Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d4bdbf8c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d4bdbf8c
编写于
1月 14, 2020
作者:
L
Leo Chen
提交者:
GitHub
1月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish nn code, test=develop (#22237)
* refine code, test=develop * reuse contain_var, test=develop
上级
efcdeb51
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
95 addition
and
135 deletion
+95
-135
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+29
-26
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+46
-93
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+3
-10
python/paddle/fluid/layers/utils.py
python/paddle/fluid/layers/utils.py
+11
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+6
-6
未找到文件。
python/paddle/fluid/framework.py
浏览文件 @
d4bdbf8c
...
...
@@ -455,14 +455,14 @@ def name_scope(prefix=None):
"""
# TODO(panyx0718): Only [0-9a-z].
# in dygraph we don't need namescope since it will cause mem leak
if
not
in_dygraph_mode
():
if
in_dygraph_mode
():
yield
else
:
assert
prefix
,
"namescope prefix cannot be empty."
global
_name_scope
_name_scope
=
_name_scope
.
child
(
prefix
)
yield
_name_scope
=
_name_scope
.
parent
()
else
:
yield
def
_full_name_scope
():
...
...
@@ -715,10 +715,9 @@ def _getitem_impl_(var, item):
if
(
use_strided_slice
==
True
):
attrs
[
'strides'
]
=
[]
infer_flags
=
list
(
1
for
i
in
range
(
len
(
slice_axis
)))
# starts
if
not
contain_var
(
slice_start
):
attrs
[
'starts'
]
=
slice_start
else
:
if
contain_var
(
slice_start
):
inputs
[
'StartsTensorList'
]
=
get_new_list_tensor
(
slice_start
)
for
i
,
dim
in
enumerate
(
slice_start
):
if
isinstance
(
dim
,
Variable
):
...
...
@@ -726,10 +725,11 @@ def _getitem_impl_(var, item):
infer_flags
[
i
]
=
-
1
else
:
attrs
[
'starts'
].
append
(
dim
)
# ends
if
not
contain_var
(
slice_end
):
attrs
[
'ends'
]
=
slice_end
else
:
attrs
[
'starts'
]
=
slice_start
# ends
if
contain_var
(
slice_end
):
inputs
[
'EndsTensorList'
]
=
get_new_list_tensor
(
slice_end
)
for
i
,
dim
in
enumerate
(
slice_end
):
if
isinstance
(
dim
,
Variable
):
...
...
@@ -737,11 +737,12 @@ def _getitem_impl_(var, item):
infer_flags
[
i
]
=
-
1
else
:
attrs
[
'ends'
].
append
(
dim
)
else
:
attrs
[
'ends'
]
=
slice_end
# strides
if
use_strided_slice
==
True
:
if
not
contain_var
(
slice_step
):
attrs
[
'strides'
]
=
slice_step
else
:
if
contain_var
(
slice_step
):
inputs
[
'StridesTensorList'
]
=
get_new_list_tensor
(
slice_step
)
for
i
,
dim
in
enumerate
(
slice_step
):
if
isinstance
(
dim
,
Variable
):
...
...
@@ -749,6 +750,8 @@ def _getitem_impl_(var, item):
infer_flags
[
i
]
=
-
1
else
:
attrs
[
'strides'
].
append
(
dim
)
else
:
attrs
[
'strides'
]
=
slice_step
# infer_flags
attrs
[
'infer_flags'
]
=
infer_flags
...
...
@@ -2344,12 +2347,12 @@ class Block(object):
if
isinstance
(
item
[
1
],
Parameter
))
def
create_var
(
self
,
*
args
,
**
kwargs
):
if
not
in_dygraph_mode
():
if
in_dygraph_mode
():
var
=
_varbase_creator
(
*
args
,
**
kwargs
)
else
:
var
=
Variable
(
block
=
self
,
*
args
,
**
kwargs
)
if
'initializer'
in
kwargs
:
kwargs
[
'initializer'
](
var
,
self
)
else
:
var
=
_varbase_creator
(
*
args
,
**
kwargs
)
return
var
def
has_var
(
self
,
name
):
...
...
