未验证 提交 d3ec3fe3 编写于 作者: W Weilong Wu 提交者: GitHub

[XPU] migrate bce_loss to phi;test=kunlun (#45459)

上级 178b1b14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class XPUBCELossKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* labels = context.Input<Tensor>("Label");
auto* out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
auto x_numel = x->numel();
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::bce_loss<T>(dev_ctx.x_context(),
x->data<T>(),
labels->data<T>(),
out->data<T>(),
x_numel);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "bce_loss");
}
};
template <typename DeviceContext, typename T>
class XPUBCELossGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* labels = context.Input<Tensor>("Label");
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
dx->mutable_data<T>(context.GetPlace());
auto x_numel = x->numel();
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::bce_loss_grad<T>(dev_ctx.x_context(),
x->data<T>(),
labels->data<T>(),
dout->data<T>(),
dx->data<T>(),
x_numel);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "bce_loss_grad");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
bce_loss, ops::XPUBCELossKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
bce_loss_grad,
ops::XPUBCELossGradKernel<paddle::platform::XPUDeviceContext, float>);
#endif // PADDLE_WITH_XPU
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/bce_loss_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void BCELossGradKernel(const Context& dev_ctx,
const DenseTensor& input,
const DenseTensor& label,
const DenseTensor& out_grad,
DenseTensor* input_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
dev_ctx.template Alloc<T>(input_grad);
auto x_numel = input.numel();
int r = xpu::bce_loss_grad<XPUType>(
dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(input.data<T>()),
reinterpret_cast<const XPUType*>(label.data<T>()),
reinterpret_cast<const XPUType*>(out_grad.data<T>()),
reinterpret_cast<XPUType*>(input_grad->data<T>()),
x_numel);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "bce_loss_grad");
}
} // namespace phi
PD_REGISTER_KERNEL(
bce_loss_grad, XPU, ALL_LAYOUT, phi::BCELossGradKernel, float) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/bce_loss_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void BCELossKernel(const Context& dev_ctx,
const DenseTensor& input,
const DenseTensor& label,
DenseTensor* out) {
using XPUType = typename XPUTypeTrait<T>::Type;
dev_ctx.template Alloc<T>(out);
auto x_numel = input.numel();
int r =
xpu::bce_loss<XPUType>(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(input.data<T>()),
reinterpret_cast<const XPUType*>(label.data<T>()),
reinterpret_cast<XPUType*>(out->data<T>()),
x_numel);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "bce_loss");
}
} // namespace phi
PD_REGISTER_KERNEL(bce_loss, XPU, ALL_LAYOUT, phi::BCELossKernel, float) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册