Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d5bebf0b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d5bebf0b
编写于
3月 24, 2022
作者:
王
王明冬
提交者:
GitHub
3月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[infrt] fix bug in emit si32 attribute. (#40860)
上级
83ae1619
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
24 addition
and
14 deletion
+24
-14
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
+3
-2
paddle/infrt/host_context/mlir_to_runtime_translate.cc
paddle/infrt/host_context/mlir_to_runtime_translate.cc
+3
-3
paddle/infrt/tests/dialect/phi/phi_test.mlir
paddle/infrt/tests/dialect/phi/phi_test.mlir
+14
-9
paddle/phi/core/compat/op_utils.h
paddle/phi/core/compat/op_utils.h
+4
-0
未找到文件。
paddle/infrt/dialect/phi/pass/phi_op_convert_pass.cc
浏览文件 @
d5bebf0b
...
@@ -97,8 +97,9 @@ void PhiOpConvertPass::convertStage() {
...
@@ -97,8 +97,9 @@ void PhiOpConvertPass::convertStage() {
}
}
auto
loc
=
getFunction
().
getLoc
();
auto
loc
=
getFunction
().
getLoc
();
builder
.
setInsertionPoint
(
op
);
builder
.
setInsertionPoint
(
op
);
if
(
!::
phi
::
OpUtilsMap
::
Instance
().
HasArgumentMappingFn
(
op_name
))
{
op_name
=
phi
::
TransToPhiKernelName
(
op_name
);
op_name
=
phi
::
TransToPhiKernelName
(
op_name
);
if
(
!::
phi
::
OpUtilsMap
::
Instance
().
Contains
(
op_name
))
{
auto
kernel_op
=
builder
.
create
<
infrt
::
KernelOp
>
(
loc
,
auto
kernel_op
=
builder
.
create
<
infrt
::
KernelOp
>
(
loc
,
op
->
getResultTypes
(),
op
->
getResultTypes
(),
op
->
getOperands
(),
op
->
getOperands
(),
...
...
paddle/infrt/host_context/mlir_to_runtime_translate.cc
浏览文件 @
d5bebf0b
...
@@ -130,7 +130,7 @@ boost::optional<int32_t> MlirToRuntimeTranslator::EmitAttribute(
...
@@ -130,7 +130,7 @@ boost::optional<int32_t> MlirToRuntimeTranslator::EmitAttribute(
if
(
attr
.
isa
<
mlir
::
IntegerAttr
>
())
{
if
(
attr
.
isa
<
mlir
::
IntegerAttr
>
())
{
auto
val
=
attr
.
cast
<
mlir
::
IntegerAttr
>
();
auto
val
=
attr
.
cast
<
mlir
::
IntegerAttr
>
();
if
(
val
.
getType
().
isInteger
(
32
))
{
if
(
val
.
getType
().
isInteger
(
32
))
{
return
val
.
get
Int
();
return
val
.
get
Value
().
getSExtValue
();
}
}
}
}
return
boost
::
none
;
return
boost
::
none
;
...
@@ -142,7 +142,7 @@ boost::optional<int64_t> MlirToRuntimeTranslator::EmitAttribute(
...
@@ -142,7 +142,7 @@ boost::optional<int64_t> MlirToRuntimeTranslator::EmitAttribute(
if
(
attr
.
isa
<
mlir
::
IntegerAttr
>
())
{
if
(
attr
.
isa
<
mlir
::
IntegerAttr
>
())
{
auto
val
=
attr
.
cast
<
mlir
::
IntegerAttr
>
();
auto
val
=
attr
.
cast
<
mlir
::
IntegerAttr
>
();
if
(
val
.
getType
().
isInteger
(
64
))
{
if
(
val
.
getType
().
isInteger
(
64
))
{
return
val
.
get
Int
();
return
val
.
get
Value
().
getSExtValue
();
}
}
}
}
return
boost
::
none
;
return
boost
::
none
;
...
@@ -233,7 +233,7 @@ boost::optional<std::string> MlirToRuntimeTranslator::EmitAttribute(
...
@@ -233,7 +233,7 @@ boost::optional<std::string> MlirToRuntimeTranslator::EmitAttribute(
\
\
std::vector<type__> res; \
std::vector<type__> res; \
for (auto& v : array) { \
for (auto& v : array) { \
res.push_back(v.cast<mlir::IntegerAttr>().get
Int());
\
res.push_back(v.cast<mlir::IntegerAttr>().get
Value().getSExtValue());
\
} \
} \
return res; \
return res; \
}
}
...
