Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d4bdbf8c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d4bdbf8c
编写于
1月 14, 2020
作者:
L
Leo Chen
提交者:
GitHub
1月 14, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish nn code, test=develop (#22237)
* refine code, test=develop * reuse contain_var, test=develop
上级
efcdeb51
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
95 addition
and
135 deletion
+95
-135
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+29
-26
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+46
-93
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+3
-10
python/paddle/fluid/layers/utils.py
python/paddle/fluid/layers/utils.py
+11
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+6
-6
未找到文件。
python/paddle/fluid/framework.py
浏览文件 @
d4bdbf8c
...
@@ -455,14 +455,14 @@ def name_scope(prefix=None):
...
@@ -455,14 +455,14 @@ def name_scope(prefix=None):
"""
"""
# TODO(panyx0718): Only [0-9a-z].
# TODO(panyx0718): Only [0-9a-z].
# in dygraph we don't need namescope since it will cause mem leak
# in dygraph we don't need namescope since it will cause mem leak
if
not
in_dygraph_mode
():
if
in_dygraph_mode
():
yield
else
:
assert
prefix
,
"namescope prefix cannot be empty."
assert
prefix
,
"namescope prefix cannot be empty."
global
_name_scope
global
_name_scope
_name_scope
=
_name_scope
.
child
(
prefix
)
_name_scope
=
_name_scope
.
child
(
prefix
)
yield
yield
_name_scope
=
_name_scope
.
parent
()
_name_scope
=
_name_scope
.
parent
()
else
:
yield
def
_full_name_scope
():
def
_full_name_scope
():
...
@@ -715,10 +715,9 @@ def _getitem_impl_(var, item):
...
@@ -715,10 +715,9 @@ def _getitem_impl_(var, item):
if
(
use_strided_slice
==
True
):
if
(
use_strided_slice
==
True
):
attrs
[
'strides'
]
=
[]
attrs
[
'strides'
]
=
[]
infer_flags
=
list
(
1
for
i
in
range
(
len
(
slice_axis
)))
infer_flags
=
list
(
1
for
i
in
range
(
len
(
slice_axis
)))
# starts
# starts
if
not
contain_var
(
slice_start
):
if
contain_var
(
slice_start
):
attrs
[
'starts'
]
=
slice_start
else
:
inputs
[
'StartsTensorList'
]
=
get_new_list_tensor
(
slice_start
)
inputs
[
'StartsTensorList'
]
=
get_new_list_tensor
(
slice_start
)
for
i
,
dim
in
enumerate
(
slice_start
):
for
i
,
dim
in
enumerate
(
slice_start
):
if
isinstance
(
dim
,
Variable
):
if
isinstance
(
dim
,
Variable
):
...
@@ -726,10 +725,11 @@ def _getitem_impl_(var, item):
...
@@ -726,10 +725,11 @@ def _getitem_impl_(var, item):
infer_flags
[
i
]
=
-
1
infer_flags
[
i
]
=
-
1
else
:
else
:
attrs
[
'starts'
].
append
(
dim
)
attrs
[
'starts'
].
append
(
dim
)
# ends
if
not
contain_var
(
slice_end
):
attrs
[
'ends'
]
=
slice_end
else
:
else
:
attrs
[
'starts'
]
=
slice_start
# ends
if
contain_var
(
slice_end
):
inputs
[
'EndsTensorList'
]
=
get_new_list_tensor
(
slice_end
)
inputs
[
'EndsTensorList'
]
=
get_new_list_tensor
(
slice_end
)
for
i
,
dim
in
enumerate
(
slice_end
):
for
i
,
dim
in
enumerate
(
slice_end
):
if
isinstance
(
dim
,
Variable
):
if
isinstance
(
dim
,
Variable
):
...
@@ -737,11 +737,12 @@ def _getitem_impl_(var, item):
...
@@ -737,11 +737,12 @@ def _getitem_impl_(var, item):
infer_flags
[
i
]
=
-
1
infer_flags
[
i
]
=
-
1
else
:
else
:
attrs
[
'ends'
].
append
(
dim
)
attrs
[
'ends'
].
append
(
dim
)
else
:
attrs
[
'ends'
]
=
slice_end
# strides
# strides
if
use_strided_slice
==
True
:
if
use_strided_slice
==
True
:
if
not
contain_var
(
slice_step
):
if
contain_var
(
slice_step
):
attrs
[
'strides'
]
=
slice_step
else
:
inputs
[
'StridesTensorList'
]
=
get_new_list_tensor
(
slice_step
)
inputs
[
'StridesTensorList'
]
=
get_new_list_tensor
(
slice_step
)
for
i
,
dim
in
enumerate
(
slice_step
):
for
i
,
dim
in
enumerate
(
slice_step
):
if
isinstance
(
dim
,
Variable
):
if
isinstance
(
dim
,
Variable
):
...
