提交 d2c6d250 编写于 作者: T Travis CI

Deploy to GitHub Pages: 45cca9fc

上级 e6b0d744
## Background
PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime.
PaddlePaddle use proto message to describe compile time graph for
1. Computation graph should be able to be saved to a file.
1. In distributed training, the graph will be serialized and send to multiple workers.
The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below.
| |compile time|runtime|
|---|---|---|
|Data|VarDesc(proto)|Variable(cpp)|
|Operation|OpDesc(proto)|Operator(cpp)|
## Definition of VarDesc
A VarDesc should have a name and value, in PaddlePaddle, the value will always be a tensor. Since we use LoDTensor most of the time. We add a LoDTesnorDesc to represent it.
```proto
message VarDesc {
required string name = 1;
optional LoDTensorDesc lod_tensor = 2;
}
```
## Definition of LodTensorDesc
```proto
enum DataType {
BOOL = 0;
INT16 = 1;
INT32 = 2;
INT64 = 3;
FP16 = 4;
FP32 = 5;
FP64 = 6;
}
message LoDTensorDesc {
required DataType data_type = 1;
repeated int32 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
optional int32 lod_level = 3 [default=0];
}
```
## Definition of Variable in Python
In Python API, layer will take Variable as Input, and return Variable as Output. There should be a class `Variable` in python to help create and manage Variable.
```python
image = Variable(dims=[-1, 640, 480])
# fc1 and fc2 are both Variable
fc1 = layer.fc(input=image, output_size=10)
fc2 = layer.fc(input=fc1, output_size=20)
```
### what should class `Variable` Have
1. `name`.a name of string type is used to mark the value of the Variable.
1. `initializer`. Since our Tensor does not have value. we will always use some Operator to fullfill it when run. So we should have a initialize method to help add the init operator.
1. `operator`. Variable should record which operator produce itself. The reaon is:
- we use pd.eval(targets=[var1, var2]) to run the related ops to get the value of var1 and var2. var.op is used to trace the dependency of the current variable.
In PaddlePaddle, we use Block to describe Computation Graph, so in the code we will use Block but not Graph.
```python
import VarDesc
import LoDTensorDesc
import framework
def AddInitialOperator(variable, initializer):
# add an initialize Operator to block to init this Variable
class Variable(object):
def __init__(self, name, dims, type, initializer):
self._block = get_default_block()
self._name = name
self.op = None
tensor_desc = LoDTensorDesc(data_type=type, dims=dims)
_var_desc = VarDesc(name=name, lod_tensor=tensor_desc)
self._var = framework.CreateVar(_var_desc)
self._block.add_var(self)
# add initial op according to initializer
if initializer is not None:
AddInitialOperator(self, initializer)
def dims(self):
return self._var.dims()
def data_type(self):
return self._var.data_type()
def to_proto(self):
pass
```
Then we can use this Variable to create a fc layer in Python.
```python
import paddle as pd
def flatten_size(X, num_flatten_dims):
prod = 1 # of last num_flatten_dims
for i in xrange(num_flatten_dims):
prod = prod * X.dims[-i-1]
return prod
def layer.fc(X, output_size, num_flatten_dims):
W = Variable(pd.random_uniform(), type=FP32, dims=[flatten_size(X, num_flatten_dims), output_size])
b = Variable(pd.random_uniform(), type=FP32, dims=[output_size])
out = Variable(type=FP32)
y = operator.fc(X, W, b, output=out) # fc will put fc op input into out
pd.InferShape(y)
return out
x = Variable(dims=[-1, 640, 480])
y = layer.fc(x, output_size=100)
z = layer.fc(y, output_size=200)
paddle.eval(targets=[z], ...)
