Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d35417e7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d35417e7
编写于
9月 22, 2017
作者:
Q
qingqing01
提交者:
GitHub
9月 22, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4216 from qingqing01/attr_bool
Add bool type for attribute and use it in dropout_op.
上级
6117af64
efb56db7
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
65 addition
and
50 deletion
+65
-50
paddle/framework/attribute.cc
paddle/framework/attribute.cc
+18
-0
paddle/framework/attribute.h
paddle/framework/attribute.h
+3
-2
paddle/framework/framework.proto
paddle/framework/framework.proto
+6
-2
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+10
-15
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+2
-2
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+2
-2
paddle/operators/dropout_op.cc
paddle/operators/dropout_op.cc
+5
-12
paddle/operators/dropout_op.cu
paddle/operators/dropout_op.cu
+1
-1
paddle/operators/dropout_op.h
paddle/operators/dropout_op.h
+3
-3
python/paddle/v2/framework/op.py
python/paddle/v2/framework/op.py
+4
-0
python/paddle/v2/framework/tests/test_cos_sim_op.py
python/paddle/v2/framework/tests/test_cos_sim_op.py
+3
-3
python/paddle/v2/framework/tests/test_cross_entropy_op.py
python/paddle/v2/framework/tests/test_cross_entropy_op.py
+3
-3
python/paddle/v2/framework/tests/test_dropout_op.py
python/paddle/v2/framework/tests/test_dropout_op.py
+5
-5
未找到文件。
paddle/framework/attribute.cc
浏览文件 @
d35417e7
...
...
@@ -28,6 +28,10 @@ ProgramDesc& GetProgramDesc() {
return
*
g_program_desc
;
}
template
<
>
AttrType
AttrTypeID
<
bool
>
()
{
return
BOOLEAN
;
}
template
<
>
AttrType
AttrTypeID
<
int
>
()
{
return
INT
;
...
...
@@ -41,6 +45,10 @@ AttrType AttrTypeID<std::string>() {
return
STRING
;
}
template
<
>
AttrType
AttrTypeID
<
std
::
vector
<
bool
>>
()
{
return
BOOLEANS
;
}
template
<
>
AttrType
AttrTypeID
<
std
::
vector
<
int
>>
()
{
return
INTS
;
}
...
...
@@ -63,6 +71,9 @@ AttrType AttrTypeID<BlockDesc>() {
Attribute
GetAttrValue
(
const
OpDesc
::
Attr
&
attr_desc
)
{
switch
(
attr_desc
.
type
())
{
case
framework
::
AttrType
::
BOOLEAN
:
{
return
attr_desc
.
b
();
}
case
framework
::
AttrType
::
INT
:
{
return
attr_desc
.
i
();
}
...
...
@@ -72,6 +83,13 @@ Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
case
framework
::
AttrType
::
STRING
:
{
return
attr_desc
.
s
();
}
case
framework
::
AttrType
::
BOOLEANS
:
{
std
::
vector
<
bool
>
val
(
attr_desc
.
bools_size
());
for
(
int
i
=
0
;
i
<
attr_desc
.
bools_size
();
++
i
)
{
val
[
i
]
=
attr_desc
.
bools
(
i
);
}
return
val
;
}
case
framework
::
AttrType
::
INTS
:
{
std
::
vector
<
int
>
val
(
attr_desc
.
ints_size
());
for
(
int
i
=
0
;
i
<
attr_desc
.
ints_size
();
++
i
)
{
...
...
paddle/framework/attribute.h
浏览文件 @
d35417e7
...
...
@@ -27,8 +27,9 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
typedef
boost
::
variant
<
boost
::
blank
,
int
,
float
,
std
::
string
,
std
::
vector
<
int
>
,
std
::
vector
<
float
>
,
std
::
vector
<
std
::
string
>
,
typedef
boost
::
variant
<
boost
::
blank
,
bool
,
int
,
float
,
std
::
string
,
std
::
vector
<
bool
>
,
std
::
vector
<
int
>
,
std
::
vector
<
float
>
,
std
::
vector
<
std
::
string
>
,
std
::
vector
<
std
::
pair
<
int
,
int
>>
,
BlockDesc
*>
Attribute
;
...