@@ -749,6 +750,8 @@ def _getitem_impl_(var, item):
...
@@ -749,6 +750,8 @@ def _getitem_impl_(var, item):
infer_flags
[
i
]
=
-
1
infer_flags
[
i
]
=
-
1
else
:
else
:
attrs
[
'strides'
].
append
(
dim
)
attrs
[
'strides'
].
append
(
dim
)
else
:
attrs
[
'strides'
]
=
slice_step
# infer_flags
# infer_flags
attrs
[
'infer_flags'
]
=
infer_flags
attrs
[
'infer_flags'
]
=
infer_flags
...
@@ -2344,12 +2347,12 @@ class Block(object):
...
@@ -2344,12 +2347,12 @@ class Block(object):
if
isinstance
(
item
[
1
],
Parameter
))
if
isinstance
(
item
[
1
],
Parameter
))
def
create_var
(
self
,
*
args
,
**
kwargs
):
def
create_var
(
self
,
*
args
,
**
kwargs
):
if
not
in_dygraph_mode
():
if
in_dygraph_mode
():
var
=
_varbase_creator
(
*
args
,
**
kwargs
)
else
:
var
=
Variable
(
block
=
self
,
*
args
,
**
kwargs
)
var
=
Variable
(
block
=
self
,
*
args
,
**
kwargs
)
if
'initializer'
in
kwargs
:
if
'initializer'
in
kwargs
:
kwargs
[
'initializer'
](
var
,
self
)
kwargs
[
'initializer'
](
var
,
self
)
else
:
var
=
_varbase_creator
(
*
args
,
**
kwargs
)
return
var
return
var
def
has_var
(
self
,
name
):
def
has_var
(
self
,
name
):
...
@@ -2396,9 +2399,8 @@ class Block(object):
...
@@ -2396,9 +2399,8 @@ class Block(object):
# NOTE: v is destroyed by C++ after calling _rename_var.
# NOTE: v is destroyed by C++ after calling _rename_var.
d
=
self
.
desc
.
find_var
(
cpt
.
to_bytes
(
new_name
))
d
=
self
.
desc
.
find_var
(
cpt
.
to_bytes
(
new_name
))
if
var_type
==
"Parameter"
:
if
var_type
==
"Parameter"
:
if
not
in_dygraph_mode
():
if
in_dygraph_mode
():
var
=
Parameter
(
var
=
ParamBase
(
self
,
d
.
shape
(),
d
.
shape
(),
d
.
dtype
(),
d
.
dtype
(),
type
=
orig_var_type
,
type
=
orig_var_type
,
...
@@ -2410,7 +2412,8 @@ class Block(object):
...
@@ -2410,7 +2412,8 @@ class Block(object):
gradient_clip_attr
=
gradient_clip_attr
,
gradient_clip_attr
=
gradient_clip_attr
,
error_clip
=
error_clip
)
error_clip
=
error_clip
)
else
:
else
:
var
=
ParamBase
(
var
=
Parameter
(
self
,
d
.
shape
(),
d
.
shape
(),
d
.
dtype
(),
d
.
dtype
(),
type
=
orig_var_type
,
type
=
orig_var_type
,
...
@@ -2444,10 +2447,10 @@ class Block(object):
...
@@ -2444,10 +2447,10 @@ class Block(object):
def
create_parameter
(
self
,
*
args
,
**
kwargs
):
def
create_parameter
(
self
,
*
args
,
**
kwargs
):
global_block
=
self
.
program
.
global_block
()
global_block
=
self
.
program
.
global_block
()
param
=
None
param
=
None
if
not
in_dygraph_mode
():
if
in_dygraph_mode
():
param
=
Parameter
(
global_block
,
*
args
,
**
kwargs
)
else
:
param
=
ParamBase
(
*
args
,
**
kwargs
)
param
=
ParamBase
(
*
args
,
**
kwargs
)
else
:
param
=
Parameter
(
global_block
,
*
args
,
**
kwargs
)
if
'initializer'
in
kwargs
:
if
'initializer'
in
kwargs
:
def
_is_inited_by
(
block
,
var
):
def
_is_inited_by
(
block
,
var
):
...