print(z)
```
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Background &mdash; PaddlePaddle documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="Index"
href="../genindex.html"/>
<link rel="search" title="Search" href="../search.html"/>
<link rel="top" title="PaddlePaddle documentation" href="../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Background</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="background">
<span id="background"></span><h1>Background<a class="headerlink" href="#background" title="Permalink to this headline"></a></h1>
<p>PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime.</p>
<p>PaddlePaddle use proto message to describe compile time graph for</p>
<ol class="simple">
<li>Computation graph should be able to be saved to a file.</li>
<li>In distributed training, the graph will be serialized and send to multiple workers.</li>
</ol>
<p>The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below.</p>
<p>| |compile time|runtime|
|&#8212;|&#8212;|&#8212;|
|Data|VarDesc(proto)|Variable(cpp)|
|Operation|OpDesc(proto)|Operator(cpp)|</p>
</div>
<div class="section" id="definition-of-vardesc">
<span id="definition-of-vardesc"></span><h1>Definition of VarDesc<a class="headerlink" href="#definition-of-vardesc" title="Permalink to this headline"></a></h1>
<p>A VarDesc should have a name and value, in PaddlePaddle, the value will always be a tensor. Since we use LoDTensor most of the time. We add a LoDTesnorDesc to represent it.</p>
<div class="highlight-proto"><div class="highlight"><pre><span></span><span class="kd">message</span> <span class="nc">VarDesc</span> <span class="p">{</span>
<span class="k">required</span> <span class="kt">string</span> <span class="na">name</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
<span class="k">optional</span> <span class="n">LoDTensorDesc</span> <span class="na">lod_tensor</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="definition-of-lodtensordesc">
<span id="definition-of-lodtensordesc"></span><h1>Definition of LodTensorDesc<a class="headerlink" href="#definition-of-lodtensordesc" title="Permalink to this headline"></a></h1>
<div class="highlight-proto"><div class="highlight"><pre><span></span><span class="kd">enum</span> <span class="n">DataType</span> <span class="p">{</span>
<span class="na">BOOL</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="na">INT16</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
<span class="na">INT32</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
<span class="na">INT64</span> <span class="o">=</span> <span class="mi">3</span><span class="p">;</span>
<span class="na">FP16</span> <span class="o">=</span> <span class="mi">4</span><span class="p">;</span>
<span class="na">FP32</span> <span class="o">=</span> <span class="mi">5</span><span class="p">;</span>
<span class="na">FP64</span> <span class="o">=</span> <span class="mi">6</span><span class="p">;</span>
<span class="p">}</span>
<span class="kd">message</span> <span class="nc">LoDTensorDesc</span> <span class="p">{</span>
<span class="k">required</span> <span class="n">DataType</span> <span class="na">data_type</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
<span class="k">repeated</span> <span class="kt">int32</span> <span class="na">dims</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span> <span class="c1">// [UNK, 640, 480] is saved as [-1, 640, 480]</span>
<span class="k">optional</span> <span class="kt">int32</span> <span class="na">lod_level</span> <span class="o">=</span> <span class="mi">3</span> <span class="p">[</span><span class="k">default</span><span class="o">=</span><span class="mi">0</span><span class="p">];</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="definition-of-variable-in-python">
<span id="definition-of-variable-in-python"></span><h1>Definition of Variable in Python<a class="headerlink" href="#definition-of-variable-in-python" title="Permalink to this headline"></a></h1>
<p>In Python API, layer will take Variable as Input, and return Variable as Output. There should be a class <code class="docutils literal"><span class="pre">Variable</span></code> in python to help create and manage Variable.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">image</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">dims</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">640</span><span class="p">,</span> <span class="mi">480</span><span class="p">])</span>
<span class="c1"># fc1 and fc2 are both Variable</span>
<span class="n">fc1</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">image</span><span class="p">,</span> <span class="n">output_size</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">fc2</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">fc1</span><span class="p">,</span> <span class="n">output_size</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
</pre></div>
</div>
<div class="section" id="what-should-class-variable-have">
<span id="what-should-class-variable-have"></span><h2>what should class <code class="docutils literal"><span class="pre">Variable</span></code> Have<a class="headerlink" href="#what-should-class-variable-have" title="Permalink to this headline"></a></h2>
<ol class="simple">
<li><code class="docutils literal"><span class="pre">name</span></code>.a name of string type is used to mark the value of the Variable.</li>
<li><code class="docutils literal"><span class="pre">initializer</span></code>. Since our Tensor does not have value. we will always use some Operator to fullfill it when run. So we should have a initialize method to help add the init operator.</li>
<li><code class="docutils literal"><span class="pre">operator</span></code>. Variable should record which operator produce itself. The reaon is:</li>
</ol>
<ul class="simple">
<li>we use pd.eval(targets=[var1, var2]) to run the related ops to get the value of var1 and var2. var.op is used to trace the dependency of the current variable.</li>
</ul>
<p>In PaddlePaddle, we use Block to describe Computation Graph, so in the code we will use Block but not Graph.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">VarDesc</span>
<span class="kn">import</span> <span class="nn">LoDTensorDesc</span>
