diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake index 66c2a8bd8056509f5c281602e88ffee5181ab07f..563633c517fe717c67644252729643fef4f4c217 100644 --- a/cmake/external/openblas.cmake +++ b/cmake/external/openblas.cmake @@ -26,6 +26,7 @@ IF(NOT ${CBLAS_FOUND}) CACHE FILEPATH "openblas library." FORCE) SET(OPENBLAS_CC "${CMAKE_C_COMPILER}") + IF(CMAKE_CROSSCOMPILING) SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER}) GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY) @@ -52,11 +53,14 @@ IF(NOT ${CBLAS_FOUND}) ENDIF() ELSEIF(RPI) # use hardfp - SET(OPENBLAS_COMMIT "v0.2.19") + SET(OPENBLAS_COMMIT "v0.2.20") SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0) ENDIF() ELSE() - SET(OPENBLAS_COMMIT "v0.2.19") + IF(APPLE) + SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}") + ENDIF() + SET(OPENBLAS_COMMIT "v0.2.20") SET(OPTIONAL_ARGS "") IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$") SET(OPTIONAL_ARGS DYNAMIC_ARCH=1 NUM_THREADS=64) diff --git a/doc/design/functions_operators_layers.md b/doc/design/functions_operators_layers.md new file mode 100644 index 0000000000000000000000000000000000000000..7a2e8fd0ace2e3f4462b15215de22c31e944b7cb --- /dev/null +++ b/doc/design/functions_operators_layers.md @@ -0,0 +1,99 @@ +# Design Doc: Functions, Operators, and Layers + +In a DL system, we can compose one or more fine grained operators into a coarse grained one. For example, the FC layer can be composed of a multiplication operator and an add operator. + +Historically, some fine grained operations are known as operators, and some coarse level ones are known as layers. But we need a well-defined separation. + +In general, operators are those very fine grained operations, e.g., mul and add. In the implementation, we can write them as C++ functions: + +```c++ +template T add(T x, T y) { return x + y; } +template T mul(T x, T y) { return x * y; } +``` + +Then we can wrap them into operators which are C++ classes and can be created from Python bindings by name. A C macro can do this. For example, the following macro invocation + +```c++ +#define MAKE_FUNCTION_OPERATOR(mul); +``` + +generates + +```c++ +template class mulOp : public OperatorBase {...}; +REGISTER_OP(mulOp, "mul"); +``` + +so that in Python we can create operator mul by: + +```python +X1 = Var() +X2 = Var() +Y = Var() +paddle.cpp.create_operator("mul", input=[X1, X2], output=Y) +``` + +Also, at the same time, we can compose a coarse level C++ operator class by composing functions `mul` and `add`: + +```c++ +template +class FCOp : public OperatorBase { + public: + void Run(...) { + add(mul(Input("X"), Input("W")), Input("b"); + } +}; +REGISTER_OP(FCOp, "fc"); +``` + +We need to support such composition in Python as well. To do so, we need a higher level Python wrapping of operator creation than `paddle.cpp.create_operator`. This higher level operator API should be compatible with the layer API. + +Let's explain using an example. Suppose that we are going to compose the FC using mul and add in Python, we'd like to have Python functions `mul` and `add` defined in module `operator`: + +```python +def operator.mul(X1, X2): + O = Var() + paddle.cpp.create_operator("mul", input={X1, Y1], output=O) + return O + +def operator.add(X1, X2): + O = Var() + paddle.cpp.create_operator("add", input={X1, X2], output=O) + return O +``` + +Above code snippets are automatically generated. Given them, users can define + +```python +def layer.fc(X): + W = Var() + b = Var() + return operator.add(operator.mul(X, W), b) +``` + +If we don't have `operator.mul` and `operator.add`, the definiton of `layer.fc` would be complicated: + +```python +def layer.fc(X): + W = Var() + b = Var() + O1 = Var() + paddle.cpp.create_operator("mul", input=[X, W], output=O1) + O2 = Var() + paddle.cpp.create_operator("add", input=[O1, b], output=O2) + return O2 +``` + +We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example: + +``` +| C++ functions/functors | mul | add | | | +| C++ operator class | mulOp | addOp | FCOp | | +| Python binding | operator.mul | operator.add | operator.fc | | +| Python function | | | | layer.fc | +``` + +This is how we differentiate layer and operators in PaddlePaddle: + +- those defined in C++ and have a lightweighted Python wrapper in module `operators` are operators; whereas +- those who don't have C++ implementations but a Python implementation that compose C++ operators are known as layers. diff --git a/doc/design/if_else_op.md b/doc/design/if_else_op.md new file mode 100644 index 0000000000000000000000000000000000000000..7370c2a24fa644a64e738f202bac9b9209642e08 --- /dev/null +++ b/doc/design/if_else_op.md @@ -0,0 +1,59 @@ +IfOp should have only one branch. An IfOp operator takes a `cond` variable whose value must be a vector of N boolean elements. Its return value has M (M<=N) instances, each corresponds to a true element in `cond`. + +```python +import paddle as pd + +x = var() +y = var() +cond = var() + +b = pd.create_ifop(inputs=[x], output_num=1) +with b.true_block(): + x = b.inputs(0) + z = operator.add(x, y) + b.set_output(0, operator.softmax(z)) + +out = b(cond) +``` + +If we want the output still has N instances, we can use IfElseOp with a default value, whose minibatch size must be N: + +```python +import paddle as pd + +x = var() +y = var() +cond = var() +default_value = var() +b = pd.create_ifelseop(inputs=[x], output_num=1) +with b.true_block(): + x = b.inputs(0) + z = operator.add(x, y) + b.set_output(0, operator.softmax(z)) + +with b.false_block(): + x = b.inputs(0) + z = layer.fc(x) + b.set_output(0, operator.softmax(z)) + +out = b(cond) +``` + +If only true_block is set in an IfElseOp, we can have a default value for false as: +```python +import paddle as pd + +x = var() +y = var() +cond = var() +default_value = var() +b = pd.create_ifelseop(inputs=[x], output_num=1, default_value) + +with b.true_block(): + x = b.inputs(0) + z = operator.add(x, y) + b.set_output(0, operator.softmax(z)) + +out = b(cond) +``` +where default_value is a list of vars for `cond` == False. diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md index 7f8da2da5a0d42ff065265c5d173d0e6167dc08a..ec79b7f42b2d70df8fcb25faca5bc3a4759e177c 100644 --- a/doc/howto/dev/new_op_cn.md +++ b/doc/howto/dev/new_op_cn.md @@ -178,13 +178,13 @@ class MulKernel : public framework::OpKernel { ```c++ namespace ops = paddle::operators; -REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); +REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpGrad); REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); REGISTER_OP_CPU_KERNEL(mul_grad, ops::MulGradKernel); ``` - - `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`, + - `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,并且注册`ops::MulOpGrad`为其反向Op。 - `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。 - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。 diff --git a/paddle/cuda/include/hl_cnn.h b/paddle/cuda/include/hl_cnn.h index 9f84db72da24b0e678520b077f9cba7ffc2d589a..6b56d9ec8d3daae96aaaa04ed79cb637331e2281 100644 --- a/paddle/cuda/include/hl_cnn.h +++ b/paddle/cuda/include/hl_cnn.h @@ -173,6 +173,96 @@ extern void hl_avgpool_backward(const int frameCnt, real* backGrad, const int outStride); +extern void hl_maxpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + real* maxPoolIdxData, + const int tgtStride); + +extern void hl_maxpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real scaleA, + real scaleB, + real* targetGrad, + real* maxPoolIdxData, + const int outStride); + +extern void hl_avgpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + const int tgtStride); + +extern void hl_avgpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + int paddingD, + int paddingH, + int paddingW, + real scaleA, + real scaleB, + real* backGrad, + const int outStride); + /** * @brief Bilinear interpolation forward. * @@ -275,4 +365,4 @@ extern void hl_maxout_backward(real* inGrad, size_t featLen, size_t groups); -#endif /* HL_CNN_H_ */ +#endif // HL_CNN_H_ diff --git a/paddle/cuda/include/hl_matrix.h b/paddle/cuda/include/hl_matrix.h index eb454c59c1e58cf2b4817b4cb3230b9d75e320ac..c7f25109972195fb56b9e96c4b68d952363e6338 100644 --- a/paddle/cuda/include/hl_matrix.h +++ b/paddle/cuda/include/hl_matrix.h @@ -224,4 +224,80 @@ extern void hl_matrix_collect_shared_bias(real* B_d, extern void hl_matrix_rotate( real* mat, real* matRot, int dimM, int dimN, bool clockWise); +/** + * @brief Matrix vol2Col: Convert 3D volume into col matrix + * + * @param[in] matSrc input matrix. + * @param[in] channel channel of matSrc. + * @param[in] depth depth of matSrc. + * @param[in] height height of matSrc. + * @param[in] width width of matSrc. + * @param[in] filterD depth of filter. + * @param[in] filterH height of filter. + * @param[in] filterW width of filter. + * @param[in] strideD stride in the depth. + * @param[in] strideH stride in the height. + * @param[in] strideW stride in the width. + * @param[in] paddingD padding in the depth. + * @param[in] paddingH padding in the height. + * @param[in] paddingW padding in the width. + * @param[out] dataDst output matrix. + * + */ +extern void hl_matrix_vol2Col(const real* dataSrc, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real* dataDst); + +/** + * @brief Matrix col2Vol: Convert col matrix into 3D volume + * + * @param[out] matDst output matrix. + * @param[in] channel channel of matDst. + * @param[in] depth depth of matDst. + * @param[in] height height of matDst. + * @param[in] width width of matDst. + * @param[in] filterD depth of filter. + * @param[in] filterH height of filter. + * @param[in] filterW width of filter. + * @param[in] strideD stride in the depth. + * @param[in] strideH stride in the height. + * @param[in] strideW stride in the width. + * @param[in] paddingD padding in the depth. + * @param[in] paddingH padding in the height. + * @param[in] paddingW padding in the width. + * @param[in] matSrc input matrix. + * @param[in] beta input + * @param[in] alpha input + * + */ +extern void hl_matrix_col2Vol(real* dataDst, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + const real* dataSrc, + real alpha, + real beta); + #endif /* HL_MATRIX_H_ */ diff --git a/paddle/cuda/include/stub/hl_cnn_stub.h b/paddle/cuda/include/stub/hl_cnn_stub.h index 2bbb9fa8dfd5eeac9d55aa67a28ebfbffa2acd46..a76dbf0b6578de0606702ad1af227fbf6e1cd62e 100644 --- a/paddle/cuda/include/stub/hl_cnn_stub.h +++ b/paddle/cuda/include/stub/hl_cnn_stub.h @@ -87,6 +87,96 @@ inline void hl_avgpool_backward(const int frameCnt, real* backGrad, const int outStride) {} +inline void hl_maxpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + real* maxPoolIdxData, + const int tgtStride) {} + +inline void hl_maxpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real scaleA, + real scaleB, + real* targetGrad, + real* maxPoolIdxData, + const int outStride) {} + +inline void hl_avgpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + const int tgtStride) {} + +inline void hl_avgpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real scaleA, + real scaleB, + real* backGrad, + const int outStride) {} + inline void hl_bilinear_forward(const real* inData, const size_t inImgH, const size_t inImgW, diff --git a/paddle/cuda/include/stub/hl_matrix_stub.h b/paddle/cuda/include/stub/hl_matrix_stub.h index 127cb7e27983e8ff2c1ff6ef5108b5f8c5bd6ca5..6ac332945c8f09fef23f35680ba5bb1d9ba9f4fd 100644 --- a/paddle/cuda/include/stub/hl_matrix_stub.h +++ b/paddle/cuda/include/stub/hl_matrix_stub.h @@ -99,4 +99,38 @@ inline void hl_matrix_collect_shared_bias(real* B_d, inline void hl_matrix_rotate( real* mat, real* matRot, int dimM, int dimN, bool clockWise) {} +inline void hl_matrix_vol2Col(const real* dataSrc, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real* dataDst) {} + +inline void hl_matrix_col2Vol(real* dataDst, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + const real* dataSrc, + real alpha, + real beta) {} + #endif // HL_MATRIX_STUB_H_ diff --git a/paddle/cuda/src/hl_cuda_cnn.cu b/paddle/cuda/src/hl_cuda_cnn.cu index aac19b1ea566ad69f1f7374e393676c8debd9883..9ba3d142617537c0160f6dccb86ddca43ada15a5 100644 --- a/paddle/cuda/src/hl_cuda_cnn.cu +++ b/paddle/cuda/src/hl_cuda_cnn.cu @@ -353,6 +353,433 @@ void hl_avgpool_backward(const int frameCnt, CHECK_SYNC("hl_avgpool_backward failed"); } +__global__ void KeMaxPool3DForward(const int