Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d5167b48
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d5167b48
编写于
11月 15, 2018
作者:
X
xiaolil1
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modification for int8 kernel PR, remove requantization op temporarily
上级
a042d86b
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
161 addition
and
391 deletion
+161
-391
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+149
-246
paddle/fluid/operators/dequantize_op.cc
paddle/fluid/operators/dequantize_op.cc
+5
-7
paddle/fluid/operators/quantize_op.cc
paddle/fluid/operators/quantize_op.cc
+5
-6
paddle/fluid/operators/requantize_op.cc
paddle/fluid/operators/requantize_op.cc
+0
-128
paddle/fluid/platform/mkldnn_helper.h
paddle/fluid/platform/mkldnn_helper.h
+2
-4
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
d5167b48
...
@@ -16,7 +16,6 @@
...
@@ -16,7 +16,6 @@
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/data_layout_transform.h"
#include <unordered_map>
#include <unordered_map>
#include <map>
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -297,9 +296,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -297,9 +296,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
bool
is_INT8
=
ctx
.
HasInput
(
"Scale_in"
)
?
true
:
false
;
if
(
!
is_INT8
){
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
"It must use CPUPlace."
);
...
@@ -345,7 +341,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -345,7 +341,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"dilation in convolution is not implemented yet"
);
"dilation in convolution is not implemented yet"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
std
::
vector
<
int
>
weights_tz
=
...
@@ -373,11 +369,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -373,11 +369,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
primitive
>
pipeline
;
bool
is_INT8
=
ctx
.
HasInput
(
"Scale_in"
)
?
true
:
false
;
if
(
!
is_INT8
){
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
{
weights_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
(
g
==
1
)
?
filter
->
format
()
:
mkldnn
::
memory
::
format
::
goihw
);
(
g
==
1
)
?
mkldnn
::
memory
::
format
::
oihw
:
mkldnn
::
memory
::
format
::
goihw
);
/* create memory descriptor for convolution without specified format
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* ('any') which lets a primitive (convolution in this case) choose
...
@@ -393,11 +391,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -393,11 +391,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
weights_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
std
::
vector
<
int
>
bias_tz
;
// TODO(mgallus): avoid empty vector creation.
// Currently used whenever bias is != nullptr.
// Currently used whenever bias is != nullptr.
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
// create a conv primitive descriptor and save it for usage in backward
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
if
(
bias
)
{
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
...
@@ -419,7 +419,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -419,7 +419,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
user_src_memory_p
=
auto
user_src_memory_p
=
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
handler
.
AcquireSrcMemory
(
user_src_md
,
to_void_cast
<
T
>
(
input_data
));
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
auto
user_weights_memory_p
=
handler
.
AcquireWeightsMemory
(
user_weights_md
,
to_void_cast
<
T
>
(
filter_data
));
user_weights_md
,
to_void_cast
<
float
>
(
filter_data
));
// create reorder primitive if the input format is not the preferred one
// create reorder primitive if the input format is not the preferred one
auto
src_memory_p
=
auto
src_memory_p
=
...
@@ -492,20 +492,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -492,20 +492,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
output
->
set_format
(
GetMKLDNNFormat
(
*
dst_memory_p
));
}
else
{
PADDLE_ENFORCE
(
paddle
::
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"It must use CPUPlace."
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
bias
=
ctx
.
HasInput
(
"Bias"
)
?
ctx
.
Input
<
Tensor
>
(
"Bias"
)
:
nullptr
;
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
}
else
{
auto
*
scale_in
=
ctx
.
HasInput
(
"Scale_in"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_in"
)
:
nullptr
;
auto
*
scale_in
=
ctx
.
HasInput
(
"Scale_in"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_in"
)
:
nullptr
;
auto
*
scale_in_eltwise
=
ctx
.
HasInput
(
"Scale_in_eltwise"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_in_eltwise"
)
:
nullptr
;
auto
*
scale_in_eltwise
=
ctx
.
