
);
Tensor
*
running_mean3
=
ctx
.
Output
<
Tensor
>
(
"Mean3Out"
);
Tensor
*
running_var3
=
ctx
.
Output
<
Tensor
>
(
"Var3Out"
);
auto
saved_mean3_data
=
saved_mean3
->
mutable_data
<
float
>
(
place
);
auto
saved_invstd3_data
=
saved_invstd3
->
mutable_data
<
float
>
(
place
);
auto
running_mean3_data
=
running_mean3
->
mutable_data
<
float
>
(
place
);
auto
running_var3_data
=
running_var3
->
mutable_data
<
float
>
(
place
);
r
=
xpu
::
batch_norm_fusion
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv3_output_data
,
bn3_output_data
,
attr
.
conv3_output_shape
[
0
],
attr
.
conv3_output_shape
[
1
],
attr
.
conv3_output_shape
[
3
],
attr
.
conv3_output_shape
[
3
],
attr
.
eps
,
attr
.
momentum
,
scale3_data
,
bias3_data
,
saved_mean3_data
,
saved_invstd3_data
,
running_mean3_data
,
running_var3_data
,
true
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
,
nullptr
,
0
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_fusion"
);
}
else
{
const
auto
*
mean3
=
ctx
.
Input
<
Tensor
>
(
"Mean3"
);
const
auto
*
var3
=
ctx
.
Input
<
Tensor
>
(
"Var3"
);
const
auto
*
mean3_data
=
mean3
->
data
<
float
>
();
const
auto
*
variance3_data
=
var3
->
data
<
float
>
();
r
=
xpu
::
batch_norm_infer
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv3_output_data
,
bn3_output_data
,
attr
.
conv3_output_shape
[
0
],
attr
.
conv3_output_shape
[
1
],
attr
.
conv3_output_shape
[
2
],
attr
.
conv3_output_shape
[
3
],
attr
.
eps
,
scale3_data
,
bias3_data
,
mean3_data
,
variance3_data
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_infer"
);
}
z_out_data
=
reinterpret_cast
<
const
XPUT
*>
(
bn3_output_data
);
}
else
{
z_out_data
=
x_data
;
}
// 2. conv1
XPUT
*
conv1_input_l3_data
=
nullptr
;
XPUT
*
conv1_filter_l3_data
=
RAII_GUARD
.
alloc_l3
<
XPUT
>
(
attr
.
conv1_filter_numel
);
if
(
attr
.
find_max
)
{
r
=
xpu
::
findmax_copy_fusion
(
dev_ctx
.
x_context
(),
x_data
,
conv1_input_max_data
,
conv1_input_l3_data
,
attr
.
conv1_input_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"findmax_copy_fusion"
);
r
=
xpu
::
findmax_copy_fusion
(
dev_ctx
.
x_context
(),
conv1_filter_data
,
conv1_filter_max_data
,
conv1_filter_l3_data
,
attr
.
conv1_filter_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"findmax_copy_fusion"
);
}
xpu_conv2d
(
dev_ctx
.
x_context
(),
conv1_input_l3_data
!=
nullptr
?
conv1_input_l3_data
:
x_data
,
conv1_filter_l3_data
,
conv1_output_data
,
conv1_input_max_data
,
conv1_filter_max_data
,
attr
.
conv1_input_shape
,
attr
.
conv1_filter_shape
,
attr
.
padding1
,
attr
.
stride1
,
attr
.
dilation1
,
attr
.
group
);
// 3. bn1 + relu
if
(
!
attr
.
global_stats
)
{
Tensor
*
saved_mean1
=
ctx
.
Output
<
Tensor
>
(
"SavedMean1"
);
Tensor
*
saved_invstd1
=
ctx
.
Output
<
Tensor
>
(
"SavedInvstd1"
);
Tensor
*
running_mean1
=
ctx
.
Output
<
Tensor
>
(
"Mean1Out"
);
Tensor
*
running_var1
=
ctx
.
