未验证 提交 d7a5e900 编写于 作者: C cyberslack_lee 提交者: GitHub

【Hackathon No.61】min 算子FP16/BF16单测完善 (#52887)

上级 6f684bd2
...@@ -16,8 +16,63 @@ ...@@ -16,8 +16,63 @@
#include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/reduce_min_grad_kernel_impl.h" #include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/compare_functors.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace phi {
template <typename T, typename Context>
void ReduceMinGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& out,
const DenseTensor& out_grad,
const IntArray& dims,
bool keep_dim,
bool reduce_all,
DenseTensor* x_grad) {
dev_ctx.Alloc(x_grad, x.dtype());
reduce_all = recompute_reduce_all(x, dims, reduce_all);
// get reduce_dim
int dim_size = x.dims().size();
auto reduce_dims =
funcs::details::GetReduceDim(dims.GetData(), dim_size, reduce_all);
auto update_dims = vectorize(x.dims());
for (auto i : reduce_dims) {
update_dims[i] = 1;
}
// make new tensor of out and out_grad
phi::DenseTensor new_out(out.type());
new_out.ShareDataWith(out);
new_out.Resize(phi::make_ddim(update_dims));
phi::DenseTensor new_out_grad(out_grad.type());
new_out_grad.ShareDataWith(out_grad);
new_out_grad.Resize(phi::make_ddim(update_dims));
// make equal_out
phi::DenseTensor* equal_out = new phi::DenseTensor();
equal_out->Resize(x.dims());
dev_ctx.template Alloc<T>(equal_out);
// compute
// 1. equal_out = Equal(x, y)
std::vector<const phi::DenseTensor*> equal_inputs = {&new_out, &x};
std::vector<phi::DenseTensor*> equal_outputs = {equal_out};
funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
dev_ctx, equal_inputs, &equal_outputs, 0, funcs::EqualFunctor<T>());
// 2. dx = dout * 1
std::vector<const phi::DenseTensor*> mul_inputs = {&new_out_grad, equal_out};
std::vector<phi::DenseTensor*> mul_outputs = {x_grad};
funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
dev_ctx, mul_inputs, &mul_outputs, 0, funcs::MultiplyFunctor<T>());
delete equal_out;
}
} // namespace phi
PD_REGISTER_KERNEL(min_grad, PD_REGISTER_KERNEL(min_grad,
GPU, GPU,
ALL_LAYOUT, ALL_LAYOUT,
...@@ -25,4 +80,6 @@ PD_REGISTER_KERNEL(min_grad, ...@@ -25,4 +80,6 @@ PD_REGISTER_KERNEL(min_grad,
float, float,
double, double,
int, int,
int64_t) {} int64_t,
phi::dtype::float16,
phi::dtype::bfloat16) {}
...@@ -36,6 +36,14 @@ void MinRawKernel(const Context& dev_ctx, ...@@ -36,6 +36,14 @@ void MinRawKernel(const Context& dev_ctx,
#ifdef PADDLE_WITH_XPU_KP #ifdef PADDLE_WITH_XPU_KP
PD_REGISTER_KERNEL(min_raw, KPS, ALL_LAYOUT, phi::MinRawKernel, float) {} PD_REGISTER_KERNEL(min_raw, KPS, ALL_LAYOUT, phi::MinRawKernel, float) {}
#else #else
PD_REGISTER_KERNEL( PD_REGISTER_KERNEL(min_raw,
min_raw, KPS, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {} KPS,
ALL_LAYOUT,
phi::MinRawKernel,
float,
double,
int,
int64_t,
phi::dtype::float16,
phi::dtype::bfloat16) {}
#endif #endif
...@@ -39,7 +39,20 @@ void MinKernel(const Context& dev_ctx, ...@@ -39,7 +39,20 @@ void MinKernel(const Context& dev_ctx,
PD_REGISTER_KERNEL( PD_REGISTER_KERNEL(
min, CPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {} min, CPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #if defined(PADDLE_WITH_CUDA)
PD_REGISTER_KERNEL(min,
GPU,
ALL_LAYOUT,
phi::MinKernel,
float,
double,
int,
int64_t,
phi::dtype::float16,
phi::dtype::bfloat16) {}
#endif
#if defined(PADDLE_WITH_HIP)
PD_REGISTER_KERNEL( PD_REGISTER_KERNEL(
min, GPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {} min, GPU, ALL_LAYOUT, phi::MinKernel, float, double, int, int64_t) {}
#endif #endif
......
...@@ -418,6 +418,51 @@ class TestMin8DOp(OpTest): ...@@ -418,6 +418,51 @@ class TestMin8DOp(OpTest):
self.check_output() self.check_output()
@skip_check_grad_ci(
reason="reduce_min is discontinuous non-derivable function,"
" its gradient check is not supported by unittest framework."
)
class TestMinFP16Op(OpTest):
"""Remove Min with subgradient from gradient check to confirm the success of CI."""
def setUp(self):
self.op_type = "reduce_min"
self.python_api = paddle.min
self.public_python_api = paddle.min
self.init_dtype()
if self.dtype == np.uint16:
x = np.random.random((5, 6, 10)).astype(np.float32)
self.inputs = {'X': convert_float_to_uint16(x)}
else:
x = np.random.random((5, 6, 10)).astype(self.dtype)
self.inputs = {'X': x}
self.attrs = {'dim': [2], 'keep_dim': True}
out = x.min(axis=tuple(self.attrs['dim']), keepdims=True)
if self.dtype == np.uint16:
self.outputs = {'Out': convert_float_to_uint16(out)}
else:
self.outputs = {'Out': out}
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output()
@unittest.skipIf(
not core.is_compiled_with_cuda()
or not core.is_bfloat16_supported(core.CUDAPlace(0)),
"core is not compiled with CUDA or not support the bfloat16",
)
class TestMinBF16Op(TestMinFP16Op):
def init_dtype(self):
self.dtype = np.uint16
def test_check_output(self):
self.check_output_with_place(core.CUDAPlace(0))
def raw_reduce_prod(x, dim=[0], keep_dim=False): def raw_reduce_prod(x, dim=[0], keep_dim=False):
return paddle.prod(x, dim, keep_dim) return paddle.prod(x, dim, keep_dim)
......
...@@ -2456,7 +2456,10 @@ def min(x, axis=None, keepdim=False, name=None): ...@@ -2456,7 +2456,10 @@ def min(x, axis=None, keepdim=False, name=None):
reduce_all, axis = _get_reduce_axis_with_tensor(axis, x) reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
helper = LayerHelper('min', **locals()) helper = LayerHelper('min', **locals())
check_variable_and_dtype( check_variable_and_dtype(
x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min' x,
'x',
['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
'min',
) )
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册