提交 d5c697e6 编写于 作者: Y Yu Yang 提交者: GitHub

Merge branch 'develop' into feature/EvaluatorToEvent

...@@ -44,13 +44,13 @@ def main(): ...@@ -44,13 +44,13 @@ def main():
topology=cost, topology=cost,
parameters=parameters, parameters=parameters,
event_handler=event_handler, event_handler=event_handler,
num_passes=100, batch_size=32, # batch size should be refactor in Data reader
batch_size=200, # batch size should be refactor in Data reader data_types=[ # data_types will be removed, It should be in
data_types={ # data_types will be removed, It should be in
# network topology # network topology
'pixel': images.type, ('pixel', images.type),
'label': label.type ('label', label.type)],
}) reader_dict={'pixel':0, 'label':1}
)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -23,7 +23,8 @@ __all__ = ['DataProviderConverter'] ...@@ -23,7 +23,8 @@ __all__ = ['DataProviderConverter']
class IScanner(object): class IScanner(object):
def __init__(self, input_type, pos): def __init__(self, input_type, pos):
self.input_type = input_type self.input_type = input_type
assert isinstance(self.input_type, dp2.InputType) if not isinstance(self.input_type, dp2.InputType):
raise ValueError("input type should be dataprovider2.InputType")
self.pos = pos self.pos = pos
def scan(self, dat): def scan(self, dat):
...@@ -50,7 +51,6 @@ class DenseScanner(IScanner): ...@@ -50,7 +51,6 @@ class DenseScanner(IScanner):
def finish_scan(self, argument): def finish_scan(self, argument):
assert isinstance(argument, swig_paddle.Arguments) assert isinstance(argument, swig_paddle.Arguments)
assert isinstance(self.input_type, dp2.InputType)
if self.__mat__.dtype != numpy.float32: if self.__mat__.dtype != numpy.float32:
self.__mat__ = self.__mat__.astype(numpy.float32) self.__mat__ = self.__mat__.astype(numpy.float32)
m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True, False) m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True, False)
...@@ -63,7 +63,6 @@ class SparseBinaryScanner(IScanner): ...@@ -63,7 +63,6 @@ class SparseBinaryScanner(IScanner):
self.__rows__ = [0] self.__rows__ = [0]
self.__cols__ = [] self.__cols__ = []
self.__height__ = 0 self.__height__ = 0
self.__nnz__ = 0
self.__value__ = [] self.__value__ = []
def scan(self, dat): def scan(self, dat):
...@@ -76,7 +75,6 @@ class SparseBinaryScanner(IScanner): ...@@ -76,7 +75,6 @@ class SparseBinaryScanner(IScanner):
def finish_scan(self, argument): def finish_scan(self, argument):
assert isinstance(argument, swig_paddle.Arguments) assert isinstance(argument, swig_paddle.Arguments)
assert isinstance(self.input_type, dp2.InputType)
m = swig_paddle.Matrix.createSparse(self.__height__, m = swig_paddle.Matrix.createSparse(self.__height__,
self.input_type.dim, self.input_type.dim,
len(self.__cols__), len(self.__cols__),
......
...@@ -18,12 +18,13 @@ import parameters ...@@ -18,12 +18,13 @@ import parameters
import trainer import trainer
import event import event
import data_type import data_type
import data_feeder
import attr import attr
import py_paddle.swig_paddle as api import py_paddle.swig_paddle as api
__all__ = [ __all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer', 'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type', 'attr' 'event', 'data_type', 'attr', 'data_feeder'
] ]
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import swig_paddle
from py_paddle import DataProviderConverter
import data_type
__all__ = ['DataFeeder']
class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sampe.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
The example usage:
data_types = [('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
reader_dict = {'image':0, 'label':1}
feeder = DataFeeder(data_types=data_types, reader_dict=reader_dict)
minibatch_data = [
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ), # first sample
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ) # second sample
]
# or minibatch_data = [
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample
# ]
arg = feeder(minibatch_data)
"""
def __init__(self, data_types, reader_dict):
"""
:param data_types: A list to specify data name and type. Each item is
a tuple of (data_name, data_type). For example:
[('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
:type data_types: A list of tuple
:param reader_dict: A dictionary to specify the position of each data
in the input data.