HasInput
(
"Scale_in_eltwise"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_in_eltwise"
)
:
nullptr
;
auto
*
scale_weights
=
ctx
.
HasInput
(
"Scale_weights"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_weights"
)
:
nullptr
;
auto
*
scale_weights
=
ctx
.
HasInput
(
"Scale_weights"
)
?
ctx
.
Input
<
Tensor
>
(
"Scale_weights"
)
:
nullptr
;
...
@@ -513,65 +501,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -513,65 +501,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bool
is_multi_channel
=
(
scale_weights
->
memory_size
()
>
1
)
?
true
:
false
;
bool
is_multi_channel
=
(
scale_weights
->
memory_size
()
>
1
)
?
true
:
false
;
PADDLE_ENFORCE
(
input
->
layout
()
==
DataLayout
::
kMKLDNN
&&
input
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Input tensor"
);
PADDLE_ENFORCE
(
filter
->
layout
()
==
DataLayout
::
kMKLDNN
&&
filter
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Filter tensor"
);
PADDLE_ENFORCE
(
input
->
dims
().
size
()
==
4
,
"Input must be with 4 dimensions, i.e. NCHW"
);
PADDLE_ENFORCE
(
filter
->
dims
().
size
()
==
4
,
"Filter must be with 4 dimensions, i.e. OIHW"
);
if
(
bias
)
{
PADDLE_ENFORCE
(
bias
->
layout
()
==
DataLayout
::
kMKLDNN
&&
bias
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Bias tensor"
);
PADDLE_ENFORCE
(
bias
->
dims
().
size
()
==
1
,
"Bias must only have 1 dimension, i.e. X"
);
}
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
bool
fuse_relu
=
ctx
.
Attr
<
bool
>
(
"fuse_relu"
);
bool
fuse_residual_conn
=
ctx
.
Attr
<
bool
>
(
"fuse_residual_connection"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// TODO(tpatejko): add support for dilation
PADDLE_ENFORCE
(
dilations
.
size
()
==
2
&&
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
"dilation in convolution is not implemented yet"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
float
*
filter_data
=
filter
->
data
<
float
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
if
(
g
>
1
)
{
int
o
=
weights_tz
[
0
];
int
i
=
weights_tz
[
1
];
int
h
=
weights_tz
[
2
];
int
w
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
g
;
weights_tz
[
1
]
=
o
/
g
;
weights_tz
[
2
]
=
i
;
weights_tz
[
3
]
=
h
;
weights_tz
[
4
]
=
w
;
}
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
const
std
::
string
key
=
ConvMKLDNNHandler
::
GetHash
(
src_tz
,
weights_tz
,
strides
,
paddings
,
dilations
,
groups
,
ctx
.
op
().
Output
(
"Output"
));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
scale_map
;
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
scale_map
;
bool
scale_reuse
=
fals
e
;
bool
scale_reuse
=
tru
e
;
auto
scale_in_key
=
key
+
"@scale_in"
;
auto
scale_in_key
=
key
+
"@scale_in"
;
auto
scale_weights_key
=
key
+
"@scale_weights"
;
auto
scale_weights_key
=
key
+
"@scale_weights"
;
auto
scale_out_key
=
key
+
"@scale_out"
;
auto
scale_out_key
=
key
+
"@scale_out"
;
...
@@ -587,11 +519,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -587,11 +519,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
float
>
none_scale
=
{
0
};
std
::
vector
<
float
>
none_scale
=
{
0
};
if
(
GetScaleMap
(
scale_map
,
scale_in_key
)
==
none_scale
){
if
(
GetScaleMap
(
scale_map
,
scale_in_key
)
==
none_scale
){
scale_reuse
=
tru
e
;
scale_reuse
=
fals
e
;
}
}
//std::cout<<"scale_reuse = "<<scale_reuse<<std::endl;
if
(
scale_reuse
){
if
(
!
scale_reuse
){
//std::cout<<"load scale!!!!!!!!"<<std::endl;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
scale_in_data
=
{
*
(
scale_in
->
data
<
float
>
())};
scale_in_data
=
{
*
(
scale_in
->
data
<
float
>
())};
scale_weights_data
.
resize
(
count
);
scale_weights_data
.
resize
(
count
);
...