@@ -2687,9 +2690,8 @@ class Block(object):
...
@@ -2687,9 +2690,8 @@ class Block(object):
"same topology"
)
"same topology"
)
assert
isinstance
(
v
,
Variable
)
assert
isinstance
(
v
,
Variable
)
new_p
=
None
new_p
=
None
if
not
in_dygraph_mode
():
if
in_dygraph_mode
():
new_p
=
Parameter
(
new_p
=
ParamBase
(
block
=
self
,
shape
=
v
.
shape
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
type
=
v
.
type
,
...
@@ -2702,7 +2704,8 @@ class Block(object):
...
@@ -2702,7 +2704,8 @@ class Block(object):
error_clip
=
p
.
error_clip
,
error_clip
=
p
.
error_clip
,
name
=
v
.
name
)
name
=
v
.
name
)
else
:
else
:
new_p
=
ParamBase
(
new_p
=
Parameter
(
block
=
self
,
shape
=
v
.
shape
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
type
=
v
.
type
,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
d4bdbf8c
...
@@ -4346,24 +4346,23 @@ def split(input, num_or_sections, dim=-1, name=None):
...
@@ -4346,24 +4346,23 @@ def split(input, num_or_sections, dim=-1, name=None):
if isinstance(num_or_sections, int):
if isinstance(num_or_sections, int):
num = num_or_sections
num = num_or_sections
attrs['num'] = num_or_sections
attrs['num'] = num_or_sections
res = core.ops.split(inputs, attrs, {}, {'Out': num})
elif isinstance(num_or_sections, (list, tuple)):
return res['Out']
elif isinstance(num_or_sections, list):
num = len(num_or_sections)
num = len(num_or_sections)
attrs['sections'] = list(
if utils._contain_var(num_or_sections):
map(lambda ele: -1 if isinstance(ele, Variable) else ele,
num_or_sections))
contain_var = not all(not isinstance(ele, Variable)
for ele in num_or_sections)
if contain_var:
raise TypeError(
raise TypeError(
"The type of 'num_or_sections' in split must be int or list[int] in Dygraph mode, but "
"The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
"received %s." % ('list[Variable]'))
"received %s, which contains Variable." %
(type(num_or_sections)))
else:
attrs['sections'] = list(num_or_sections)
else:
else:
raise TypeError(
raise TypeError(
"The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
"The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
"received %s." % (type(num_or_sections)))
"received %s." % (type(num_or_sections)))
res = core.ops.split(inputs, attrs, {}, {'Out': num})
return res['Out']
if not isinstance(num_or_sections, (int, list, tuple)):
if not isinstance(num_or_sections, (int, list, tuple)):
raise TypeError(
raise TypeError(
"The type of 'num_or_sections' in split must be int, list or "
"The type of 'num_or_sections' in split must be int, list or "
...
@@ -4422,9 +4421,7 @@ def split(input, num_or_sections, dim=-1, name=None):
...
@@ -4422,9 +4421,7 @@ def split(input, num_or_sections, dim=-1, name=None):
attrs['sections'] = list(
attrs['sections'] = list(
map(lambda ele: -1 if isinstance(ele, Variable) else ele,
map(lambda ele: -1 if isinstance(ele, Variable) else ele,
num_or_sections))
num_or_sections))
contain_var = not all(not isinstance(ele, Variable)
if utils._contain_var(num_or_sections):
for ele in num_or_sections)
if contain_var:
inputs['SectionsTensorList'] = _get_SectionsTensorList(
inputs['SectionsTensorList'] = _get_SectionsTensorList(
num_or_sections)
num_or_sections)
...
@@ -5572,16 +5569,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
...
@@ -5572,16 +5569,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
# the shape of reshaped_3 is [6,8].
# the shape of reshaped_3 is [6,8].
"""
"""
if in_dygraph_mode():
if in_dygraph_mode():
#TODO(zhiqiu):
open inplace if we can
.