Output
<
Tensor
>
(
"Var1Out"
);
auto
saved_mean1_data
=
saved_mean1
->
mutable_data
<
float
>
(
place
);
auto
saved_invstd1_data
=
saved_invstd1
->
mutable_data
<
float
>
(
place
);
auto
running_mean1_data
=
running_mean1
->
mutable_data
<
float
>
(
place
);
auto
running_var1_data
=
running_var1
->
mutable_data
<
float
>
(
place
);
r
=
xpu
::
batch_norm_fusion
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv1_output_data
,
conv2_input_data
,
attr
.
conv1_output_shape
[
0
],
attr
.
conv1_output_shape
[
1
],
attr
.
conv1_output_shape
[
2
],
attr
.
conv1_output_shape
[
3
],
attr
.
eps
,
attr
.
momentum
,
scale1_data
,
bias1_data
,
saved_mean1_data
,
saved_invstd1_data
,
running_mean1_data
,
running_var1_data
,
true
,
nullptr
,
xpu
::
Activation_t
::
RELU
,
nullptr
,
0
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_fusion"
);
}
else
{
// bn --> relu
auto
bn1_output_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv1_output_numel
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
bn1_output_data
);
const
auto
*
mean1
=
ctx
.
Input
<
Tensor
>
(
"Mean1"
);
const
auto
*
var1
=
ctx
.
Input
<
Tensor
>
(
"Var1"
);
const
auto
*
mean_data
=
mean1
->
data
<
float
>
();
const
auto
*
variance_data
=
var1
->
data
<
float
>
();
r
=
xpu
::
batch_norm_infer
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv1_output_data
,
bn1_output_data
,
attr
.
conv1_output_shape
[
0
],
attr
.
conv1_output_shape
[
1
],
attr
.
conv1_output_shape
[
2
],
attr
.
conv1_output_shape
[
3
],
attr
.
eps
,
scale1_data
,
bias1_data
,
mean_data
,
variance_data
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_infer"
);
r
=
xpu
::
relu
(
dev_ctx
.
x_context
(),
bn1_output_data
,
conv2_input_data
,
attr
.
conv1_output_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"relu"
);
}
// 4. conv2
XPUT
*
conv2_input_l3_data
=
nullptr
;
XPUT
*
conv2_filter_l3_data
=
RAII_GUARD
.
alloc_l3
<
XPUT
>
(
attr
.
conv2_filter_numel
);
if
(
attr
.
find_max
)
{
Tensor
*
max_input2
=
ctx
.
Output
<
Tensor
>
(
"MaxInput2"
);
Tensor
*
max_filter2
=
ctx
.
Output
<
Tensor
>
(
"MaxFilter2"
);
conv2_input_max_data
=
max_input2
->
mutable_data
<
float
>
(
place
);
conv2_filter_max_data
=
max_filter2
->
mutable_data
<
float
>
(
place
);
r
=
xpu
::
findmax_copy_fusion
(
dev_ctx
.
x_context
(),
conv2_input_data
,
conv2_input_max_data
,
conv2_input_l3_data
,
attr
.
conv2_input_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"findmax_copy_fusion"
);
r
=
xpu
::
findmax_copy_fusion
(
dev_ctx
.
x_context
(),
conv2_filter_data
,
conv2_filter_max_data
,
conv2_filter_l3_data
,
attr
.
conv2_filter_numel
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"findmax_copy_fusion"
);
}
xpu_conv2d
(
dev_ctx
.
x_context
(),
conv2_input_l3_data
!=
nullptr
?
conv2_input_l3_data
:
conv2_input_data
,
conv2_filter_l3_data
,
conv2_output_data
,
conv2_input_max_data
,
conv2_filter_max_data
,
attr
.
conv2_input_shape
,
attr
.
conv2_filter_shape
,
attr
.
padding2
,
attr
.
stride2
,
attr
.
dilation2
,
attr
.
group
);
// 5. bn2
if
(
!
attr
.
global_stats
)
{
Tensor
*
saved_mean2
=
ctx
.