:type reader_dict: dict()
"""
self.input_names = []
input_types = []
self.reader_dict = reader_dict
for each in data_types:
self.input_names.append(each[0])
assert isinstance(each[1], data_type.InputType)
input_types.append(each[1])
DataProviderConverter.__init__(self, input_types)
def convert(self, dat, argument=None):
"""
:param dat: A list of mini-batch data. Each sample is a list or tuple
one feature or multiple features.
for example:
[
([0.2, 0.2], ), # first sample
([0.8, 0.3], ), # second sample
]
or,
[
[[0.2, 0.2], ], # first sample
[[0.8, 0.3], ], # second sample
]
:type dat: List
:param argument: An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.
:type argument: swig_paddle.Arguments
"""
def reorder_data(data):
retv = []
for each in data:
reorder = []
for name in self.input_names:
reorder.append(each[self.reader_dict[name]])
retv.append(reorder)
return retv
return DataProviderConverter.convert(self, reorder_data(dat), argument)
...@@ -14,9 +14,9 @@ ...@@ -14,9 +14,9 @@
from paddle.trainer.PyDataProvider2 import \ from paddle.trainer.PyDataProvider2 import \
InputType, dense_vector, sparse_binary_vector,\ InputType, dense_vector, sparse_binary_vector,\
sparse_vector, integer_value sparse_vector, integer_value, integer_value_sequence
__all__ = [ __all__ = [
'InputType', 'dense_vector', 'sparse_binary_vector', 'sparse_vector', 'InputType', 'dense_vector', 'sparse_binary_vector', 'sparse_vector',
'integer_value' 'integer_value', 'integer_value_sequence'
] ]
import os
__all__ = ['DATA_HOME']
DATA_HOME = os.path.expanduser('~/.cache/paddle_data_set')
if not os.path.exists(DATA_HOME):
os.makedirs(DATA_HOME)
import sklearn.datasets.mldata
import sklearn.model_selection
import numpy
from config import DATA_HOME
__all__ = ['train_creator', 'test_creator']
def __mnist_reader_creator__(data, target):
def reader():
n_samples = data.shape[0]
for i in xrange(n_samples):
yield (data[i] / 255.0).astype(numpy.float32), int(target[i])
return reader
TEST_SIZE = 10000
data = sklearn.datasets.mldata.fetch_mldata(
"MNIST original", data_home=DATA_HOME)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
data.data, data.target, test_size=TEST_SIZE, random_state=0)
def train_creator():
return __mnist_reader_creator__(X_train, y_train)
def test_creator():
return __mnist_reader_creator__(X_test, y_test)
def unittest():
assert len(list(test_creator()())) == TEST_SIZE
if __name__ == '__main__':
unittest()
...@@ -2,3 +2,5 @@ add_test(NAME test_v2_layer ...@@ -2,3 +2,5 @@ add_test(NAME test_v2_layer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py ${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle) WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
add_test(NAME test_v2_api
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE})
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
pushd `dirname $0` > /dev/null
SCRIPTPATH=$PWD
popd > /dev/null
cd $SCRIPTPATH
$1 -m pip install ../../../../paddle/dist/*.whl
test_list="test_data_feeder.py"
export PYTHONPATH=$PWD/../../../../python/
for fn in $test_list
do
echo "test $fn"
$1 $fn
if [ $? -ne 0 ]; then
exit 1
fi
done
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import py_paddle.swig_paddle as api
import numpy as np
from paddle.v2 import data_type
from paddle.v2.data_feeder import DataFeeder
class DataFeederTest(unittest.TestCase):
def dense_reader(self, size):
data = np.random.random(size)
return data
def sparse_binary_reader(self, high, size_limit, non_empty=False):
num = np.random.randint(size_limit) # num could be 0
while non_empty and num == 0:
num = np.random.randint(size_limit)
return np.random.randint(high, size=num).tolist()
def test_dense(self):
def compare(input):
feeder = DataFeeder([('image', data_type.dense_vector(784))],
{'image': 0})
arg = feeder(input)
output = arg.getSlotValue(0).copyToNumpyMat()
input = np.array(input, dtype='float32')
self.assertAlmostEqual(input.all(), output.all())