nthreads, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int ksizeD, + const int ksizeH, + const int ksizeW, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real* tgtData, + real* maxPoolIdxData, + const int tgtStride) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); + index += blockDim.x * gridDim.x) { + int pw = index % pooledW; + int ph = (index / pooledW) % pooledH; + int pd = (index / pooledW / pooledH) % pooledD; + int c = (index / pooledW / pooledH / pooledD) % channels; + int frameNum = index / pooledW / pooledH / pooledD / channels; + int dstart = pd * strideD - padD; + int hstart = ph * strideH - padH; + int wstart = pw * strideW - padW; + int dend = min(dstart + ksizeD, depth); + int hend = min(hstart + ksizeH, height); + int wend = min(wstart + ksizeW, width); + dstart = max(dstart, 0); + hstart = max(hstart, 0); + wstart = max(wstart, 0); + real maxval = -FLT_MAX; + int maxIdx = -1; + inputData += (frameNum * channels + c) * depth * height * width; + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + if (maxval < inputData[(d * height + h) * width + w]) { + maxval = inputData[(d * height + h) * width + w]; + maxIdx = (d * height + h) * width + w; + } + } + } + } + int tgtIndex = + index % (pooledW * pooledH * pooledD * channels) + frameNum * tgtStride; + tgtData[tgtIndex] = maxval; + maxPoolIdxData[tgtIndex] = maxIdx; + } +} + +void hl_maxpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real* tgtData, + real* maxPoolIdxData, + const int tgtStride) { + int num_kernels = pooledD * pooledH * pooledW * channels * frameCnt; + int blocks = (num_kernels + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KeMaxPool3DForward<<>>(num_kernels, + inputData, + channels, + depth, + height, + width, + pooledD, + pooledH, + pooledW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + padD, + padH, + padW, + tgtData, + maxPoolIdxData, + tgtStride); + CHECK_SYNC("hl_maxpool3D_forward failed"); +} + +__global__ void KeMaxPool3DBackward(const int nthreads, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real scaleA, + real scaleB, + real* targetGrad, + real* maxPoolIdxData, + const int outStride) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); + index += blockDim.x * gridDim.x) { + int offsetW = index % width; + int offsetH = (index / width) % height; + int offsetD = (index / width / height) % depth; + int offsetC = (index / width / height / depth) % channels; + int frameNum = index / width / height / depth / channels; + + int pdstart = + (offsetD + padD < sizeZ) ? 0 : (offsetD + padD - sizeZ) / strideD + 1; + int phstart = + (offsetH + padH < sizeY) ? 0 : (offsetH + padH - sizeY) / strideH + 1; + int pwstart = + (offsetW + padW < sizeX) ? 0 : (offsetW + padW - sizeX) / strideW + 1; + int pdend = min((offsetD + padD) / strideD + 1, pooledD); + int phend = min((offsetH + padH) / strideH + 1, pooledH); + int pwend = min((offsetW + padW) / strideW + 1, pooledW); + + real gradient = 0; + outGrad += ((frameNum * channels + offsetC) * pooledD * pooledH * pooledW); + maxPoolIdxData += + ((frameNum * channels + offsetC) * pooledD * pooledH * pooledW); + for (int pd = pdstart; pd < pdend; ++pd) { + for (int ph = phstart; ph < phend; ++ph) { + for (int pw = pwstart; pw < pwend; ++pw) { + if (((offsetD * height + offsetH) * width + offsetW) == + maxPoolIdxData[(pd * pooledH + ph) * pooledW + pw]) + gradient += outGrad[(pd * pooledH + ph) * pooledW + pw]; + } + } + } + targetGrad[index] = scaleA * gradient + scaleB * targetGrad[index]; + } +} + +void hl_maxpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int outputD, + const int outputH, + const int outputW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real scaleA, + real scaleB, + real* targetGrad, + real* maxPoolIdxData, + const int outStride) { + int num_kernels = depth * height * width * channels * frameCnt; + int blocks = (num_kernels + 1024 - 1) / 1024; + + KeMaxPool3DBackward<<>>(num_kernels, + outGrad, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + scaleA, + scaleB, + targetGrad, + maxPoolIdxData, + outStride); + CHECK_SYNC("hl_maxpool3D_backward"); +} + +__global__ void KeAvgPool3DForward(const int