#TODO(zhiqiu):
enable inplace in dygraph mode
.
if inplace:
if inplace:
warnings.warn(
warnings.warn(
"Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
"Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
)
)
attrs = {}
attrs = {}
if isinstance(shape, (list, tuple)):
if isinstance(shape, (list, tuple)):
contain_var = not all(not isinstance(ele, Variable)
if utils._contain_var(shape):
for ele in shape)
if contain_var:
raise TypeError(
raise TypeError(
"The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
"The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable." % type(shape))
"received %s, which contains Variable." % type(shape))
...
@@ -5604,12 +5599,6 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
...
@@ -5604,12 +5599,6 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
helper = LayerHelper("reshape2", **locals())
helper = LayerHelper("reshape2", **locals())
def contain_var(one_list):
for ele in one_list:
if isinstance(ele, Variable):
return True
return False
def get_new_shape_tensor(list_shape):
def get_new_shape_tensor(list_shape):
new_shape_tensor = []
new_shape_tensor = []
for dim in list_shape:
for dim in list_shape:
...
@@ -5659,7 +5648,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
...
@@ -5659,7 +5648,7 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
"but received %s." % len(shape))
"but received %s." % len(shape))
attrs["shape"] = get_attr_shape(shape)
attrs["shape"] = get_attr_shape(shape)
if contain_var(shape):
if
utils._
contain_var(shape):
inputs['ShapeTensor'] = get_new_shape_tensor(shape)
inputs['ShapeTensor'] = get_new_shape_tensor(shape)
elif isinstance(actual_shape, Variable):
elif isinstance(actual_shape, Variable):
actual_shape.stop_gradient = True
actual_shape.stop_gradient = True
...
@@ -5804,8 +5793,7 @@ def unsqueeze(input, axes, name=None):
...
@@ -5804,8 +5793,7 @@ def unsqueeze(input, axes, name=None):
axes.stop_gradient = True
axes.stop_gradient = True
inputs["AxesTensor"] = axes
inputs["AxesTensor"] = axes
elif isinstance(axes, (list, tuple)):
elif isinstance(axes, (list, tuple)):
contain_var = not all(not isinstance(ele, Variable) for ele in axes)
if utils._contain_var(axes):
if contain_var:
inputs["AxesTensorList"] = _to_Variable_list(axes)
inputs["AxesTensorList"] = _to_Variable_list(axes)
else:
else:
attrs["axes"] = axes
attrs["axes"] = axes
...
@@ -8256,12 +8244,6 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
...
@@ -8256,12 +8244,6 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
ipts = {'X': x}
ipts = {'X': x}
attrs = {}
attrs = {}
def _contain_var(input_list):
for ele in input_list:
if isinstance(ele, Variable):
return True
return False
def _attr_shape_check(shape_val):
def _attr_shape_check(shape_val):
if not isinstance(shape_val, int):
if not isinstance(shape_val, int):
raise TypeError(
raise TypeError(
...
@@ -8290,7 +8272,7 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
...
@@ -8290,7 +8272,7 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
offsets.stop_gradient = True
offsets.stop_gradient = True
ipts['Offsets'] = offsets
ipts['Offsets'] = offsets
attrs['offsets'] = [-1] * len(x.shape)
attrs['offsets'] = [-1] * len(x.shape)
elif _contain_var(offsets):
elif
utils.
_contain_var(offsets):
new_offsets_tensor = []
new_offsets_tensor = []
offsets_attr = []
offsets_attr = []
for dim in offsets:
for dim in offsets:
...
@@ -8314,7 +8296,7 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
...
@@ -8314,7 +8296,7 @@ def crop_tensor(x, shape=None, offsets=None, name=None):
if isinstance(shape, Variable):
if isinstance(shape, Variable):
shape.stop_gradient = True
shape.stop_gradient = True
ipts['Shape'] = shape
ipts['Shape'] = shape
elif _contain_var(shape):
elif
utils.
_contain_var(shape):
new_shape_tensor = []
new_shape_tensor = []
shape_attr = []
shape_attr = []
for dim_size in shape:
for dim_size in shape:
...
@@ -9344,20 +9326,12 @@ def expand(x, expand_times, name=None):
...