@@ -629,10 +560,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -629,10 +560,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
}
output_shift_scale
=
GetScaleMap
(
scale_map
,
output_shift_scale_key
);
output_shift_scale
=
GetScaleMap
(
scale_map
,
output_shift_scale_key
);
sum_scale
=
GetScaleMap
(
scale_map
,
sum_scale_key
);
sum_scale
=
GetScaleMap
(
scale_map
,
sum_scale_key
);
//printf("pause!!!");
}
}
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
primitive
>
pipeline
;
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
()),
input
->
format
());
{
src_tz
},
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
()),
input
->
format
());
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
auto
user_weights_md
=
platform
::
MKLDNNMemDesc
(
...
@@ -647,15 +578,17 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -647,15 +578,17 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
chosen_memory_format
=
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
platform
::
data_format_to_memory_format
(
data_format
);
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
auto
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
bias_tz
=
paddle
::
framework
::
vectorize2int
(
bias
->
dims
());
auto
src_md
=
platform
::
MKLDNNMemDesc
(
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
);
src_tz
,
memory
::
data_type
::
u8
,
chosen_memory_format
);
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
auto
weights_md
=
platform
::
MKLDNNMemDesc
(
weights_tz
,
memory
::
data_type
::
s8
,
weights_tz
,
memory
::
data_type
::
s8
,
chosen_memory_format
);
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goihw
);
auto
dst_dt
=
fuse_relu
?
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
unsigned
char
)))
:
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
signed
char
)));
auto
dst_dt
=
fuse_relu
?
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
unsigned
char
)))
:
paddle
::
framework
::
ToMKLDNNDataType
(
std
::
type_index
(
typeid
(
signed
char
)));
if
(
fuse_residual_conn
){
if
(
fuse_residual_conn
){
auto
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual
->
type
());
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual
->
type
());
...
@@ -665,6 +598,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -665,6 +598,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dst_dt
,
chosen_memory_format
);
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dst_dt
,
chosen_memory_format
);
// create a conv primitive descriptor and save it for usage in backward
// create a conv primitive descriptor and save it for usage in backward
std
::
shared_ptr
<
mkldnn
::
convolution_forward
::
primitive_desc
>
conv_pd
;
if
(
bias
)
{
if
(
bias
)
{
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
);
bias_tz
,
memory
::
data_type
::
s32
,
memory
::
format
::
x
);
...
@@ -706,39 +641,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -706,39 +641,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"Output and elementwise parameter need to have the "
"Output and elementwise parameter need to have the "
"same dimension sizes"
);
"same dimension sizes"
);
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
auto
residual_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
if
(
residual_param
->
format
()
!=
handler
.
GetDstFormat
())
{
PADDLE_ENFORCE_EQ
(
residual_param
->
format
(),
handler
.
GetDstFormat
(),
auto
residual_data_tz
=
"Conv input dimension and filter dimension should be the same."
);
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
auto
residual_data_type
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_data_type
,
residual_param
->
format
());
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
auto
residual_param_data
=
residual_param
->
data
<
uint8_t
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
uint8_t
>
(
residual_param_data
));
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
uint8_t
>
(
output_data
),
pipeline
);
}
else
{
auto
residual_param_data
=
residual_param
->
data
<
int8_t
>
();
auto
user_residual_memory_p
=
handler
.