nthreads, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real* tgtData, + const int tgtStride) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); + index += blockDim.x * gridDim.x) { + int pw = index % pooledW; + int ph = (index / pooledW) % pooledH; + int pd = (index / pooledW / pooledH) % pooledD; + int c = (index / pooledW / pooledH / pooledD) % channels; + int frameNum = index / pooledW / pooledH / pooledD / channels; + int dstart = pd * strideD - padD; + int hstart = ph * strideH - padH; + int wstart = pw * strideW - padW; + int dend = min(dstart + sizeZ, depth + padD); + int hend = min(hstart + sizeY, height + padH); + int wend = min(wstart + sizeX, width + padW); + int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); + dstart = max(dstart, 0); + hstart = max(hstart, 0); + wstart = max(wstart, 0); + dend = min(dend, depth); + hend = min(hend, height); + wend = min(wend, width); + + real aveval = 0; + inputData += (frameNum * channels + c) * depth * height * width; + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + aveval += inputData[(d * height + h) * width + w]; + } + } + } + int tgtIndex = + index % (pooledW * pooledH * pooledD * channels) + frameNum * tgtStride; + tgtData[tgtIndex] = aveval / pool_size; + } +} + +void hl_avgpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + const int tgtStride) { + int num_kernels = pooledD * pooledH * pooledW * channels * frameCnt; + int blocks = (num_kernels + 1024 - 1) / 1024; + KeAvgPool3DForward<<>>(num_kernels, + inputData, + channels, + depth, + height, + width, + pooledD, + pooledH, + pooledW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + tgtData, + tgtStride); + CHECK_SYNC("hl_avgpool3D_forward failed"); +} + +__global__ void KeAvgPool3DBackward(const int nthreads, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real scaleA, + real scaleB, + real* tgtGrad, + const int outStride) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); + index += blockDim.x * gridDim.x) { + int offsetW = index % width + padW; + int offsetH = (index / width) % height + padH; + int offsetD = (index / width / height) % depth + padD; + int offsetC = (index / width / height / depth) % channels; + int frameNum = index / width / height / depth / channels; + + int pdstart = (offsetD < sizeZ) ? 0 : (offsetD - sizeZ) / strideD + 1; + int phstart = (offsetH < sizeY) ? 0 : (offsetH - sizeY) / strideH + 1; + int pwstart = (offsetW < sizeX) ? 0 : (offsetW - sizeX) / strideW + 1; + int pdend = min(offsetD / strideD + 1, pooledD); + int phend = min(offsetH / strideH + 1, pooledH); + int pwend = min(offsetW / strideW + 1, pooledW); + + real gradient = 0; + outGrad += (frameNum * channels + offsetC) * pooledD * pooledH * pooledW; + + for (int pd = pdstart; pd < pdend; ++pd) { + for (int ph = phstart; ph < phend; ++ph) { + for (int pw = pwstart; pw < pwend; ++pw) { + // figure out the pooling size + int dstart = pd * strideD - padD; + int hstart = ph * strideH - padH; + int wstart = pw * strideW - padW; + int dend = min(dstart + sizeZ, depth + padD); + int hend = min(hstart + sizeY, height + padH); + int wend = min(wstart + sizeX, width + padW); + int poolsize = (dend - dstart) * (hend - hstart) * (wend - wstart); + gradient += outGrad[(pd * pooledH + ph) * pooledW + pw] / poolsize; + } + } + } + tgtGrad[index] = scaleA * gradient + scaleB * tgtGrad[index]; + } +} + +void hl_avgpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int outputD, + const int outputH, + const int outputW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + int paddingD, + int paddingH, + int paddingW, + real scaleA, + real scaleB, + real* backGrad, + const int outStride) { + int num_kernels = depth * height * width * channels * frameCnt; + int blocks = (num_kernels + 1024 - 1) / 1024; + + KeAvgPool3DBackward<<>>(num_kernels, + outGrad, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + scaleA, + scaleB, + backGrad, + outStride); + CHECK_SYNC("hl_avgpool3D_backward failed"); +} + __global__ void KeBilinearInterpFw(const real* in, const size_t inImgH, const size_t inImgW, diff --git a/paddle/cuda/src/hl_cuda_matrix.cu b/paddle/cuda/src/hl_cuda_matrix.cu