@@ -2396,9 +2399,8 @@ class Block(object):
# NOTE: v is destroyed by C++ after calling _rename_var.
d
=
self
.
desc
.
find_var
(
cpt
.
to_bytes
(
new_name
))
if
var_type
==
"Parameter"
:
if
not
in_dygraph_mode
():
var
=
Parameter
(
self
,
if
in_dygraph_mode
():
var
=
ParamBase
(
d
.
shape
(),
d
.
dtype
(),
type
=
orig_var_type
,
...
...
@@ -2410,7 +2412,8 @@ class Block(object):
gradient_clip_attr
=
gradient_clip_attr
,
error_clip
=
error_clip
)
else
:
var
=
ParamBase
(
var
=
Parameter
(
self
,
d
.
shape
(),
d
.
dtype
(),
type
=
orig_var_type
,
...
...
@@ -2444,10 +2447,10 @@ class Block(object):
def
create_parameter
(
self
,
*
args
,
**
kwargs
):
global_block
=
self
.
program
.
global_block
()
param
=
None
if
not
in_dygraph_mode
():
param
=
Parameter
(
global_block
,
*
args
,
**
kwargs
)
else
:
if
in_dygraph_mode
():
param
=
ParamBase
(
*
args
,
**
kwargs
)
else
:
param
=
Parameter
(
global_block
,
*
args
,
**
kwargs
)
if
'initializer'
in
kwargs
:
def
_is_inited_by
(
block
,
var
):
...
...
@@ -2687,9 +2690,8 @@ class Block(object):
"same topology"
)
assert
isinstance
(
v
,
Variable
)
new_p
=
None
if
not
in_dygraph_mode
():
new_p
=
Parameter
(
block
=
self
,
if
in_dygraph_mode
():
new_p
=
ParamBase
(
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
...
...
@@ -2702,7 +2704,8 @@ class Block(object):
error_clip
=
p
.
error_clip
,
name
=
v
.
name
)
else
:
new_p
=
ParamBase
(
new_p
=
Parameter
(
block
=
self
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
d4bdbf8c
...
...
@@ -4346,24 +4346,23 @@ def split(input, num_or_sections, dim=-1, name=None):
if isinstance(num_or_sections, int):
num = num_or_sections
attrs['num'] = num_or_sections
res = core.ops.split(inputs, attrs, {}, {'Out': num})
return res['Out']
elif isinstance(num_or_sections, list):
elif isinstance(num_or_sections, (list, tuple)):
num = len(num_or_sections)
attrs['sections'] = list(
map(lambda ele: -1 if isinstance(ele, Variable) else ele,
num_or_sections))
contain_var = not all(not isinstance(ele, Variable)
for ele in num_or_sections)
if contain_var:
if utils._contain_var(num_or_sections):
raise TypeError(
"The type of 'num_or_sections' in split must be int or list[int] in Dygraph mode, but "
"received %s." % ('list[Variable]'))
"The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
"received %s, which contains Variable." %
(type(num_or_sections)))
else:
attrs['sections'] = list(num_or_sections)
else:
raise TypeError(
"The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
"received %s." % (type(num_or_sections)))
res = core.ops.split(inputs, attrs, {}, {'Out': num})
return res['Out']
if not isinstance(num_or_sections, (int, list, tuple)):
raise TypeError(
"The type of 'num_or_sections' in split must be int, list or "
...
...
@@ -4422,9 +4421,7 @@ def split(input, num_or_sections, dim=-1, name=None):
attrs['sections'] = list(
map(lambda ele: -1 if isinstance(ele, Variable) else ele,
num_or_sections))
contain_var = not all(not isinstance(ele, Variable)
for ele in num_or_sections)
if contain_var:
if utils._contain_var(num_or_sections):
inputs['SectionsTensorList'] = _get_SectionsTensorList(
num_or_sections)
...
...
@@ -5572,16 +5569,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
# the shape of reshaped_3 is [6,8].
"""
if in_dygraph_mode():
#TODO(zhiqiu):
open inplace if we can
.
#TODO(zhiqiu):
enable inplace in dygraph mode
.
if inplace:
warnings.warn(
"Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
)
attrs = {}
if isinstance(shape, (list, tuple)):
contain_var = not all(not isinstance(ele, Variable)
for ele in shape)
if contain_var:
if utils._contain_var(shape):
raise TypeError(
"The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable." % type(shape))
...