Output
<
Tensor
>
(
"SavedMean2"
);
Tensor
*
saved_var2
=
ctx
.
Output
<
Tensor
>
(
"SavedInvstd2"
);
Tensor
*
running_mean2
=
ctx
.
Output
<
Tensor
>
(
"Mean2Out"
);
Tensor
*
running_var2
=
ctx
.
Output
<
Tensor
>
(
"Var2Out"
);
auto
saved_mean2_data
=
saved_mean2
->
mutable_data
<
float
>
(
place
);
auto
saved_var2_data
=
saved_var2
->
mutable_data
<
float
>
(
place
);
auto
running_mean2_data
=
running_mean2
->
mutable_data
<
float
>
(
place
);
auto
running_var2_data
=
running_var2
->
mutable_data
<
float
>
(
place
);
r
=
xpu
::
batch_norm_fusion
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv2_output_data
,
output_data
,
attr
.
conv2_output_shape
[
0
],
attr
.
conv2_output_shape
[
1
],
attr
.
conv2_output_shape
[
2
],
attr
.
conv2_output_shape
[
3
],
attr
.
eps
,
attr
.
momentum
,
scale2_data
,
bias2_data
,
saved_mean2_data
,
saved_var2_data
,
running_mean2_data
,
running_var2_data
,
true
,
z_out_data
,
xpu
::
Activation_t
::
RELU
,
nullptr
,
0
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_fusion"
);
}
else
{
auto
bn2_out_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv2_output_numel
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
bn2_out_data
);
const
auto
*
mean2
=
ctx
.
Input
<
Tensor
>
(
"Mean2"
);
const
auto
*
var2
=
ctx
.
Input
<
Tensor
>
(
"Var2"
);
const
auto
*
mean_data
=
mean2
->
data
<
float
>
();
const
auto
*
variance_data
=
var2
->
data
<
float
>
();
r
=
xpu
::
batch_norm_infer
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv2_output_data
,
bn2_out_data
,
attr
.
conv2_output_shape
[
0
],
attr
.
conv2_output_shape
[
1
],
attr
.
conv2_output_shape
[
2
],
attr
.
conv2_output_shape
[
3
],
attr
.
eps
,
scale2_data
,
bias2_data
,
mean_data
,
variance_data
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_infer"
);
r
=
xpu
::
add_activation_fusion
<
XPUT
>
(
dev_ctx
.
x_context
(),
bn2_out_data
,
z_out_data
,
output_data
,
output
->
numel
(),
nullptr
,
nullptr
,
nullptr
,
xpu
::
Activation_t
::
RELU
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"add_activation_fusion"
);
}
}
};
template
<
typename
T
>
class
ResNetBasicBlockGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
using
XPUT
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"It must use XPUPlace."
));
const
Tensor
*
y_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
Tensor
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
filter1
=
ctx
.
Input
<
Tensor
>
(
"Filter1"
);
const
Tensor
*
scale1
=
ctx
.
Input
<
Tensor
>
(
"Scale1"
);
const
Tensor
*
filter2
=
ctx
.
Input
<
Tensor
>
(
"Filter2"
);
const
Tensor
*
scale2
=
ctx
.
Input
<
Tensor
>
(
"Scale2"
);
const
Tensor
*
saved_mean1
=
ctx
.
Input
<
Tensor
>
(
"SavedMean1"
);
const
Tensor
*
saved_invstd1
=
ctx
.
Input
<
Tensor
>
(
"SavedInvstd1"
);
const
Tensor
*
saved_mean2
=
ctx
.
Input
<
Tensor
>
(
"SavedMean2"
);
const
Tensor
*
saved_invstd2
=
ctx
.
Input
<
Tensor
>
(
"SavedInvstd2"
);
const
Tensor
*
conv1_out
=
ctx
.
Input
<
Tensor
>
(
"Conv1"
);
const
Tensor
*
conv2_out
=
ctx
.
Input
<
Tensor
>
(
"Conv2"
);
const
Tensor
*
conv2_input
=
ctx
.