@@ -9344,20 +9326,12 @@ def expand(x, expand_times, name=None):
expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
# the shape of expanded_2 is [48, 56].
# the shape of expanded_2 is [48, 56].
"""
"""
def contain_var(expand_times):
for ele in expand_times:
if isinstance(ele, Variable):
return True
return False
inputs = {"X": [x]}
inputs = {"X": [x]}
attrs = {}
attrs = {}
if in_dygraph_mode():
if in_dygraph_mode():
if isinstance(expand_times, (list, tuple)):
if isinstance(expand_times, (list, tuple)):
contain_var = contain_var(expand_times)
if utils._contain_var(expand_times):
if contain_var:
raise TypeError(
raise TypeError(
"The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
"The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable." % type(shape))
"received %s, which contains Variable." % type(shape))
...
@@ -9404,16 +9378,12 @@ def expand(x, expand_times, name=None):
...
@@ -9404,16 +9378,12 @@ def expand(x, expand_times, name=None):
new_expand_times_tensor.append(temp_out)
new_expand_times_tensor.append(temp_out)
return new_expand_times_tensor
return new_expand_times_tensor
if in_dygraph_mode():
inputs = {'X': x}
attrs = {'expand_times': expand_times}
else:
if isinstance(expand_times, Variable):
if isinstance(expand_times, Variable):
expand_times.stop_gradient = True
expand_times.stop_gradient = True
inputs['ExpandTimes'] = expand_times
inputs['ExpandTimes'] = expand_times
elif isinstance(expand_times, (list, tuple)):
elif isinstance(expand_times, (list, tuple)):
attrs['expand_times'] = get_attr_expand_times(expand_times)
attrs['expand_times'] = get_attr_expand_times(expand_times)
if
contain_var(expand_times):
if utils._
contain_var(expand_times):
inputs['expand_times_tensor'] = get_new_expand_times_tensor(
inputs['expand_times_tensor'] = get_new_expand_times_tensor(
expand_times)
expand_times)
...
@@ -9912,19 +9882,12 @@ def slice(input, axes, starts, ends):
...
@@ -9912,19 +9882,12 @@ def slice(input, axes, starts, ends):
sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
# sliced_2 is input[0:3, 0:2, 2:4].
# sliced_2 is input[0:3, 0:2, 2:4].
"""
"""
def contain_var(one_list):
for ele in one_list:
if isinstance(ele, Variable):
return True
return False
if in_dygraph_mode():
if in_dygraph_mode():
infer_flags = list(1 for i in range(len(axes)))
infer_flags = list(1 for i in range(len(axes)))
inputs = {'Input': [input]}
inputs = {'Input': [input]}
if isinstance(starts, (list, tuple)):
if isinstance(starts, (list, tuple)):
if contain_var(starts):
if
utils._
contain_var(starts):
raise TypeError(
raise TypeError(
"The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
"The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable." % type(shape))
"received %s, which contains Variable." % type(shape))
...
@@ -9934,7 +9897,7 @@ def slice(input, axes, starts, ends):
...
@@ -9934,7 +9897,7 @@ def slice(input, axes, starts, ends):
"received %s." % type(shape))
"received %s." % type(shape))
if isinstance(ends, (list, tuple)):
if isinstance(ends, (list, tuple)):
if contain_var(ends):
if
utils._
contain_var(ends):
raise TypeError(
raise TypeError(
"The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
"The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable." % type(shape))
"received %s, which contains Variable." % type(shape))
...
@@ -9985,9 +9948,7 @@ def slice(input, axes, starts, ends):
...
@@ -9985,9 +9948,7 @@ def slice(input, axes, starts, ends):
infer_flags = list(-1 for i in range(len(axes)))
infer_flags = list(-1 for i in range(len(axes)))
elif isinstance(starts, (list, tuple)):
elif isinstance(starts, (list, tuple)):
attrs['starts'] = []
attrs['starts'] = []
if not contain_var(starts):
if utils._contain_var(starts):
attrs['starts'] = starts
else:
inputs['StartsTensorList'] = get_new_list_tensor(starts)
inputs['StartsTensorList'] = get_new_list_tensor(starts)
for i, dim in enumerate(starts):
for i, dim in enumerate(starts):
if isinstance(dim, Variable):
if isinstance(dim, Variable):
...
@@ -9995,6 +9956,8 @@ def slice(input, axes, starts, ends):
...
@@ -9995,6 +9956,8 @@ def slice(input, axes, starts, ends):
infer_flags[i] = -1
infer_flags[i] = -1
else:
else:
attrs['starts'].append(dim)
attrs['starts'].append(dim)
else:
attrs['starts'] = starts
# ends
# ends
if isinstance(ends, Variable):
if isinstance(ends, Variable):
...