AcquireResidualDataMemory
(
user_residual_md
,
to_void_cast
<
int8_t
>
(
residual_param_data
));
PADDLE_ENFORCE
(
residual_param_data
!=
nullptr
,
"Provide data if you want MKLDNN conv+elementwise_add fusion"
);
int8_t
*
output_data
=
output
->
mutable_data
<
int8_t
>
(
ctx
.
GetPlace
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromResidualDataMemory
(
user_residual_memory_p
,
to_void_cast
<
int8_t
>
(
output_data
),
pipeline
);
if
(
fuse_relu
)
need_s8_to_u8
=
true
;
}
}
else
{
output
->
ShareDataWith
(
*
residual_param
);
output
->
ShareDataWith
(
*
residual_param
);
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
if
(
residual_dt
==
mkldnn
::
memory
::
data_type
::
u8
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
...
@@ -751,7 +655,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -751,7 +655,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
if
(
fuse_relu
)
if
(
fuse_relu
)
need_s8_to_u8
=
true
;
need_s8_to_u8
=
true
;
}
}
}
}
else
{
}
else
{
if
(
fuse_relu
){
if
(
fuse_relu
){
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
...
@@ -776,7 +679,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -776,7 +679,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
handler
.
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
if
(
scale_reuse
){
if
(
!
scale_reuse
){
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
scale_bias_data
.
resize
(
count
);
scale_bias_data
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
#pragma omp parallel for if (count > 1)
...
@@ -918,7 +821,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -918,7 +821,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
auto
propagation
=
is_test
?
mkldnn
::
prop_kind
::
forward_scoring
:
mkldnn
::
prop_kind
::
forward_training
;
auto
propagation
=
is_test
?
mkldnn
::
prop_kind
::
forward_scoring
:
mkldnn
::
prop_kind
::
forward_training
;
//Fix propagation bug for FP32 inference.
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
propagation
,
mkldnn
::
convolution_direct
,
src
,
weights
,
propagation
,
mkldnn
::
convolution_direct
,
src
,
weights
,
...
@@ -972,7 +875,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -972,7 +875,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
stride_dims
=
{
strides
[
0
],
strides
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
memory
::
dims
padding_dims
=
{
paddings
[
0
],
paddings
[
1
]};
auto
propagation
=
is_test
?
mkldnn
::
prop_kind
::
forward_scoring
:
mkldnn
::
prop_kind
::
forward_training
;
auto
propagation
=
is_test
?
mkldnn
::
prop_kind
::
forward_scoring
:
mkldnn
::
prop_kind
::
forward_training
;
//Fix propagation bug for FP32 inference.
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
auto
conv_desc
=
mkldnn
::
convolution_forward
::
desc
(
propagation
,
mkldnn
::
convolution_direct
,
src
,
weights
,
propagation
,
mkldnn
::
convolution_direct
,
src
,
weights
,
...
...
paddle/fluid/operators/dequantize_op.cc
浏览文件 @
d5167b48
...
@@ -54,7 +54,7 @@ class DeQuantOpKernel : public framework::OpKernel<T> {
...
@@ -54,7 +54,7 @@ class DeQuantOpKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
mkldnn
::
memory
::
data_type
src_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
mkldnn
::
memory
::
data_type
src_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
mkldnn
::
memory
::
format
src_fmt
=
memory
::
format
::
nhwc
;
//
input->format();
mkldnn
::
memory
::
format
src_fmt
=
input
->
format
();
mkldnn
::
primitive_attr
attri
;
mkldnn
::
primitive_attr
attri
;
int
mask
=
0
;
int
mask
=
0
;
...
@@ -101,12 +101,10 @@ framework::OpKernelType DeQuantOp::GetExpectedKernelType(const framework::Execut
...
@@ -101,12 +101,10 @@ framework::OpKernelType DeQuantOp::GetExpectedKernelType(const framework::Execut
}
}
void
DeQuantOpMaker
::
Make
()
{
void
DeQuantOpMaker
::
Make
()
{
AddInput
(
"Input"
,
"input"
);
AddInput
(
"Input"
,
"input data"
);
AddInput
(
"Scale"
,
"scale..."