Input
<
Tensor
>
(
"Conv2Input"
);
const
Tensor
*
filter3
=
ctx
.
Input
<
Tensor
>
(
"Filter3"
);
const
Tensor
*
conv3_out
=
ctx
.
Input
<
Tensor
>
(
"Conv3"
);
const
Tensor
*
scale3
=
ctx
.
Input
<
Tensor
>
(
"Scale3"
);
const
Tensor
*
saved_mean3
=
ctx
.
Input
<
Tensor
>
(
"SavedMean3"
);
const
Tensor
*
saved_invstd3
=
ctx
.
Input
<
Tensor
>
(
"SavedInvstd3"
);
const
Tensor
*
conv1_input_max
=
ctx
.
Input
<
Tensor
>
(
"MaxInput1"
);
const
Tensor
*
conv1_filter_max
=
ctx
.
Input
<
Tensor
>
(
"MaxFilter1"
);
const
Tensor
*
conv2_input_max
=
ctx
.
Input
<
Tensor
>
(
"MaxInput2"
);
const
Tensor
*
conv2_filter_max
=
ctx
.
Input
<
Tensor
>
(
"MaxFilter2"
);
const
Tensor
*
conv3_input_max
=
ctx
.
Input
<
Tensor
>
(
"MaxInput3"
);
const
Tensor
*
conv3_filter_max
=
ctx
.
Input
<
Tensor
>
(
"MaxFilter3"
);
Tensor
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
Tensor
*
filter1_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter1"
));
Tensor
*
scale1_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale1"
));
Tensor
*
bias1_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias1"
));
Tensor
*
filter2_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter2"
));
Tensor
*
scale2_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale2"
));
Tensor
*
bias2_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias2"
));
Tensor
*
filter3_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter3"
));
Tensor
*
scale3_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale3"
));
Tensor
*
bias3_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias3"
));
// attrs
ResnetBasicBlockGradAttr
attr
(
ctx
);
auto
place
=
ctx
.
GetPlace
();
const
auto
*
y_grad_data
=
reinterpret_cast
<
const
XPUT
*>
(
y_grad
->
data
<
T
>
());
const
auto
*
y_data
=
reinterpret_cast
<
const
XPUT
*>
(
y
->
data
<
T
>
());
const
auto
*
x_data
=
reinterpret_cast
<
const
XPUT
*>
(
x
->
data
<
T
>
());
const
auto
*
conv1_output_data
=
reinterpret_cast
<
const
XPUT
*>
(
conv1_out
->
data
<
T
>
());
const
auto
*
conv1_filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter1
->
data
<
T
>
());
const
auto
*
conv2_input_data
=
reinterpret_cast
<
const
XPUT
*>
(
conv2_input
->
data
<
T
>
());
const
auto
*
conv2_output_data
=
reinterpret_cast
<
const
XPUT
*>
(
conv2_out
->
data
<
T
>
());
const
auto
*
conv2_filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter2
->
data
<
T
>
());
const
auto
*
scale2_data
=
scale2
->
data
<
float
>
();
const
auto
*
saved_mean2_data
=
saved_mean2
->
data
<
float
>
();
const
auto
*
saved_invstd2_data
=
saved_invstd2
->
data
<
float
>
();
const
auto
*
scale1_data
=
scale1
->
data
<
float
>
();
const
auto
*
saved_mean1_data
=
saved_mean1
->
data
<
float
>
();
const
auto
*
saved_invstd1_data
=
saved_invstd1
->
data
<
float
>
();
auto
*
scale2_grad_data
=
scale2_grad
->
mutable_data
<
float
>
(
place
);
auto
*
bias2_grad_data
=
bias2_grad
->
mutable_data
<
float
>
(
place
);
const
float
*
conv1_input_max_data
=
nullptr
;
const
float
*
conv1_filter_max_data
=
nullptr
;
const
float
*
conv2_input_max_data
=
nullptr
;
const
float
*
conv2_filter_max_data
=
nullptr
;
const
float
*
conv3_input_max_data
=
nullptr
;
const
float
*
conv3_filter_max_data
=
nullptr
;
if
(
attr
.