<span class="kn">import</span> <span class="nn">framework</span>
<span class="k">def</span> <span class="nf">AddInitialOperator</span><span class="p">(</span><span class="n">variable</span><span class="p">,</span> <span class="n">initializer</span><span class="p">):</span>
<span class="c1"># add an initialize Operator to block to init this Variable</span>
<span class="k">class</span> <span class="nc">Variable</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">dims</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">initializer</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_block</span> <span class="o">=</span> <span class="n">get_default_block</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_name</span> <span class="o">=</span> <span class="n">name</span>
<span class="bp">self</span><span class="o">.</span><span class="n">op</span> <span class="o">=</span> <span class="bp">None</span>
<span class="n">tensor_desc</span> <span class="o">=</span> <span class="n">LoDTensorDesc</span><span class="p">(</span><span class="n">data_type</span><span class="o">=</span><span class="nb">type</span><span class="p">,</span> <span class="n">dims</span><span class="o">=</span><span class="n">dims</span><span class="p">)</span>
<span class="n">_var_desc</span> <span class="o">=</span> <span class="n">VarDesc</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span> <span class="n">lod_tensor</span><span class="o">=</span><span class="n">tensor_desc</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_var</span> <span class="o">=</span> <span class="n">framework</span><span class="o">.</span><span class="n">CreateVar</span><span class="p">(</span><span class="n">_var_desc</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_block</span><span class="o">.</span><span class="n">add_var</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="c1"># add initial op according to initializer</span>
<span class="k">if</span> <span class="n">initializer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">AddInitialOperator</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">initializer</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">dims</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_var</span><span class="o">.</span><span class="n">dims</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">data_type</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_var</span><span class="o">.</span><span class="n">data_type</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">to_proto</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">pass</span>
</pre></div>
</div>
<p>Then we can use this Variable to create a fc layer in Python.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="k">def</span> <span class="nf">flatten_size</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">num_flatten_dims</span><span class="p">):</span>
<span class="n">prod</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># of last num_flatten_dims</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">num_flatten_dims</span><span class="p">):</span>
<span class="n">prod</span> <span class="o">=</span> <span class="n">prod</span> <span class="o">*</span> <span class="n">X</span><span class="o">.</span><span class="n">dims</span><span class="p">[</span><span class="o">-</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="k">return</span> <span class="n">prod</span>
<span class="k">def</span> <span class="nf">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">output_size</span><span class="p">,</span> <span class="n">num_flatten_dims</span><span class="p">):</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">random_uniform</span><span class="p">(),</span> <span class="nb">type</span><span class="o">=</span><span class="n">FP32</span><span class="p">,</span> <span class="n">dims</span><span class="o">=</span><span class="p">[</span><span class="n">flatten_size</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">num_flatten_dims</span><span class="p">),</span> <span class="n">output_size</span><span class="p">])</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">random_uniform</span><span class="p">(),</span> <span class="nb">type</span><span class="o">=</span><span class="n">FP32</span><span class="p">,</span> <span class="n">dims</span><span class="o">=</span><span class="p">[</span><span class="n">output_size</span><span class="p">])</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="nb">type</span><span class="o">=</span><span class="n">FP32</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">operator</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">output</span><span class="o">=</span><span class="n">out</span><span class="p">)</span> <span class="c1"># fc will put fc op input into out</span>
<span class="n">pd</span><span class="o">.</span><span class="n">InferShape</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">dims</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">640</span><span class="p">,</span> <span class="mi">480</span><span class="p">])</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">output_size</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">output_size</span><span class="o">=</span><span class="mi">200</span><span class="p">)</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">targets</span><span class="o">=</span><span class="p">[</span><span class="n">z</span><span class="p">],</span> <span class="o">...</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
## Background
PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime.
PaddlePaddle use proto message to describe compile time graph for
1. Computation graph should be able to be saved to a file.
1. In distributed training, the graph will be serialized and send to multiple workers.
The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below.
| |compile time|runtime|
|---|---|---|
|Data|VarDesc(proto)|Variable(cpp)|
|Operation|OpDesc(proto)|Operator(cpp)|
## Definition of VarDesc
A VarDesc should have a name and value, in PaddlePaddle, the value will always be a tensor. Since we use LoDTensor most of the time. We add a LoDTesnorDesc to represent it.