...
paddle/framework/framework.proto
浏览文件 @
d35417e7
...
...
@@ -23,7 +23,9 @@ enum AttrType {
FLOATS
=
4
;
STRINGS
=
5
;
INT_PAIRS
=
6
;
BLOCK
=
7
;
BOOLEAN
=
7
;
BOOLEANS
=
8
;
BLOCK
=
9
;
}
message
IntPair
{
...
...
@@ -45,7 +47,9 @@ message OpDesc {
repeated
float
floats
=
7
;
repeated
string
strings
=
8
;
repeated
IntPair
int_pairs
=
9
;
optional
int32
block_idx
=
10
;
optional
bool
b
=
10
;
repeated
bool
bools
=
11
;
optional
int32
block_idx
=
12
;
};
message
Var
{
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
d35417e7
...
...
@@ -33,19 +33,16 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
x
->
dims
().
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
2
,
"Input(Label)'s rank must be 2."
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
0
||
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal."
);
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
label
->
dims
()[
1
],
"If Attr(soft_label) ==
1
, The 2nd dimension of "
"If Attr(soft_label) ==
true
, The 2nd dimension of "
"Input(X) and Input(Label) must be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label
->
dims
()[
1
],
1
,
"If Attr(soft_label) ==
0
, The 2nd dimension of "
"If Attr(soft_label) ==
false
, The 2nd dimension of "
"Input(Label) must be 1."
);
}
...
...
@@ -73,9 +70,6 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
dy
->
dims
().
size
(),
2
,
"Input(Y@Grad)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
2
,
"Input(Label)'s rank must be 2."
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
0
||
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
);
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
0
],
label
->
dims
()[
0
],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal."
);
...
...
@@ -84,13 +78,13 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
"be equal."
);
PADDLE_ENFORCE_EQ
(
dy
->
dims
()[
1
],
1
,
"The 2nd dimension of Input(Y@Grad) must be 1."
);
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
PADDLE_ENFORCE_EQ
(
x
->
dims
()[
1
],
label
->
dims
()[
1
],
"If Attr(soft_label) ==
1
, The 2nd dimension of "
"If Attr(soft_label) ==
true
, The 2nd dimension of "
"Input(X) and Input(Label) must be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label
->
dims
()[
1
],
1
,
"If Attr(soft_label) ==
0
, The 2nd dimension of "
"If Attr(soft_label) ==
false
, The 2nd dimension of "
"Input(Label) must be 1."
);
}
...
...
@@ -107,7 +101,8 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The first input of CrossEntropyOp"
);
AddInput
(
"Label"
,
"The second input of CrossEntropyOp"
);
AddOutput
(
"Y"
,
"The output of CrossEntropyOp"
);
AddAttr
<
int
>
(
"soft_label"
,
"Is soft label. Default zero."
).
SetDefault
(
0
);
AddAttr
<
bool
>
(
"soft_label"
,
"Is soft label. Default zero."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
CrossEntropy Operator.
...
...
@@ -115,12 +110,12 @@ CrossEntropy Operator.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
soft_label =
0
, Label[i, 0] indicates the class index for sample i:
soft_label =
False
, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
2) Soft-label cross-entropy:
soft_label =
1
, Label[i, j] indicates the soft label of class j
soft_label =
True
, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
...
...
paddle/operators/cross_entropy_op.cu
浏览文件 @
d35417e7
...
...
@@ -102,7 +102,7 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel {
int
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
SoftCrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
y_data
,
x_data
,
label_data
,
n
,
d
);
...
...
@@ -137,7 +137,7 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
grid
=
(
n
+
block
-
1
)
/
block
;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
auto
*
label_data
=
label
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
>>>
(
dx_data
,
dy_data
,
x_data
,
label_data
,
n
,
d
);
...
...
paddle/operators/cross_entropy_op.h
浏览文件 @
d35417e7
...
...