);
AddInput
(
"Scale"
,
"scale data"
);
AddOutput
(
"Output"
,
"output"
);
AddOutput
(
"Output"
,
"output data"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(This op will quantize data from INT8 to FP32)DOC"
);
This op will quantize data from INT8 to FP32
)DOC"
);
}
}
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/quantize_op.cc
浏览文件 @
d5167b48
...
@@ -95,18 +95,17 @@ framework::OpKernelType QuantOp::GetExpectedKernelType(const framework::Executio
...
@@ -95,18 +95,17 @@ framework::OpKernelType QuantOp::GetExpectedKernelType(const framework::Executio
void
QuantOpMaker
::
Make
()
{
void
QuantOpMaker
::
Make
()
{
AddInput
(
"Input"
,
"input"
);
AddInput
(
"Input"
,
"input data"
);
AddInput
(
"Scale"
,
"scale..."
);
AddInput
(
"Scale"
,
"scale data"
);
AddOutput
(
"Output"
,
"output"
);
AddOutput
(
"Output"
,
"output data"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(This op will quantize data from FP32 to INT8)DOC"
);
This op will quantize data from FP32 to INT8
)DOC"
);
}
}
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
//TODO Support FP32->S8 quantization.
REGISTER_OPERATOR
(
quantize
,
ops
::
QuantOp
,
ops
::
QuantOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
quantize
,
ops
::
QuantOp
,
ops
::
QuantOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
...
...
paddle/fluid/operators/requantize_op.cc
已删除
100644 → 0
浏览文件 @
a042d86b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/operators/requantize_op.h"
#include "paddle/fluid/framework/data_layout_transform.h"
namespace
paddle
{
namespace
operators
{
using
mkldnn
::
memory
;
using
mkldnn
::
primitive
;
using
mkldnn
::
reorder
;
using
platform
::
to_void_cast
;
using
Tensor
=
framework
::
Tensor
;
using
framework
::
DataLayout
;
using
mkldnn
::
stream
;
using
platform
::
GetMKLDNNFormat
;
template
<
typename
T
>
class
ReQuantOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
//std::cout<<"this is requant op!!!!!"<<std::endl;
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
//auto* scale = ctx.Input<Tensor>("Scale");
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
mkldnn
::
memory
::
data_type
src_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
mkldnn
::
memory
::
data_type
dst_dt
=
mkldnn
::
memory
::
data_type
::
u8
;
//paddle::framework::ToMKLDNNDataType(output->type());
mkldnn
::
memory
::
format
src_fmt
=
memory
::
format
::
nhwc
;
//input->format();
mkldnn
::
memory
::
format
dst_fmt
=
memory
::
format
::
nhwc
;
//output->format();
const
T
*
input_data
=
input
->
data
<
T
>
();
uint8_t
*
output_data
=
output
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
//T scale_data = *(scale->data<T>());
std
::
vector
<
float
>
scale_data
=
{
0.9999999
};
//{*(scale->data<float>())};
mkldnn
::
primitive_attr
attri
;
int
mask
=
0
;
attri
.
set_output_scales
(
mask
,
scale_data
);
// scale_data);
//attri.set_int_output_round_mode(round_nearest); //FIX ME
auto
src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
src_dt
,
src_fmt
);
//FIX ME WITH S8
auto
src_pd
=
mkldnn
::
memory
::
primitive_desc
(
src_md
,
engine
);
auto
src_memory
=
std
::
make_shared
<
mkldnn
::
memory
>
(
src_pd
,
to_void_cast
<
T
>
(
input_data
));
std
::
shared_ptr
<
primitive
::
at
>
src_memory_p
=
std
::
shared_ptr
<
primitive
::
at
>
(
new
primitive
::
at
(
*
src_memory
));
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
{
dst_tz
},
dst_dt
,
dst_fmt
);
auto
dst_pd
=
mkldnn
::
memory
::
primitive_desc
(
dst_md
,
engine
);
auto
dst_memory
=
mkldnn
::
memory
(
dst_pd
,
to_void_cast
<
uint8_t
>
(
output_data
));
auto
reorder_pd
=
std
::
shared_ptr
<
reorder
::
primitive_desc
>
(
new
reorder
::
primitive_desc
(
src_pd
,
dst_pd
,
attri
));
int
is_sum
=
ctx
.