@@ -10003,9 +9966,7 @@ def slice(input, axes, starts, ends):
...
@@ -10003,9 +9966,7 @@ def slice(input, axes, starts, ends):
infer_flags = list(-1 for i in range(len(axes)))
infer_flags = list(-1 for i in range(len(axes)))
elif isinstance(ends, (list, tuple)):
elif isinstance(ends, (list, tuple)):
attrs['ends'] = []
attrs['ends'] = []
if not contain_var(ends):
if utils._contain_var(ends):
attrs['ends'] = ends
else:
inputs['EndsTensorList'] = get_new_list_tensor(ends)
inputs['EndsTensorList'] = get_new_list_tensor(ends)
for i, dim in enumerate(ends):
for i, dim in enumerate(ends):
if isinstance(dim, Variable):
if isinstance(dim, Variable):
...
@@ -10013,6 +9974,9 @@ def slice(input, axes, starts, ends):
...
@@ -10013,6 +9974,9 @@ def slice(input, axes, starts, ends):
infer_flags[i] = -1
infer_flags[i] = -1
else:
else:
attrs['ends'].append(dim)
attrs['ends'].append(dim)
else:
attrs['ends'] = ends
# infer_flags
# infer_flags
attrs['infer_flags'] = infer_flags
attrs['infer_flags'] = infer_flags
out = helper.create_variable_for_type_inference(
out = helper.create_variable_for_type_inference(
...
@@ -10130,12 +10094,6 @@ def strided_slice(input, axes, starts, ends, strides):
...
@@ -10130,12 +10094,6 @@ def strided_slice(input, axes, starts, ends, strides):
helper = LayerHelper('strided_slice', **locals())
helper = LayerHelper('strided_slice', **locals())
def contain_var(one_list):
for ele in one_list:
if isinstance(ele, Variable):
return True
return False
def get_new_list_tensor(old_list):
def get_new_list_tensor(old_list):
new_list_tensor = []
new_list_tensor = []
for dim in old_list:
for dim in old_list:
...
@@ -10169,9 +10127,7 @@ def strided_slice(input, axes, starts, ends, strides):
...
@@ -10169,9 +10127,7 @@ def strided_slice(input, axes, starts, ends, strides):
inputs['StartsTensor'] = starts
inputs['StartsTensor'] = starts
elif isinstance(starts, (list, tuple)):
elif isinstance(starts, (list, tuple)):
attrs['starts'] = []
attrs['starts'] = []
if not contain_var(starts):
if utils._contain_var(starts):
attrs['starts'] = starts
else:
inputs['StartsTensorList'] = get_new_list_tensor(starts)
inputs['StartsTensorList'] = get_new_list_tensor(starts)
for i, dim in enumerate(starts):
for i, dim in enumerate(starts):
if isinstance(dim, Variable):
if isinstance(dim, Variable):
...
@@ -10179,6 +10135,8 @@ def strided_slice(input, axes, starts, ends, strides):
...
@@ -10179,6 +10135,8 @@ def strided_slice(input, axes, starts, ends, strides):
infer_flags[i] = -1
infer_flags[i] = -1
else:
else:
attrs['starts'].append(dim)
attrs['starts'].append(dim)
else:
attrs['starts'] = starts
# ends
# ends
if isinstance(ends, Variable):
if isinstance(ends, Variable):
...
@@ -10186,9 +10144,7 @@ def strided_slice(input, axes, starts, ends, strides):
...
@@ -10186,9 +10144,7 @@ def strided_slice(input, axes, starts, ends, strides):
inputs['EndsTensor'] = ends
inputs['EndsTensor'] = ends
elif isinstance(ends, (list, tuple)):
elif isinstance(ends, (list, tuple)):
attrs['ends'] = []
attrs['ends'] = []
if not contain_var(ends):
if utils._contain_var(ends):
attrs['ends'] = ends
else:
inputs['EndsTensorList'] = get_new_list_tensor(ends)
inputs['EndsTensorList'] = get_new_list_tensor(ends)
for i, dim in enumerate(ends):
for i, dim in enumerate(ends):
if isinstance(dim, Variable):
if isinstance(dim, Variable):
...
@@ -10196,15 +10152,16 @@ def strided_slice(input, axes, starts, ends, strides):
...