...
@@ -5604,12 +5599,6 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
helper = LayerHelper("reshape2", **locals())
def contain_var(one_list):
for ele in one_list:
if isinstance(ele, Variable):
return True
return False
def get_new_shape_tensor(list_shape):
new_shape_tensor = []
for dim in list_shape:
...
...
@@ -5659,7 +5648,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
"but received %s." % len(shape))
attrs["shape"] = get_attr_shape(shape)
if contain_var(shape):
if
utils._
contain_var(shape):
inputs['ShapeTensor'] = get_new_shape_tensor(shape)
elif isinstance(actual_shape, Variable):
actual_shape.stop_gradient = True
...
...
@@ -5804,8 +5793,7 @@ def unsqueeze(input, axes, name=None):
axes.stop_gradient = True
inputs["AxesTensor"] = axes
elif isinstance(axes, (list, tuple)):
contain_var = not all(not isinstance(ele, Variable) for ele in axes)
if contain_var:
if utils._contain_var(axes):
inputs["AxesTensorList"] = _to_Variable_list(axes)
else:
attrs["axes"] = axes
...
...
@@ -8256,12 +8244,6 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
ipts = {'X': x}
attrs = {}
def _contain_var(input_list):
for ele in input_list:
if isinstance(ele, Variable):
return True
return False
def _attr_shape_check(shape_val):
if not isinstance(shape_val, int):
raise TypeError(
...
...
@@ -8290,7 +8272,7 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
offsets.stop_gradient = True
ipts['Offsets'] = offsets
attrs['offsets'] = [-1] * len(x.shape)
elif _contain_var(offsets):
elif
utils.
_contain_var(offsets):
new_offsets_tensor = []
offsets_attr = []
for dim in offsets:
...
...
@@ -8314,7 +8296,7 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
if isinstance(shape, Variable):
shape.stop_gradient = True
ipts['Shape'] = shape
elif _contain_var(shape):
elif
utils.
_contain_var(shape):
new_shape_tensor = []
shape_attr = []
for dim_size in shape:
...
...
@@ -9344,20 +9326,12 @@ def expand(x, expand_times, name=None):
expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
# the shape of expanded_2 is [48, 56].
"""
def contain_var(expand_times):
for ele in expand_times:
if isinstance(ele, Variable):
return True
return False
inputs = {"X": [x]}
attrs = {}
if in_dygraph_mode():
if isinstance(expand_times, (list, tuple)):
contain_var = contain_var(expand_times)
if contain_var:
if utils._contain_var(expand_times):
raise TypeError(
"The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable." % type(shape))
...
...
@@ -9404,16 +9378,12 @@ def expand(x, expand_times, name=None):
new_expand_times_tensor.append(temp_out)
return new_expand_times_tensor
if in_dygraph_mode():
inputs = {'X': x}
attrs = {'expand_times': expand_times}
else:
if isinstance(expand_times, Variable):
expand_times.stop_gradient = True
inputs['ExpandTimes'] = expand_times
elif isinstance(expand_times, (list, tuple)):
attrs['expand_times'] = get_attr_expand_times(expand_times)
if
contain_var(expand_times):
if utils._
contain_var(expand_times):
inputs['expand_times_tensor'] = get_new_expand_times_tensor(
expand_times)
...
...
@@ -9912,19 +9882,12 @@ def slice(input, axes, starts, ends):
sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
# sliced_2 is input[0:3, 0:2, 2:4].
"""
def contain_var(one_list):
for ele in one_list:
if isinstance(ele, Variable):
return True
return False
if in_dygraph_mode():
infer_flags = list(1 for i in range(len(axes)))
inputs = {'Input': [input]}
if isinstance(starts, (list, tuple)):
if contain_var(starts):
if
utils._
contain_var(starts):
raise TypeError(
"The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable." % type(shape))
...
...
@@ -9934,7 +9897,7 @@ def slice(input, axes, starts, ends):
"received %s." % type(shape))
if isinstance(ends, (list, tuple)):
if contain_var(ends):
if
utils._
contain_var(ends):
raise TypeError(
"The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable." % type(shape))
...