@@ -51,7 +51,7 @@ class CrossEntropyOpKernel : public framework::OpKernel {
int
batch_size
=
x
->
dims
()[
0
];
int
class_num
=
x
->
dims
()[
1
];
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
@@ -92,7 +92,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel {
int
class_num
=
x
->
dims
()[
1
];
// TODO(qingqing): make zero setting an common function.
if
(
ctx
.
Attr
<
int
>
(
"soft_label"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
)
)
{
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
int
index
=
0
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
...
...
paddle/operators/dropout_op.cc
浏览文件 @
d35417e7
...
...
@@ -28,13 +28,10 @@ class DropoutOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_GE
(
ctx
.
Attr
<
float
>
(
"dropout_prob"
),
0
);
PADDLE_ENFORCE_LE
(
ctx
.
Attr
<
float
>
(
"dropout_prob"
),
1
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"is_training"
)
==
0
||
ctx
.
Attr
<
int
>
(
"is_training"
)
==
1
);
auto
dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
dims
);
if
(
ctx
.
Attr
<
int
>
(
"is_training"
)
==
1
)
{
if
(
ctx
.
Attr
<
bool
>
(
"is_training"
)
)
{
ctx
.
Output
<
Tensor
>
(
"Mask"
)
->
Resize
(
dims
);
}
ctx
.
ShareLoD
(
"X"
,
/*->*/
"Out"
);
...
...
@@ -49,8 +46,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddAttr
<
AttrType
>
(
"dropout_prob"
,
"Probability of setting units to zero."
)
.
SetDefault
(
.5
f
);
// TODO(xinghai-sun): use bool for is_training after bool is supported.
AddAttr
<
int
>
(
"is_training"
,
"Whether in training phase."
).
SetDefault
(
1
);
AddAttr
<
bool
>
(
"is_training"
,
"Whether in training phase."
).
SetDefault
(
true
);
AddAttr
<
int
>
(
"seed"
,
"Dropout random seed."
).
SetDefault
(
0
);
AddInput
(
"X"
,
"The input of dropout op."
);
AddOutput
(
"Out"
,
"The output of dropout op."
);
...
...
@@ -59,7 +55,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Dropout Operator.
"Dropout"
refers to randomly dropping out units in a nerual network. It is a
'Dropout'
refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
...
...
@@ -75,7 +71,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
_EQ
(
ctx
.
Attr
<
int
>
(
"is_training"
),
1
,
PADDLE_ENFORCE
(
ctx
.
Attr
<
bool
>
(
"is_training"
)
,
"GradOp is only callable when is_training is true"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
...
...
@@ -85,9 +81,6 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GE
(
ctx
.
Attr
<
AttrType
>
(
"dropout_prob"
),
0
);
PADDLE_ENFORCE_LE
(
ctx
.
Attr
<
AttrType
>
(
"dropout_prob"
),
1
);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE
(
ctx
.
Attr
<
int
>
(
"is_training"
)
==
0
||
ctx
.
Attr
<
int
>
(
"is_training"
)
==
1
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
,
out_dims
,
...
...
paddle/operators/dropout_op.cu
浏览文件 @
d35417e7
...
...
@@ -59,7 +59,7 @@ class GPUDropoutKernel : public framework::OpKernel {
auto
Y
=
EigenMatrix
<
T
>::
Reshape
(
*
y
,
1
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
if
(
context
.
Attr
<
int
>
(
"is_training"
)
==
1
)
{
if
(
context
.
Attr
<
bool
>
(
"is_training"
)
)
{
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
size
=
framework
::
product
(
mask
->
dims
());
...
...
paddle/operators/dropout_op.h
浏览文件 @
d35417e7
...
...
@@ -35,7 +35,7 @@ class CPUDropoutKernel : public framework::OpKernel {
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
AttrType
dropout_prob
=
context
.
Attr
<
AttrType
>
(
"dropout_prob"
);
if
(
context
.
Attr
<
int
>
(
"is_training"
)
==
1
)
{
if
(
context
.
Attr
<
bool
>
(
"is_training"
)
)
{
auto
*
mask
=
context
.
Output
<
Tensor
>
(
"Mask"
);
auto
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
seed
=
context
.