@@ -10196,15 +10152,16 @@ def strided_slice(input, axes, starts, ends, strides):
infer_flags[i] = -1
infer_flags[i] = -1
else:
else:
attrs['ends'].append(dim)
attrs['ends'].append(dim)
else:
attrs['ends'] = ends
# strides
# strides
if isinstance(strides, Variable):
if isinstance(strides, Variable):
strides.stop_gradient = True
strides.stop_gradient = True
inputs['StridesTensor'] = strides
inputs['StridesTensor'] = strides
elif isinstance(strides, (list, tuple)):
elif isinstance(strides, (list, tuple)):
attrs['strides'] = []
attrs['strides'] = []
if not contain_var(strides):
if utils._contain_var(strides):
attrs['strides'] = strides
else:
inputs['StridesTensorList'] = get_new_list_tensor(strides)
inputs['StridesTensorList'] = get_new_list_tensor(strides)
for i, dim in enumerate(strides):
for i, dim in enumerate(strides):
if isinstance(dim, Variable):
if isinstance(dim, Variable):
...
@@ -10212,6 +10169,8 @@ def strided_slice(input, axes, starts, ends, strides):
...
@@ -10212,6 +10169,8 @@ def strided_slice(input, axes, starts, ends, strides):
infer_flags[i] = -1
infer_flags[i] = -1
else:
else:
attrs['strides'].append(dim)
attrs['strides'].append(dim)
else:
attrs['strides'] = strides
attrs['infer_flags'] = infer_flags
attrs['infer_flags'] = infer_flags
out = helper.create_variable_for_type_inference(
out = helper.create_variable_for_type_inference(
dtype=helper.input_dtype('input'))
dtype=helper.input_dtype('input'))
...
@@ -13894,12 +13853,6 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
...
@@ -13894,12 +13853,6 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
dtype = convert_np_dtype_to_dtype_(dtype)
dtype = convert_np_dtype_to_dtype_(dtype)
check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
def contain_var(one_list):
for ele in one_list:
if isinstance(ele, Variable):
return True
return False
def get_new_shape_tensor(list_shape):
def get_new_shape_tensor(list_shape):
new_shape_tensor = []
new_shape_tensor = []
for dim in list_shape:
for dim in list_shape:
...
@@ -13939,7 +13892,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
...
@@ -13939,7 +13892,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
assert len(shape) > 0, (
assert len(shape) > 0, (
"The size of argument(shape) can't be zero.")
"The size of argument(shape) can't be zero.")
attrs["shape"] = get_attr_shape(shape)
attrs["shape"] = get_attr_shape(shape)
if contain_var(shape):
if
utils._
contain_var(shape):
inputs['ShapeTensorList'] = get_new_shape_tensor(shape)
inputs['ShapeTensorList'] = get_new_shape_tensor(shape)
out = helper.create_variable_for_type_inference(dtype)
out = helper.create_variable_for_type_inference(dtype)
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
d4bdbf8c
...
@@ -22,6 +22,7 @@ from ..initializer import Constant, force_init_on_cpu
...
@@ -22,6 +22,7 @@ from ..initializer import Constant, force_init_on_cpu
from
..core
import
VarDesc
from
..core
import
VarDesc
from
..
import
core
from
..
import
core
from
.layer_function_generator
import
templatedoc
from
.layer_function_generator
import
templatedoc
from
.
import
utils
from
..data_feeder
import
check_type_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
from
..data_feeder
import
check_type_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
import
numpy
import
numpy
import
warnings
import
warnings
...
@@ -552,13 +553,6 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
...
@@ -552,13 +553,6 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
"""
"""
def
_contain_var
(
one_list
):
for
ele
in
one_list
:
if
isinstance
(
ele
,
Variable
):
return
True
return
False
attrs
=
{
attrs
=
{
'value'
:
float
(
value
),
'value'
:
float
(
value
),
'force_cpu'
:
force_cpu
or
force_init_on_cpu
()
'force_cpu'
:
force_cpu
or
force_init_on_cpu
()
...
@@ -571,8 +565,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
...
@@ -571,8 +565,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
if
in_dygraph_mode
():
if
in_dygraph_mode
():
if
isinstance
(
shape
,
(
list
,
tuple
)):
if
isinstance
(
shape
,
(
list
,
tuple
)):
contain_var
=
_contain_var
(
shape
)
if
utils
.