...
@@ -9985,9 +9948,7 @@ def slice(input, axes, starts, ends):
infer_flags = list(-1 for i in range(len(axes)))
elif isinstance(starts, (list, tuple)):
attrs['starts'] = []
if not contain_var(starts):
attrs['starts'] = starts
else:
if utils._contain_var(starts):
inputs['StartsTensorList'] = get_new_list_tensor(starts)
for i, dim in enumerate(starts):
if isinstance(dim, Variable):
...
...
@@ -9995,6 +9956,8 @@ def slice(input, axes, starts, ends):
infer_flags[i] = -1
else:
attrs['starts'].append(dim)
else:
attrs['starts'] = starts
# ends
if isinstance(ends, Variable):
...
...
@@ -10003,9 +9966,7 @@ def slice(input, axes, starts, ends):
infer_flags = list(-1 for i in range(len(axes)))
elif isinstance(ends, (list, tuple)):
attrs['ends'] = []
if not contain_var(ends):
attrs['ends'] = ends
else:
if utils._contain_var(ends):
inputs['EndsTensorList'] = get_new_list_tensor(ends)
for i, dim in enumerate(ends):
if isinstance(dim, Variable):
...
...
@@ -10013,6 +9974,9 @@ def slice(input, axes, starts, ends):
infer_flags[i] = -1
else:
attrs['ends'].append(dim)
else:
attrs['ends'] = ends
# infer_flags
attrs['infer_flags'] = infer_flags
out = helper.create_variable_for_type_inference(
...
...
@@ -10130,12 +10094,6 @@ def strided_slice(input, axes, starts, ends, strides):
helper = LayerHelper('strided_slice', **locals())
def contain_var(one_list):
for ele in one_list:
if isinstance(ele, Variable):
return True
return False
def get_new_list_tensor(old_list):
new_list_tensor = []
for dim in old_list:
...
...
@@ -10169,9 +10127,7 @@ def strided_slice(input, axes, starts, ends, strides):
inputs['StartsTensor'] = starts
elif isinstance(starts, (list, tuple)):
attrs['starts'] = []
if not contain_var(starts):
attrs['starts'] = starts
else:
if utils._contain_var(starts):
inputs['StartsTensorList'] = get_new_list_tensor(starts)
for i, dim in enumerate(starts):
if isinstance(dim, Variable):
...
...
@@ -10179,6 +10135,8 @@ def strided_slice(input, axes, starts, ends, strides):
infer_flags[i] = -1
else:
attrs['starts'].append(dim)
else:
attrs['starts'] = starts
# ends
if isinstance(ends, Variable):
...
...
@@ -10186,9 +10144,7 @@ def strided_slice(input, axes, starts, ends, strides):
inputs['EndsTensor'] = ends
elif isinstance(ends, (list, tuple)):
attrs['ends'] = []
if not contain_var(ends):
attrs['ends'] = ends
else:
if utils._contain_var(ends):
inputs['EndsTensorList'] = get_new_list_tensor(ends)
for i, dim in enumerate(ends):
if isinstance(dim, Variable):
...
...
@@ -10196,15 +10152,16 @@ def strided_slice(input, axes, starts, ends, strides):
infer_flags[i] = -1
else:
attrs['ends'].append(dim)
else:
attrs['ends'] = ends
# strides
if isinstance(strides, Variable):
strides.stop_gradient = True
inputs['StridesTensor'] = strides
elif isinstance(strides, (list, tuple)):
attrs['strides'] = []
if not contain_var(strides):
attrs['strides'] = strides
else:
if utils._contain_var(strides):
inputs['StridesTensorList'] = get_new_list_tensor(strides)
for i, dim in enumerate(strides):
if isinstance(dim, Variable):
...
...
@@ -10212,6 +10169,8 @@ def strided_slice(input, axes, starts, ends, strides):
infer_flags[i] = -1
else:
attrs['strides'].append(dim)
else:
attrs['strides'] = strides
attrs['infer_flags'] = infer_flags
out = helper.create_variable_for_type_inference(
dtype=helper.input_dtype('input'))
...
...