```proto
message VarDesc {
required string name = 1;
optional LoDTensorDesc lod_tensor = 2;
}
```
## Definition of LodTensorDesc
```proto
enum DataType {
BOOL = 0;
INT16 = 1;
INT32 = 2;
INT64 = 3;
FP16 = 4;
FP32 = 5;
FP64 = 6;
}
message LoDTensorDesc {
required DataType data_type = 1;
repeated int32 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
optional int32 lod_level = 3 [default=0];
}
```
## Definition of Variable in Python
In Python API, layer will take Variable as Input, and return Variable as Output. There should be a class `Variable` in python to help create and manage Variable.
```python
image = Variable(dims=[-1, 640, 480])
# fc1 and fc2 are both Variable
fc1 = layer.fc(input=image, output_size=10)
fc2 = layer.fc(input=fc1, output_size=20)
```
### what should class `Variable` Have
1. `name`.a name of string type is used to mark the value of the Variable.
1. `initializer`. Since our Tensor does not have value. we will always use some Operator to fullfill it when run. So we should have a initialize method to help add the init operator.
1. `operator`. Variable should record which operator produce itself. The reaon is:
- we use pd.eval(targets=[var1, var2]) to run the related ops to get the value of var1 and var2. var.op is used to trace the dependency of the current variable.
In PaddlePaddle, we use Block to describe Computation Graph, so in the code we will use Block but not Graph.
```python
import VarDesc
import LoDTensorDesc
import framework
def AddInitialOperator(variable, initializer):
# add an initialize Operator to block to init this Variable
class Variable(object):
def __init__(self, name, dims, type, initializer):
self._block = get_default_block()
self._name = name
self.op = None
tensor_desc = LoDTensorDesc(data_type=type, dims=dims)
_var_desc = VarDesc(name=name, lod_tensor=tensor_desc)
self._var = framework.CreateVar(_var_desc)
self._block.add_var(self)
# add initial op according to initializer
if initializer is not None:
AddInitialOperator(self, initializer)
def dims(self):
return self._var.dims()
def data_type(self):
return self._var.data_type()
def to_proto(self):
pass
```
Then we can use this Variable to create a fc layer in Python.
```python
import paddle as pd
def flatten_size(X, num_flatten_dims):
prod = 1 # of last num_flatten_dims
for i in xrange(num_flatten_dims):
prod = prod * X.dims[-i-1]
return prod
def layer.fc(X, output_size, num_flatten_dims):
W = Variable(pd.random_uniform(), type=FP32, dims=[flatten_size(X, num_flatten_dims), output_size])
b = Variable(pd.random_uniform(), type=FP32, dims=[output_size])
out = Variable(type=FP32)
y = operator.fc(X, W, b, output=out) # fc will put fc op input into out
pd.InferShape(y)
return out
x = Variable(dims=[-1, 640, 480])
y = layer.fc(x, output_size=100)
z = layer.fc(y, output_size=200)
paddle.eval(targets=[z], ...)
print(z)
```
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Background &mdash; PaddlePaddle 文档</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="index" title="索引"
href="../genindex.html"/>
<link rel="search" title="搜索" href="../search.html"/>
<link rel="top" title="PaddlePaddle 文档" href="../index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
<link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<script src="../_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<header class="site-header">
<div class="site-logo">
<a href="/"><img src="../_static/images/PP_w.png"></a>
</div>
<div class="site-nav-links">
<div class="site-menu">
<a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
<div class="language-switcher dropdown">
<a type="button" data-toggle="dropdown">
<span>English</span>
<i class="fa fa-angle-up"></i>
<i class="fa fa-angle-down"></i>
</a>
<ul class="dropdown-menu">
<li><a href="/doc_cn">中文</a></li>
<li><a href="/doc">English</a></li>
</ul>
</div>
<ul class="site-page-links">
<li><a href="/">Home</a></li>
</ul>
</div>
<div class="doc-module">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
</div>
</header>
<div class="main-content-wrap">
<nav class="doc-menu-vertical" role="navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_cn.html">PaddlePaddle的Docker容器使用方式</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/cmake/build_from_source_cn.html">PaddlePaddle的编译选项</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_cn.html">运行分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/build_cn.html">编译PaddlePaddle和运行单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">数据访问</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
</ul>
</nav>
<section class="doc-content-wrap">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li>Background</li>
</ul>
</div>
<div class="wy-nav-content" id="doc-content">
<div class="rst-content">
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="background">
<span id="background"></span><h1>Background<a class="headerlink" href="#background" title="永久链接至标题"></a></h1>
<p>PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime.</p>
<p>PaddlePaddle use proto message to describe compile time graph for</p>
<ol class="simple">
<li>Computation graph should be able to be saved to a file.</li>
<li>In distributed training, the graph will be serialized and send to multiple workers.</li>
</ol>
<p>The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below.</p>
<p>| |compile time|runtime|
|&#8212;|&#8212;|&#8212;|
|Data|VarDesc(proto)|Variable(cpp)|
|Operation|OpDesc(proto)|Operator(cpp)|</p>
</div>
<div class="section" id="definition-of-vardesc">
<span id="definition-of-vardesc"></span><h1>Definition of VarDesc<a class="headerlink" href="#definition-of-vardesc" title="永久链接至标题"></a></h1>