Attr
<
int
>
(
"seed"
);
...
...
@@ -65,7 +65,7 @@ template <typename Place, typename T>
class
DropoutGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
_EQ
(
context
.
Attr
<
int
>
(
"is_training"
),
1
,
PADDLE_ENFORCE
(
context
.
Attr
<
bool
>
(
"is_training"
)
,
"GradOp is only callable when is_training is true"
);
auto
*
grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
...
...
python/paddle/v2/framework/op.py
浏览文件 @
d35417e7
...
...
@@ -89,12 +89,16 @@ class OpDescCreationMethod(object):
new_attr
.
f
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
STRING
:
new_attr
.
s
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
BOOLEAN
:
new_attr
.
b
=
user_defined_attr
elif
attr
.
type
==
framework_pb2
.
INTS
:
new_attr
.
ints
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
framework_pb2
.
FLOATS
:
new_attr
.
floats
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
framework_pb2
.
STRINGS
:
new_attr
.
strings
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
framework_pb2
.
BOOLEANS
:
new_attr
.
bools
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
framework_pb2
.
INT_PAIRS
:
for
p
in
user_defined_attr
:
pair
=
new_attr
.
int_pairs
.
add
()
...
...
python/paddle/v2/framework/tests/test_cos_sim_op.py
浏览文件 @
d35417e7
...
...
@@ -24,15 +24,15 @@ class TestCosSimOp(OpTest):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.0
5
)
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.0
6
)
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.0
5
,
no_grad_set
=
set
(
"X"
))
[
'Y'
],
'Out'
,
max_relative_error
=
0.0
6
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.0
5
,
no_grad_set
=
set
(
'Y'
))
[
'X'
],
'Out'
,
max_relative_error
=
0.0
6
,
no_grad_set
=
set
(
'Y'
))
class
TestCosSimOp2
(
TestCosSimOp
):
...
...
python/paddle/v2/framework/tests/test_cross_entropy_op.py
浏览文件 @
d35417e7
...
...
@@ -19,7 +19,7 @@ class TestCrossEntropyOp1(OpTest):
dtype
=
"float32"
)
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
0
}
self
.
attrs
=
{
'soft_label'
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -45,7 +45,7 @@ class TestCrossEntropyOp2(OpTest):
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
self
.
outputs
=
{
'Y'
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
1
}
self
.
attrs
=
{
'soft_label'
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -76,7 +76,7 @@ class TestCrossEntropyOp3(OpTest):
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
,
'Label'
:
label
}
self
.
outputs
=
{
'Y'
:
cross_entropy
}
self
.
attrs
=
{
'soft_label'
:
1
}
self
.
attrs
=
{
'soft_label'
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
python/paddle/v2/framework/tests/test_dropout_op.py
浏览文件 @
d35417e7
...
...
@@ -7,7 +7,7 @@ class TestDropoutOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_training'
:
1
}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_training'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
))}
def
test_check_output
(
self
):
...
...
@@ -21,7 +21,7 @@ class TestDropoutOp2(TestDropoutOp):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
1.0
,
'is_training'
:
1
}
self
.
attrs
=
{
'dropout_prob'
:
1.0
,
'is_training'
:
True
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
32
,
64
)),
'Mask'
:
np
.
zeros
((
32
,
64
))}
...
...
@@ -29,7 +29,7 @@ class TestDropoutOp3(TestDropoutOp):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
2
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_training'
:
1
}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_training'
:
True
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
,
2
))}
...
...
@@ -37,7 +37,7 @@ class TestDropoutOp4(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.35
,
'is_training'
:
0
}
self
.
attrs
=
{
'dropout_prob'
:
0.35
,
'is_training'
:
False
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
attrs
[
'dropout_prob'
]}
def
test_check_output
(
self
):
...
...
@@ -48,7 +48,7 @@ class TestDropoutOp5(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
3
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dropout_prob'
:
0.75
,
'is_training'
:
0
}
self
.
attrs
=
{
'dropout_prob'
:
0.75
,
'is_training'
:
False
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
attrs
[
'dropout_prob'
]}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录