@@ -13894,12 +13853,6 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
dtype = convert_np_dtype_to_dtype_(dtype)
check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
def contain_var(one_list):
for ele in one_list:
if isinstance(ele, Variable):
return True
return False
def get_new_shape_tensor(list_shape):
new_shape_tensor = []
for dim in list_shape:
...
...
@@ -13939,7 +13892,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
assert len(shape) > 0, (
"The size of argument(shape) can't be zero.")
attrs["shape"] = get_attr_shape(shape)
if contain_var(shape):
if
utils._
contain_var(shape):
inputs['ShapeTensorList'] = get_new_shape_tensor(shape)
out = helper.create_variable_for_type_inference(dtype)
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
d4bdbf8c
...
...
@@ -22,6 +22,7 @@ from ..initializer import Constant, force_init_on_cpu
from
..core
import
VarDesc
from
..
import
core
from
.layer_function_generator
import
templatedoc
from
.
import
utils
from
..data_feeder
import
check_type_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
import
numpy
import
warnings
...
...
@@ -552,13 +553,6 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
"""
def
_contain_var
(
one_list
):
for
ele
in
one_list
:
if
isinstance
(
ele
,
Variable
):
return
True
return
False
attrs
=
{
'value'
:
float
(
value
),
'force_cpu'
:
force_cpu
or
force_init_on_cpu
()
...
...
@@ -571,8 +565,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
if
in_dygraph_mode
():
if
isinstance
(
shape
,
(
list
,
tuple
)):
contain_var
=
_contain_var
(
shape
)
if
contain_var
:
if
utils
.
_contain_var
(
shape
):
raise
TypeError
(
"The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable."
%
type
(
shape
))
...
...
@@ -644,7 +637,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
"The size of 'shape' in fill_constant can't be zero, "
"but received %s."
%
len
(
shape
))
attrs
[
"shape"
]
=
_get_attr_shape
(
shape
)
if
_contain_var
(
shape
):
if
utils
.
_contain_var
(
shape
):
inputs
[
'ShapeTensorList'
]
=
_get_shape_tensor
(
shape
)
if
out
is
None
:
...
...
python/paddle/fluid/layers/utils.py
浏览文件 @
d4bdbf8c
...
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
collections
import
six
import
numpy
as
np
from
..framework
import
Variable
def
convert_to_list
(
value
,
n
,
name
,
dtype
=
np
.
int
):
...
...
@@ -244,3 +245,13 @@ def _is_symmetric_padding(padding, data_dim):
if
padding
[
i
*
2
]
!=
padding
[
i
*
2
+
1
]:
is_sys
=
False
return
is_sys
def
_contain_var
(
list_or_tuple
):
"""
Check whether list or tuple contains variable.
"""
for
item
in
list_or_tuple
:
if
isinstance
(
item
,
Variable
):
return
True
return
False
python/paddle/fluid/optimizer.py
浏览文件 @
d4bdbf8c
...
...
@@ -134,11 +134,11 @@ class Optimizer(object):
# global step if use lr decay
if
isinstance
(
self
.
_learning_rate
,
LearningRateDecay
):
var_tmp
=
None
if
not
framework
.
in_dygraph_mode
():
var_temp
=
Variable
(
None
,
name
=
'global_step'
,
dtype
=
'int32'
)
else
:
if
framework
.
in_dygraph_mode
():
var_temp
=
framework
.
_varbase_creator
(
None
,
name
=
'global_step'
,
dtype
=
'int32'
)
else
:
var_temp
=
Variable
(
None
,
name
=
'global_step'
,
dtype
=
'int32'
)
tensor
.
fill_constant
(
[
1
],
"int32"
,
self
.
_learning_rate
.
step_num
,
out
=
var_temp
)
...
...
@@ -546,10 +546,10 @@ class Optimizer(object):
See examples in ``apply_gradients``.
"""
act_no_grad_set
=
None
if
not
framework
.
in_dygraph_mode
():
act_no_grad_set
=
self
.
_get_no_grad_set
(
loss
,
no_grad_set
)
else
:
if
framework
.
in_dygraph_mode
():
pass
else
:
act_no_grad_set
=
self
.
_get_no_grad_set
(
loss
,
no_grad_set
)
self
.
_dtype
=
loss
.
dtype
if
framework
.
in_dygraph_mode
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录