<p>A VarDesc should have a name and value, in PaddlePaddle, the value will always be a tensor. Since we use LoDTensor most of the time. We add a LoDTesnorDesc to represent it.</p>
<div class="highlight-proto"><div class="highlight"><pre><span></span><span class="kd">message</span> <span class="nc">VarDesc</span> <span class="p">{</span>
<span class="k">required</span> <span class="kt">string</span> <span class="na">name</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
<span class="k">optional</span> <span class="n">LoDTensorDesc</span> <span class="na">lod_tensor</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="definition-of-lodtensordesc">
<span id="definition-of-lodtensordesc"></span><h1>Definition of LodTensorDesc<a class="headerlink" href="#definition-of-lodtensordesc" title="永久链接至标题"></a></h1>
<div class="highlight-proto"><div class="highlight"><pre><span></span><span class="kd">enum</span> <span class="n">DataType</span> <span class="p">{</span>
<span class="na">BOOL</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="na">INT16</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
<span class="na">INT32</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
<span class="na">INT64</span> <span class="o">=</span> <span class="mi">3</span><span class="p">;</span>
<span class="na">FP16</span> <span class="o">=</span> <span class="mi">4</span><span class="p">;</span>
<span class="na">FP32</span> <span class="o">=</span> <span class="mi">5</span><span class="p">;</span>
<span class="na">FP64</span> <span class="o">=</span> <span class="mi">6</span><span class="p">;</span>
<span class="p">}</span>
<span class="kd">message</span> <span class="nc">LoDTensorDesc</span> <span class="p">{</span>
<span class="k">required</span> <span class="n">DataType</span> <span class="na">data_type</span> <span class="o">=</span> <span class="mi">1</span><span class="p">;</span>
<span class="k">repeated</span> <span class="kt">int32</span> <span class="na">dims</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span> <span class="c1">// [UNK, 640, 480] is saved as [-1, 640, 480]</span>
<span class="k">optional</span> <span class="kt">int32</span> <span class="na">lod_level</span> <span class="o">=</span> <span class="mi">3</span> <span class="p">[</span><span class="k">default</span><span class="o">=</span><span class="mi">0</span><span class="p">];</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="definition-of-variable-in-python">
<span id="definition-of-variable-in-python"></span><h1>Definition of Variable in Python<a class="headerlink" href="#definition-of-variable-in-python" title="永久链接至标题"></a></h1>
<p>In Python API, layer will take Variable as Input, and return Variable as Output. There should be a class <code class="docutils literal"><span class="pre">Variable</span></code> in python to help create and manage Variable.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">image</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">dims</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">640</span><span class="p">,</span> <span class="mi">480</span><span class="p">])</span>
<span class="c1"># fc1 and fc2 are both Variable</span>
<span class="n">fc1</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">image</span><span class="p">,</span> <span class="n">output_size</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">fc2</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">fc1</span><span class="p">,</span> <span class="n">output_size</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
</pre></div>
</div>
<div class="section" id="what-should-class-variable-have">
<span id="what-should-class-variable-have"></span><h2>what should class <code class="docutils literal"><span class="pre">Variable</span></code> Have<a class="headerlink" href="#what-should-class-variable-have" title="永久链接至标题"></a></h2>
<ol class="simple">
<li><code class="docutils literal"><span class="pre">name</span></code>.a name of string type is used to mark the value of the Variable.</li>
<li><code class="docutils literal"><span class="pre">initializer</span></code>. Since our Tensor does not have value. we will always use some Operator to fullfill it when run. So we should have a initialize method to help add the init operator.</li>
<li><code class="docutils literal"><span class="pre">operator</span></code>. Variable should record which operator produce itself. The reaon is:</li>
</ol>
<ul class="simple">
<li>we use pd.eval(targets=[var1, var2]) to run the related ops to get the value of var1 and var2. var.op is used to trace the dependency of the current variable.</li>
</ul>
<p>In PaddlePaddle, we use Block to describe Computation Graph, so in the code we will use Block but not Graph.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">VarDesc</span>
<span class="kn">import</span> <span class="nn">LoDTensorDesc</span>
<span class="kn">import</span> <span class="nn">framework</span>
<span class="k">def</span> <span class="nf">AddInitialOperator</span><span class="p">(</span><span class="n">variable</span><span class="p">,</span> <span class="n">initializer</span><span class="p">):</span>
<span class="c1"># add an initialize Operator to block to init this Variable</span>
<span class="k">class</span> <span class="nc">Variable</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">dims</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">initializer</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_block</span> <span class="o">=</span> <span class="n">get_default_block</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_name</span> <span class="o">=</span> <span class="n">name</span>
