Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d59f7335
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d59f7335
编写于
1月 28, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine softmax and use with cache
test=develop
上级
7383eefd
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
102 addition
and
34 deletion
+102
-34
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+3
-0
paddle/fluid/operators/jit/gen/act.cc
paddle/fluid/operators/jit/gen/act.cc
+25
-3
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+22
-0
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+44
-6
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+2
-1
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/softmax_impl.h
paddle/fluid/operators/math/softmax_impl.h
+5
-23
未找到文件。
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
d59f7335
...
...
@@ -187,6 +187,9 @@ void BenchAXYNKernel() {
RandomVec
<
T
>
(
d
,
x_data
);
BenchAllImpls
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
,
&
a
,
x
.
data
<
T
>
(),
y_data
,
d
);
// test inplace
BenchAllImpls
<
KT
,
jit
::
AXYNTuples
<
T
>
,
PlaceType
>
(
d
,
&
a
,
x
.
data
<
T
>
(),
x_data
,
d
);
}
}
...
...
paddle/fluid/operators/jit/gen/act.cc
浏览文件 @
d59f7335
...
...
@@ -81,9 +81,7 @@ void VActJitCode::genCode() {
#define DECLARE_ACT_CREATOR(name) \
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx); \
} \
bool UseMe(const int& attr) const override; \
size_t CodeSize(const int& d) const override; \
std::unique_ptr<GenBase> CreateJitCode(const int& attr) const override { \
return make_unique<name##JitCode>(attr, CodeSize(attr)); \
...
...
@@ -98,6 +96,30 @@ DECLARE_ACT_CREATOR(VSigmoid);
DECLARE_ACT_CREATOR
(
VTanh
);
// TODO(TJ): tuning use me
bool
VReluCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VSquareCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VIdentityCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VExpCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
<
32
;
}
bool
VSigmoidCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
bool
VTanhCreator
::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
}
size_t
VReluCreator
::
CodeSize
(
const
int
&
d
)
const
{
return
96
/* init size */
+
(
d
/
YMM_FLOAT_BLOCK
+
3
)
*
4
/* instructions */
*
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
d59f7335
...
...
@@ -118,6 +118,28 @@ typename KernelTuples::func_type Get(
return
GetRefer
<
KT
,
KernelTuples
>
();
}
template
<
KernelType
KT
,
typename
KernelTuples
>
class
KernelFuncsCache
{
public:
KernelFuncsCache
()
=
default
;
static
KernelFuncsCache
&
Instance
()
{
static
thread_local
KernelFuncsCache
<
KT
,
KernelTuples
>
g_func_cache
;
return
g_func_cache
;
}
bool
Has
(
int
key
)
const
{
return
funcs_
.
find
(
key
)
!=
funcs_
.
end
();
}
typename
KernelTuples
::
func_type
At
(
int
key
)
{
return
funcs_
.
at
(
key
);
}
void
Insert
(
int
key
,
typename
KernelTuples
::
func_type
func
)
{
funcs_
.
emplace
(
key
,
func
);
}
private:
std
::
unordered_map
<
int
,
typename
KernelTuples
::
func_type
>
funcs_
;
DISABLE_COPY_AND_ASSIGN
(
KernelFuncsCache
);
};
const
char
*
to_string
(
KernelType
kt
);
const
char
*
to_string
(
SeqPoolType
kt
);
...
...
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
d59f7335
...
...
@@ -49,12 +49,50 @@ void VTanh(const T* x, T* y, int n) {
}
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
auto
compute_hmax
=
Get
<
kHMax
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
auto
compute_hsum
=
Get
<
kHSum
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
auto
compute_vscal
=
Get
<
kVScal
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
auto
compute_vaddbias
=
Get
<
kVAddBias
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
auto
compute_vexp
=
Get
<
KernelType
::
kVExp
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
typename
XRNTuples
<
T
>::
func_type
compute_hmax
{
nullptr
};
typename
XRNTuples
<
T
>::
func_type
compute_hsum
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vscal
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vaddbias
{
nullptr
};
typename
XYNTuples
<
T
>::
func_type
compute_vexp
{
nullptr
};
if
(
!
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hmax
=
Get
<
kHMax
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hmax
);
}
else
{
compute_hmax
=
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hsum
=
Get
<
kHSum
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hsum
);
}
else
{
compute_hsum
=
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vscal
=
Get
<
kVScal
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vscal
);
}
else
{
compute_vscal
=
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vaddbias
=
Get
<
kVAddBias
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vaddbias
);
}
else
{
compute_vaddbias
=
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vexp
=
Get
<
KernelType
::
kVExp
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vexp
);
}
else
{
compute_vexp
=
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
scalar
;
compute_hmax
(
x
,
&
scalar
,
n
);
...
...
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
d59f7335
...
...
@@ -179,7 +179,8 @@ bool SeqPoolKernel<double>::UseMe(const seq_pool_attr_t& attr) const {
template
<
>
bool
SoftmaxKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
return
true
;
// tuned on avx2
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
<
60
;
}
#define AWALYS_USE_ME_WITH_DOUBLE(func) \
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
d59f7335
...
...
@@ -53,7 +53,7 @@ math_library(sequence2batch)
math_library
(
sequence_padding
)
math_library
(
sequence_pooling DEPS math_function jit_kernel_helper
)
math_library
(
sequence_scale
)
math_library
(
softmax DEPS math_function
)
math_library
(
softmax DEPS math_function
jit_kernel_helper
)
math_library
(
beam_search DEPS math_function
)
math_library
(
matrix_bit_code
)
...
...
paddle/fluid/operators/math/softmax_impl.h
浏览文件 @
d59f7335
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
...
...
@@ -81,28 +81,10 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
const
int
kBatchDim
=
0
;
const
int
kClassDim
=
1
;
// 2D data. Batch x C
const
int
batch_size
=
in_dims
[
kBatchDim
];
const
int
num_classes
=
in_dims
[
kClassDim
];
std
::
vector
<
float
>
entities
(
batch_size
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
float
>
(
context
);
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
entities
[
n
]
=
in_data
[
n
*
num_classes
];
for
(
int
c
=
1
;
c
<
num_classes
;
++
c
)
{
entities
[
n
]
=
in_data
[
n
*
num_classes
+
c
]
>
entities
[
n
]
?
in_data
[
n
*
num_classes
+
c
]
:
entities
[
n
];
}
for
(
int
c
=
0
;
c
<
num_classes
;
++
c
)
{
out_data
[
n
*
num_classes
+
c
]
=
in_data
[
n
*
num_classes
+
c
]
-
entities
[
n
];
}
}
blas
.
VEXP
(
num_classes
*
batch_size
,
out_data
,
out_data
);
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
auto
sum
=
blas
.
ASUM
(
num_classes
,
&
out_data
[
n
*
num_classes
],
1
);
blas
.
SCAL
(
num_classes
,
1.0
f
/
sum
,
&
out_data
[
n
*
num_classes
]);
}
auto
compute_softmax
=
jit
::
Get
<
jit
::
kSoftmax
,
jit
::
SoftmaxTuples
<
float
>
,
platform
::
CPUPlace
>
(
in_dims
[
kClassDim
]);
compute_softmax
(
in_data
,
out_data
,
in_dims
[
kClassDim
],
in_dims
[
kBatchDim
]);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录