# test numpy array
batch_size = 32
dim = 784
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(self.dense_reader(dim))
data.append(each_sample)
compare(data)
# each feature is a list
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(self.dense_reader(dim).tolist())
data.append(each_sample)
compare(data)
# test tuple
data = []
for i in xrange(batch_size):
each_sample = (self.dense_reader(dim).tolist(), )
data.append(each_sample)
compare(data)
def test_sparse_binary(self):
dim = 10000
batch_size = 32
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(self.sparse_binary_reader(dim, 50))
data.append(each_sample)
feeder = DataFeeder([('input', data_type.sparse_binary_vector(dim))],
{'input': 0})
arg = feeder(data)
output = arg.getSlotValue(0)
assert isinstance(output, api.Matrix)
for i in xrange(batch_size):
self.assertEqual(output.getSparseRowCols(i), data[i][0])
def test_sparse(self):
dim = 10000
batch_size = 32
v = []
w = []
data = []
for dat in xrange(batch_size):
each_sample = []
a = self.sparse_binary_reader(dim, 40, non_empty=True)
b = self.dense_reader(len(a)).tolist()
v.append(a)
w.append(np.array(b, dtype="float32"))
each_sample.append(zip(a, b))
data.append(each_sample)
feeder = DataFeeder([('input', data_type.sparse_vector(dim))],
{'input': 0})
arg = feeder(data)
output = arg.getSlotValue(0)
assert isinstance(output, api.Matrix)
for i in xrange(batch_size):
self.assertEqual(output.getSparseRowCols(i), v[i])
cols_value = output.getSparseRowColsVal(i)
value = [val[1] for val in cols_value]
value = np.array(value, dtype="float32")
self.assertAlmostEqual(value.all(), w[i].all())
def test_integer(self):
dim = 100
batch_size = 32
index = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(np.random.randint(dim))
index.append(each_sample)
feeder = DataFeeder([('input', data_type.integer_value(dim))],
{'input': 0})
arg = feeder(index)
output = arg.getSlotIds(0).copyToNumpyArray()
index = np.array(index, dtype='int')
self.assertEqual(output.all(), index.flatten().all())
def test_integer_sequence(self):
dim = 10000
batch_size = 32
start = [0]
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(
self.sparse_binary_reader(
dim, 30, non_empty=True))
data.append(each_sample)
start.append(len(each_sample[0]) + start[-1])
feeder = DataFeeder([('input', data_type.integer_value_sequence(dim))],
{'input': 0})
arg = feeder(data)
output_data = arg.getSlotIds(0).copyToNumpyArray()
output_start = arg.getSlotSequenceStartPositions(0).copyToNumpyArray()
index = []
for dat in data:
index.extend(x for x in dat[0]) # only one feature, so dat[0]
index = np.array(index, dtype='int')
start = np.array(start, dtype='int')
self.assertEqual(output_data.all(), index.all())
self.assertEqual(output_start.all(), start.all())
def test_multiple_features(self):
batch_size = 2
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(np.random.randint(10))
each_sample.append(
self.sparse_binary_reader(
20000, 40, non_empty=True))
each_sample.append(self.dense_reader(100))
data.append(each_sample)
# test multiple features
data_types = [('fea0', data_type.dense_vector(100)),
('fea1', data_type.sparse_binary_vector(20000)),
('fea2', data_type.integer_value(10))]
feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
arg = feeder(data)
output_dense = arg.getSlotValue(0).copyToNumpyMat()
output_sparse = arg.getSlotValue(1)
output_index = arg.getSlotIds(2).copyToNumpyArray()
for i in xrange(batch_size):
self.assertEqual(output_dense[i].all(), data[i][2].all())
self.assertEqual(output_sparse.getSparseRowCols(i), data[i][1])
self.assertEqual(output_index[i], data[i][0])
# reader returns 3 features, but only use 2 features
data_types = [('fea0', data_type.dense_vector(100)),
('fea2', data_type.integer_value(10))]
feeder = DataFeeder(data_types, {'fea0': 2, 'fea2': 0})
arg = feeder(data)
output_dense = arg.getSlotValue(0).copyToNumpyMat()
output_index = arg.getSlotIds(1).copyToNumpyArray()