Attr
<
int
>
(
"is_sum"
);
if
(
is_sum
){
//std::cout<<"is_sum == true"<<std::endl;
memcpy
(
output_data
,
input_data
,
sizeof
(
uint8_t
)
*
input
->
numel
());
}
else
{
auto
reorder_p
=
std
::
shared_ptr
<
reorder
>
(
new
reorder
(
*
reorder_pd
,
*
src_memory_p
,
dst_memory
));
pipeline
.
push_back
(
*
reorder_p
);
stream
(
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
GetMKLDNNFormat
(
dst_memory
));
//std::cout<<"requant op end!!!!!"<<std::endl;
}
};
framework
::
OpKernelType
ReQuantOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
std
::
string
data_format
=
ctx
.
Attr
<
std
::
string
>
(
"data_format"
);
framework
::
DataLayout
layout_
=
framework
::
StringToDataLayout
(
data_format
);
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
#endif
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
type
()),
ctx
.
GetPlace
(),
layout_
,
library_
);
}
void
ReQuantOpMaker
::
Make
()
{
AddInput
(
"Input"
,
"input"
);
AddInput
(
"Scale"
,
"scale..."
);
AddOutput
(
"Output"
,
"output"
);
AddComment
(
R"DOC(
This op will requantize data from INT8 to INT8
)DOC"
);
}
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
requantize
,
ops
::
ReQuantOp
,
ops
::
ReQuantOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OP_KERNEL
(
requantize
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
ops
::
ReQuantOpKernel
<
int8_t
>
);
paddle/fluid/platform/mkldnn_helper.h
浏览文件 @
d5167b48
...
@@ -153,7 +153,6 @@ class MKLDNNHandler {
...
@@ -153,7 +153,6 @@ class MKLDNNHandler {
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
dev_ctx_
.
GetBlob
(
local_key
));
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
PADDLE_ENFORCE
((
mem_p
!=
nullptr
)
||
(
is_reusing_
==
false
),
"Fail to find mem primitive in device context"
);
"Fail to find mem primitive in device context"
);
//mem_p = nullptr;
if
(
mem_p
==
nullptr
)
{
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mdp
,
ptr
);
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mdp
,
ptr
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
...
@@ -234,10 +233,9 @@ class MKLDNNHandler {
...
@@ -234,10 +233,9 @@ class MKLDNNHandler {
std
::
shared_ptr
<
mkldnn
::
primitive
>
reorder_p
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
reorder_p
;
if
(
mpd
!=
user_mpd
)
{
if
(
mpd
!=
user_mpd
)
{
target_memory_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mpd
);
target_memory_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
mpd
);
std
::
shared_ptr
<
mkldnn
::
reorder
>
reorder_p
;
// =
std
::
shared_ptr
<
mkldnn
::
reorder
>
reorder_p
;
//std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
if
(
is_INT8
){
if
(
is_INT8
){
mkldnn
::
primitive_attr
attri
;
mkldnn
::
primitive_attr
attri
;
//attribute for int8 weights and bias data reorder.
attri
.
set_output_scales
(
mask
,
scale_data
);
attri
.
set_output_scales
(
mask
,
scale_data
);
auto
reorder_pd
=
std
::
shared_ptr
<
mkldnn
::
reorder
::
primitive_desc
>
(
auto
reorder_pd
=
std
::
shared_ptr
<
mkldnn
::
reorder
::
primitive_desc
>
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录