...
paddle/infrt/tests/dialect/phi/phi_test.mlir
浏览文件 @
d5bebf0b
// RUN: infrtexec -i %s
// RUN: infrtexec -i %s
module {
module {
func @predict(%arg0: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg1: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg2: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg3: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg4: !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW> {
func @predict(%arg0: !infrt.dense_tensor<CPU, FP32, NCHW>,
%filter: !infrt.dense_tensor<CPU, FP32, NCHW>,
%arg1: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg2: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg3: !infrt.dense_tensor<CPU, FP32, NCHW>, %arg4: !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW> {
%2 = "pd.abs"(%arg0) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%2 = "pd.abs"(%arg0) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%3 = "pd.matmul_v2"(%arg0, %2) {trans_x = false, trans_y = false} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%3 = "pd.matmul_v2"(%arg0, %2) {trans_x = false, trans_y = false} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%Y, %MeanOut, %VarianceOut = "pd.batch_norm"(%3, %arg1, %arg2, %arg3, %arg4) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>)
%4 = "pd.conv2d"(%3, %filter) {data_format = "NCHW", dilations = [1 : i32, 1 : i32], groups = 1 : si32, padding_algorithm = "EXPLICIT", paddings = [1 : i32, 1 : i32], strides = [2 : i32, 2 : i32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
infrt.return %Y : !infrt.dense_tensor<CPU, FP32, NCHW>
%Y, %MeanOut, %VarianceOut = "pd.batch_norm"(%4, %arg1, %arg2, %arg3, %arg4) {data_layout = "NCHW", epsilon = 9.99999974E-6 : f32, momentum = 0.899999976 : f32} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>)
%out = "pd.relu"(%Y) : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%5 = "pd.elementwise_add"(%out, %out) {axis = -1:si32} : (!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
infrt.return %5 : !infrt.dense_tensor<CPU, FP32, NCHW>
}
}
func @main() {
func @main() {
%ctx = "phi_dt.create_context.cpu" (): () -> !phi.context<CPU>
%ctx = "phi_dt.create_context.cpu" (): () -> !phi.context<CPU>
%t = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
:i64], dims=[1:i64, 3:i64, 8:i64, 8:i64
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%t = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
], dims=[1, 3, 8, 8
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%t) {value=[3.8:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%t) {value=[3.8:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%bias = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1:i64], dims=[3:i64]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%filter = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1], dims=[3, 3, 8, 8]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%filter) {value=[3.8:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%bias = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1], dims=[3]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%bias) {value=[1.5:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%bias) {value=[1.5:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%mean = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
:i64], dims=[3:i64
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%mean = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
], dims=[3
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%mean) {value=[3.5:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%mean) {value=[3.5:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%scale = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
:i64], dims=[3:i64
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%scale = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
], dims=[3
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%scale) {value=[1.0:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%scale) {value=[1.0:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%var = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
:i64], dims=[3:i64
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
%var = "phi_dt.create_dense_tensor.cpu" (%ctx) {precision=#infrt.precision<FP32>, layout=#infrt.layout<NCHW>, lod=[1
], dims=[3
]}: (!phi.context<CPU>) -> (!infrt.dense_tensor<CPU, FP32, NCHW>)
"phi_dt.fill_dense_tensor.f32"(%var) {value=[0.0:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
"phi_dt.fill_dense_tensor.f32"(%var) {value=[0.0:f32]} : (!infrt.dense_tensor<CPU, FP32, NCHW>) -> ()
%2 = infrt.call@predict(%t, %
bias, %mean, %scale, %var) : (
!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
%2 = infrt.call@predict(%t, %
filter, %bias, %mean, %scale, %var) : (!infrt.dense_tensor<CPU, FP32, NCHW>,
!infrt.dense_tensor<CPU, FP32, NCHW>, !infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>,!infrt.dense_tensor<CPU, FP32, NCHW>) -> !infrt.dense_tensor<CPU, FP32, NCHW>
//phi_dt.print_tensor(%t : !infrt.dense_tensor<CPU, FP32, NCHW>)
//phi_dt.print_tensor(%t : !infrt.dense_tensor<CPU, FP32, NCHW>)
phi_dt.print_tensor(%2 : !infrt.dense_tensor<CPU, FP32, NCHW>)
phi_dt.print_tensor(%2 : !infrt.dense_tensor<CPU, FP32, NCHW>)
...
...
paddle/phi/core/compat/op_utils.h
浏览文件 @
d5bebf0b
...
@@ -124,6 +124,10 @@ class OpUtilsMap {
...
@@ -124,6 +124,10 @@ class OpUtilsMap {
{
std
::
move
(
op_type
),
std
::
move
(
base_kernel_name
)});
{
std
::
move
(
op_type
),
std
::
move
(
base_kernel_name
)});
}
}
bool
HasArgumentMappingFn
(
const
std
::
string
&
op_type
)
const
{
return
arg_mapping_fn_map_
.
count
(
op_type
);
}
void
InsertArgumentMappingFn
(
std
::
string
op_type
,
ArgumentMappingFn
fn
)
{
void
InsertArgumentMappingFn
(
std
::
string
op_type
,
ArgumentMappingFn
fn
)
{
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
arg_mapping_fn_map_
.
count
(
op_type
),
arg_mapping_fn_map_
.
count
(
op_type
),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录