for i in xrange(batch_size):
self.assertEqual(output_dense[i].all(), data[i][2].all())
self.assertEqual(output_index[i], data[i][0])
# reader returns 3 featreus, one is duplicate data
data_types = [('fea0', data_type.dense_vector(100)),
('fea1', data_type.sparse_binary_vector(20000)),
('fea2', data_type.integer_value(10)),
('fea3', data_type.dense_vector(100))]
feeder = DataFeeder(data_types,
{'fea0': 2,
'fea1': 1,
'fea2': 0,
'fea3': 2})
arg = feeder(data)
fea0 = arg.getSlotValue(0).copyToNumpyMat()
fea1 = arg.getSlotValue(1)
fea2 = arg.getSlotIds(2).copyToNumpyArray()
fea3 = arg.getSlotValue(3).copyToNumpyMat()
for i in xrange(batch_size):
self.assertEqual(fea0[i].all(), data[i][2].all())
self.assertEqual(fea1.getSparseRowCols(i), data[i][1])
self.assertEqual(fea2[i], data[i][0])
self.assertEqual(fea3[i].all(), data[i][2].all())
def test_multiple_features_tuple(self):
batch_size = 2
data = []
for i in xrange(batch_size):
a = np.random.randint(10)
b = self.sparse_binary_reader(20000, 40, non_empty=True)
c = self.dense_reader(100)
each_sample = (a, b, c)
data.append(each_sample)
# test multiple features
data_types = [('fea0', data_type.dense_vector(100)),
('fea1', data_type.sparse_binary_vector(20000)),
('fea2', data_type.integer_value(10))]
feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
arg = feeder(data)
out_dense = arg.getSlotValue(0).copyToNumpyMat()
out_sparse = arg.getSlotValue(1)
out_index = arg.getSlotIds(2).copyToNumpyArray()
for i in xrange(batch_size):
self.assertEqual(out_dense[i].all(), data[i][2].all())
self.assertEqual(out_sparse.getSparseRowCols(i), data[i][1])
self.assertEqual(out_index[i], data[i][0])
if __name__ == '__main__':
api.initPaddle("--use_gpu=0")
unittest.main()
...@@ -2,7 +2,7 @@ import collections ...@@ -2,7 +2,7 @@ import collections
import py_paddle.swig_paddle as api import py_paddle.swig_paddle as api
from paddle.proto.ModelConfig_pb2 import ModelConfig from paddle.proto.ModelConfig_pb2 import ModelConfig
from py_paddle import DataProviderConverter from data_feeder import DataFeeder
from . import event as v2_event from . import event as v2_event
from . import layer as v2_layer from . import layer as v2_layer
...@@ -69,7 +69,8 @@ class SGD(ITrainer): ...@@ -69,7 +69,8 @@ class SGD(ITrainer):
test_data_reader=None, test_data_reader=None,
event_handler=None, event_handler=None,
batch_size=32, batch_size=32,
data_types=None): data_types=None,
reader_dict=None):
""" """
Training method. Will train num_passes of input data. Training method. Will train num_passes of input data.
...@@ -107,13 +108,7 @@ class SGD(ITrainer): ...@@ -107,13 +108,7 @@ class SGD(ITrainer):
assert isinstance(pass_evaluator, api.Evaluator) assert isinstance(pass_evaluator, api.Evaluator)
out_args = api.Arguments.createArguments(0) out_args = api.Arguments.createArguments(0)
data_types_lists = [] feeder = DataFeeder(data_types, reader_dict)
for each in topology.input_layer_names:
if each not in data_types:
raise ValueError()
data_types_lists.append(data_types[each])
converter = DataProviderConverter(input_types=data_types_lists)
for pass_id in xrange(num_passes): for pass_id in xrange(num_passes):
event_handler(v2_event.BeginPass(pass_id)) event_handler(v2_event.BeginPass(pass_id))
...@@ -127,7 +122,7 @@ class SGD(ITrainer): ...@@ -127,7 +122,7 @@ class SGD(ITrainer):
v2_event.BeginIteration( v2_event.BeginIteration(
pass_id=pass_id, batch_id=batch_id)) pass_id=pass_id, batch_id=batch_id))
pass_type = updater.startBatch(len(data_batch)) pass_type = updater.startBatch(len(data_batch))
gm.forwardBackward(converter(data_batch), out_args, pass_type) gm.forwardBackward(feeder(data_batch), out_args, pass_type)
gm.eval(pass_evaluator) gm.eval(pass_evaluator)
gm.eval(batch_evaluator) gm.eval(batch_evaluator)
for each_param in gm.getParameters(): for each_param in gm.getParameters():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册