find_max
)
{
conv1_input_max_data
=
reinterpret_cast
<
const
float
*>
(
conv1_input_max
->
data
<
float
>
());
conv1_filter_max_data
=
reinterpret_cast
<
const
float
*>
(
conv1_filter_max
->
data
<
float
>
());
conv2_input_max_data
=
reinterpret_cast
<
const
float
*>
(
conv2_input_max
->
data
<
float
>
());
conv2_filter_max_data
=
reinterpret_cast
<
const
float
*>
(
conv2_filter_max
->
data
<
float
>
());
if
(
attr
.
has_shortcut
)
{
conv3_input_max_data
=
reinterpret_cast
<
const
float
*>
(
conv3_input_max
->
data
<
float
>
());
conv3_filter_max_data
=
reinterpret_cast
<
const
float
*>
(
conv3_filter_max
->
data
<
float
>
());
}
}
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
r
=
XPU_SUCCESS
;
// 0. bn2, bn2_fusion grad
auto
conv2_output_grad_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv2_output_numel
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
conv2_output_grad_data
);
XPUT
*
z_output_grad_data
=
nullptr
;
XPUT
*
z_grad_data
=
nullptr
;
if
(
!
attr
.
has_shortcut
)
{
z_output_grad_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv1_input_numel
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
z_output_grad_data
);
z_grad_data
=
z_output_grad_data
;
}
else
{
z_output_grad_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv3_output_numel
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
z_output_grad_data
);
z_grad_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv1_input_numel
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
z_grad_data
);
}
r
=
xpu
::
batch_norm_grad_fusion
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv2_output_data
,
y_data
,
y_grad_data
,
conv2_output_grad_data
,
attr
.
conv2_output_shape
[
0
],
attr
.
conv2_output_shape
[
1
],
attr
.
conv2_output_shape
[
2
],
attr
.
conv2_output_shape
[
3
],
scale2_data
,
saved_mean2_data
,
saved_invstd2_data
,
scale2_grad_data
,
bias2_grad_data
,
true
,
z_output_grad_data
,
xpu
::
Activation_t
::
RELU
,
nullptr
,
0
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_grad_fusion"
);
if
(
attr
.
has_shortcut
)
{
// bn3 grad
const
auto
*
conv3_output_data
=
reinterpret_cast
<
const
XPUT
*>
(
conv3_out
->
data
<
T
>
());
const
auto
*
scale3_data
=
scale3
->
data
<
float
>
();
const
auto
*
saved_mean3_data
=
saved_mean3
->
data
<
float
>
();
const
auto
*
saved_invstd3_data
=
saved_invstd3
->
data
<
float
>
();
auto
*
scale3_grad_data
=
scale3_grad
->
mutable_data
<
float
>
(
place
);
auto
*
bias3_grad_data
=
bias3_grad
->
mutable_data
<
float
>
(
place
);
auto
*
conv3_output_grad_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv3_output_numel
);
r
=
xpu
::
batch_norm_grad
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv3_output_data
,
z_output_grad_data
,
conv3_output_grad_data
,
attr
.
conv3_output_shape
[
0
],
attr
.
conv3_output_shape
[
1
],
attr
.
conv3_output_shape
[
2
],
attr
.
conv3_output_shape
[
3
],
scale3_data
,
saved_mean3_data
,
saved_invstd3_data
,
scale3_grad_data
,
bias3_grad_data
,
true
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_grad"
);
// conv3 grad
auto
*
conv3_filter_grad_data
=
reinterpret_cast
<
XPUT
*>
(
filter3_grad
->
mutable_data
<
T
>
(
place
));
auto
*
conv3_filter_data
=
reinterpret_cast
<
const
XPUT
*>
(
filter3
->
data
<
T
>
());
xpu_conv2d_grad
(
dev_ctx
.