<span class="bp">self</span><span class="o">.</span><span class="n">op</span> <span class="o">=</span> <span class="bp">None</span>
<span class="n">tensor_desc</span> <span class="o">=</span> <span class="n">LoDTensorDesc</span><span class="p">(</span><span class="n">data_type</span><span class="o">=</span><span class="nb">type</span><span class="p">,</span> <span class="n">dims</span><span class="o">=</span><span class="n">dims</span><span class="p">)</span>
<span class="n">_var_desc</span> <span class="o">=</span> <span class="n">VarDesc</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span><span class="p">,</span> <span class="n">lod_tensor</span><span class="o">=</span><span class="n">tensor_desc</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_var</span> <span class="o">=</span> <span class="n">framework</span><span class="o">.</span><span class="n">CreateVar</span><span class="p">(</span><span class="n">_var_desc</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_block</span><span class="o">.</span><span class="n">add_var</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="c1"># add initial op according to initializer</span>
<span class="k">if</span> <span class="n">initializer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">AddInitialOperator</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">initializer</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">dims</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_var</span><span class="o">.</span><span class="n">dims</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">data_type</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_var</span><span class="o">.</span><span class="n">data_type</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">to_proto</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">pass</span>
</pre></div>
</div>
<p>Then we can use this Variable to create a fc layer in Python.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="k">def</span> <span class="nf">flatten_size</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">num_flatten_dims</span><span class="p">):</span>
<span class="n">prod</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># of last num_flatten_dims</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="n">num_flatten_dims</span><span class="p">):</span>
<span class="n">prod</span> <span class="o">=</span> <span class="n">prod</span> <span class="o">*</span> <span class="n">X</span><span class="o">.</span><span class="n">dims</span><span class="p">[</span><span class="o">-</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="k">return</span> <span class="n">prod</span>
<span class="k">def</span> <span class="nf">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">output_size</span><span class="p">,</span> <span class="n">num_flatten_dims</span><span class="p">):</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">random_uniform</span><span class="p">(),</span> <span class="nb">type</span><span class="o">=</span><span class="n">FP32</span><span class="p">,</span> <span class="n">dims</span><span class="o">=</span><span class="p">[</span><span class="n">flatten_size</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">num_flatten_dims</span><span class="p">),</span> <span class="n">output_size</span><span class="p">])</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">random_uniform</span><span class="p">(),</span> <span class="nb">type</span><span class="o">=</span><span class="n">FP32</span><span class="p">,</span> <span class="n">dims</span><span class="o">=</span><span class="p">[</span><span class="n">output_size</span><span class="p">])</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="nb">type</span><span class="o">=</span><span class="n">FP32</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">operator</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">output</span><span class="o">=</span><span class="n">out</span><span class="p">)</span> <span class="c1"># fc will put fc op input into out</span>
<span class="n">pd</span><span class="o">.</span><span class="n">InferShape</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
<span class="k">return</span> <span class="n">out</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">Variable</span><span class="p">(</span><span class="n">dims</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">640</span><span class="p">,</span> <span class="mi">480</span><span class="p">])</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">output_size</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="n">output_size</span><span class="o">=</span><span class="mi">200</span><span class="p">)</span>
<span class="n">paddle</span><span class="o">.</span><span class="n">eval</span><span class="p">(</span><span class="n">targets</span><span class="o">=</span><span class="p">[</span><span class="n">z</span><span class="p">],</span> <span class="o">...</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2016, PaddlePaddle developers.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'../',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: ".txt",
};
</script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="../_static/translations.js"></script>
<script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
<script src="../_static/js/paddle_doc_init.js"></script>
</body>
</html>
\ No newline at end of file
因为 它太大了无法显示 source diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册