diff --git a/paddle/fluid/inference/tests/api/tester_helper.h b/paddle/fluid/inference/tests/api/tester_helper.h index b0c8f395ce05fbfceaec3d8b69367292eca714e4..ef7e2198c5db4e723406fe1a31d2c3dde5121931 100644 --- a/paddle/fluid/inference/tests/api/tester_helper.h +++ b/paddle/fluid/inference/tests/api/tester_helper.h @@ -132,7 +132,8 @@ std::unordered_map GetFuseStatis(PaddlePredictor *predictor, void SetFakeImageInput(std::vector> *inputs, const std::string &dirname, bool is_combined = true, std::string model_filename = "model", - std::string params_filename = "params") { + std::string params_filename = "params", + const std::vector *feed_names = nullptr) { // Set fake_image_data PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data."); std::vector> feed_target_shapes = GetFeedTargetShapes( @@ -146,26 +147,32 @@ void SetFakeImageInput(std::vector> *inputs, os << "}\n"; } LOG(INFO) << os.str(); - - int dim1 = feed_target_shapes[0][1]; - int dim2 = feed_target_shapes[0][2]; - int dim3 = feed_target_shapes[0][3]; - - PaddleTensor input; - std::vector shape({FLAGS_batch_size, dim1, dim2, dim3}); - input.shape = shape; - input.dtype = PaddleDType::FLOAT32; - - // fill input data, for profile easily, do not use random data here. - size_t size = FLAGS_batch_size * dim1 * dim2 * dim3; - input.data.Resize(size * sizeof(float)); - float *input_data = static_cast(input.data.data()); - for (size_t i = 0; i < size; i++) { - *(input_data + i) = static_cast(i) / size; + if (feed_names) { + PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size()); + } + std::vector input_slots(feed_target_shapes.size()); + for (size_t i = 0; i < feed_target_shapes.size(); ++i) { + const auto &feed_shape = feed_target_shapes[i]; + auto &input = input_slots[i]; + std::vector shape({FLAGS_batch_size}); + for (size_t s = 1; s < feed_shape.size(); ++s) { + shape.push_back(static_cast(feed_shape[s])); + } + if (feed_names) { + input.name = (*feed_names)[i]; + } + input.shape = shape; + input.dtype = PaddleDType::FLOAT32; + size_t len = std::accumulate(shape.begin(), shape.end(), 1, + [](int a, int b) { return a * b; }); + input.data.Resize(len * sizeof(float)); + input.lod.assign({{0, static_cast(FLAGS_batch_size)}}); + float *input_data = static_cast(input.data.data()); + // fill input data, for profile easily, do not use random data here. + for (size_t j = 0; j < len; ++j) { + *(input_data + j) = static_cast(j) / len; + } } - - std::vector input_slots; - input_slots.assign({input}); (*inputs).emplace_back(input_slots); }