x_context
(),
x_data
,
conv3_filter_data
,
conv3_output_grad_data
,
z_grad_data
,
conv3_filter_grad_data
,
conv3_input_max_data
,
conv3_filter_max_data
,
attr
.
conv3_input_shape
,
attr
.
conv3_filter_shape
,
attr
.
padding3
,
attr
.
stride3
,
attr
.
dilation3
,
attr
.
group
);
}
// 2. conv2_grad
auto
*
conv2_filter_grad_data
=
reinterpret_cast
<
XPUT
*>
(
filter2_grad
->
mutable_data
<
T
>
(
place
));
auto
*
conv2_input_grad_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv2_input_numel
);
xpu_conv2d_grad
(
dev_ctx
.
x_context
(),
conv2_input_data
,
conv2_filter_data
,
conv2_output_grad_data
,
conv2_input_grad_data
,
conv2_filter_grad_data
,
conv2_input_max_data
,
conv2_filter_max_data
,
attr
.
conv2_input_shape
,
attr
.
conv2_filter_shape
,
attr
.
padding2
,
attr
.
stride2
,
attr
.
dilation2
,
attr
.
group
);
// 3. b1 grad
auto
*
conv1_output_grad_data
=
RAII_GUARD
.
alloc
<
XPUT
>
(
attr
.
conv1_output_numel
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
conv1_output_grad_data
);
auto
*
scale1_grad_data
=
scale1_grad
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
*
bias1_grad_data
=
bias1_grad
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
r
=
xpu
::
batch_norm_grad_fusion
<
XPUT
>
(
dev_ctx
.
x_context
(),
conv1_output_data
,
conv2_input_data
,
conv2_input_grad_data
,
conv1_output_grad_data
,
attr
.
conv1_output_shape
[
0
],
attr
.
conv1_output_shape
[
1
],
attr
.
conv1_output_shape
[
2
],
attr
.
conv1_output_shape
[
3
],
scale1_data
,
saved_mean1_data
,
saved_invstd1_data
,
scale1_grad_data
,
bias1_grad_data
,
true
,
nullptr
,
xpu
::
Activation_t
::
RELU
,
nullptr
,
0
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"batch_norm_grad_fusion"
);
// 4. conv1_grad
auto
*
x_grad_data
=
reinterpret_cast
<
XPUT
*>
(
x_grad
->
mutable_data
<
T
>
(
place
));
auto
*
conv1_filter_grad_data
=
reinterpret_cast
<
XPUT
*>
(
filter1_grad
->
mutable_data
<
T
>
(
place
));
xpu_conv2d_grad
(
dev_ctx
.
x_context
(),
x_data
,
conv1_filter_data
,
conv1_output_grad_data
,
x_grad_data
,
conv1_filter_grad_data
,
conv1_input_max_data
,
conv1_filter_max_data
,
attr
.
conv1_input_shape
,
attr
.
conv1_filter_shape
,
attr
.
padding1
,
attr
.
stride1
,
attr
.
dilation1
,
attr
.
group
);
// add z_grad to x_grad
r
=
xpu
::
add
<
XPUT
>
(
dev_ctx
.
x_context
(),
x_grad_data
,
z_grad_data
,
x_grad_data
,
x
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"add"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_XPU_KERNEL
(
resnet_basic_block
,
ops
::
ResNetBasicBlockXPUKernel
<
float
>
,
ops
::
ResNetBasicBlockXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
resnet_basic_block_grad
,
ops
::
ResNetBasicBlockGradXPUKernel
<
float
>
,
ops
::
ResNetBasicBlockGradXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
d7be46b3
...
@@ -505,6 +505,14 @@ XPUOpMap& get_kl2_ops() {
...
@@ -505,6 +505,14 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"sequence_conv_grad"
,
{
"sequence_conv_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
// Fused op
{
"resnet_basic_block_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"resnet_basic_block"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
};
};
return
s_xpu2_kernels
;
return
s_xpu2_kernels
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录