_contain_var
(
shape
):
if
contain_var
:
raise
TypeError
(
raise
TypeError
(
"The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
"The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
"received %s, which contains Variable."
%
type
(
shape
))
"received %s, which contains Variable."
%
type
(
shape
))
...
@@ -644,7 +637,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
...
@@ -644,7 +637,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
"The size of 'shape' in fill_constant can't be zero, "
"The size of 'shape' in fill_constant can't be zero, "
"but received %s."
%
len
(
shape
))
"but received %s."
%
len
(
shape
))
attrs
[
"shape"
]
=
_get_attr_shape
(
shape
)
attrs
[
"shape"
]
=
_get_attr_shape
(
shape
)
if
_contain_var
(
shape
):
if
utils
.
_contain_var
(
shape
):
inputs
[
'ShapeTensorList'
]
=
_get_shape_tensor
(
shape
)
inputs
[
'ShapeTensorList'
]
=
_get_shape_tensor
(
shape
)
if
out
is
None
:
if
out
is
None
:
...
...
python/paddle/fluid/layers/utils.py
浏览文件 @
d4bdbf8c
...
@@ -16,6 +16,7 @@ from __future__ import print_function
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
collections
import
collections
import
six
import
six
import
numpy
as
np
import
numpy
as
np
from
..framework
import
Variable
def
convert_to_list
(
value
,
n
,
name
,
dtype
=
np
.
int
):
def
convert_to_list
(
value
,
n
,
name
,
dtype
=
np
.
int
):
...
@@ -244,3 +245,13 @@ def _is_symmetric_padding(padding, data_dim):
...
@@ -244,3 +245,13 @@ def _is_symmetric_padding(padding, data_dim):
if
padding
[
i
*
2
]
!=
padding
[
i
*
2
+
1
]:
if
padding
[
i
*
2
]
!=
padding
[
i
*
2
+
1
]:
is_sys
=
False
is_sys
=
False
return
is_sys
return
is_sys
def
_contain_var
(
list_or_tuple
):
"""
Check whether list or tuple contains variable.
"""
for
item
in
list_or_tuple
:
if
isinstance
(
item
,
Variable
):
return
True
return
False
python/paddle/fluid/optimizer.py
浏览文件 @
d4bdbf8c
...
@@ -134,11 +134,11 @@ class Optimizer(object):
...
@@ -134,11 +134,11 @@ class Optimizer(object):
# global step if use lr decay
# global step if use lr decay
if
isinstance
(
self
.
_learning_rate
,
LearningRateDecay
):
if
isinstance
(
self
.
_learning_rate
,
LearningRateDecay
):
var_tmp
=
None
var_tmp
=
None
if
not
framework
.
in_dygraph_mode
():
if
framework
.
in_dygraph_mode
():
var_temp
=
Variable
(
None
,
name
=
'global_step'
,
dtype
=
'int32'
)
else
:
var_temp
=
framework
.
_varbase_creator
(
var_temp
=
framework
.
_varbase_creator
(
None
,
name
=
'global_step'
,
dtype
=
'int32'
)
None
,
name
=
'global_step'
,
dtype
=
'int32'
)
else
:
var_temp
=
Variable
(
None
,
name
=
'global_step'
,
dtype
=
'int32'
)
tensor
.
fill_constant
(
tensor
.
fill_constant
(
[
1
],
"int32"
,
self
.
_learning_rate
.
step_num
,
out
=
var_temp
)
[
1
],
"int32"
,
self
.
_learning_rate
.
step_num
,
out
=
var_temp
)
...
@@ -546,10 +546,10 @@ class Optimizer(object):
...
@@ -546,10 +546,10 @@ class Optimizer(object):
See examples in ``apply_gradients``.
See examples in ``apply_gradients``.
"""
"""
act_no_grad_set
=
None
act_no_grad_set
=
None
if
not
framework
.
in_dygraph_mode
():
if
framework
.
in_dygraph_mode
():
act_no_grad_set
=
self
.
_get_no_grad_set
(
loss
,
no_grad_set
)
else
:
pass
pass
else
:
act_no_grad_set
=
self
.
_get_no_grad_set
(
loss
,
no_grad_set
)
self
.
_dtype
=
loss
.
dtype
self
.
_dtype
=
loss
.
dtype
if
framework
.
in_dygraph_mode
():
if
framework
.
in_dygraph_mode
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录