index 39272456c394adc0509e60cf5972df832f7b3424..b41a3a1e06db7b2566acef19ce430645f79d486d 100644 --- a/paddle/cuda/src/hl_cuda_matrix.cu +++ b/paddle/cuda/src/hl_cuda_matrix.cu @@ -592,3 +592,204 @@ void hl_matrix_rotate( mat, matRot, dimM, dimN, clockWise); CHECK_SYNC("hl_matrix_rotate failed"); } + +__global__ void keMatrixVol2Col(int num_kernels, + const real* dataSrc, + real* dataDst, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + int depth_col, + int height_col, + int width_col) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels; + index += blockDim.x * gridDim.x) { + int w_out = index % width_col; + int h_out = (index / width_col) % height_col; + int d_out = (index / width_col / height_col) % depth_col; + int channel_in = index / width_col / height_col / depth_col; + int channel_out = channel_in * filterD * filterH * filterW; + int w_in = w_out * strideW - paddingW; + int h_in = h_out * strideH - paddingH; + int d_in = d_out * strideD - paddingD; + + dataDst += + ((channel_out * depth_col + d_out) * height_col + h_out) * width_col + + w_out; + dataSrc += ((channel_in * depth + d_in) * height + h_in) * width + w_in; + for (int k = 0; k < filterD; ++k) { + for (int i = 0; i < filterH; ++i) { + for (int j = 0; j < filterW; ++j) { + int d = d_in + k; + int h = h_in + i; + int w = w_in + j; + *dataDst = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 && + w < width) + ? dataSrc[(k * height + i) * width + j] + : 0; + dataDst += depth_col * height_col * width_col; + } + } + } + } +} + +void hl_matrix_vol2Col(const real* dataSrc, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real* dataDst) { + int depth_col = (depth + 2 * paddingD - filterD) / strideD + 1; + int height_col = (height + 2 * paddingH - filterH) / strideH + 1; + int width_col = (width + 2 * paddingW - filterW) / strideW + 1; + int num_kernels = channels * depth_col * height_col * width_col; + + const int threads = 512; + const int blocks = DIVUP(num_kernels, threads); + + keMatrixVol2Col<<>>(num_kernels, + dataSrc, + dataDst, + depth, + height, + width, + filterD, + filterH, + filterW, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + depth_col, + height_col, + width_col); + CHECK_SYNC("hl_matrix_vol2Col failed"); +} + +__global__ void keMatrixCol2Vol(int num_kernels, + real* dataDst, + const real* dataSrc, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + int depth_col, + int height_col, + int width_col, + real alpha, + real beta) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels; + index += blockDim.x * gridDim.x) { + real srcVal = 0; + real dstVal = dataDst[index]; + int w = index % width + paddingW; + int h = (index / width) % height + paddingH; + int d = (index / width / height) % depth + paddingD; + int c = index / width / height / depth; + // compute the start and end of the output + int w_col_start = (w < filterW) ? 0 : (w - filterW) / strideW + 1; + int w_col_end = min(w / strideW + 1, width_col); + int h_col_start = (h < filterH) ? 0 : (h - filterH) / strideH + 1; + int h_col_end = min(h / strideH + 1, height_col); + int d_col_start = (d < filterD) ? 0 : (d - filterD) / strideD + 1; + int d_col_end = min(d / strideD + 1, depth_col); + + int offset = (c * filterD * filterW * filterH + d * filterW * filterH + + h * filterW + w) * + depth_col * height_col * width_col; + + int coeff_d_col = + (1 - strideD * filterW * filterH * depth_col) * height_col * width_col; + int coeff_h_col = + (1 - strideH * filterW * depth_col * height_col) * width_col; + int coeff_w_col = (1 - strideW * depth_col * height_col * width_col); + + for (int d_col = d_col_start; d_col < d_col_end; ++d_col) { + for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { + for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { + srcVal += dataSrc[offset + d_col * coeff_d_col + h_col * coeff_h_col + + w_col * coeff_w_col]; + } + } + } + dataDst[index] = alpha * srcVal + beta * dstVal; + } +} + +void hl_matrix_col2Vol(real* dataDst, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + const real* dataSrc, + real alpha, + real beta) { + int depth_col = (depth + 2 * paddingD - filterD) / strideD + 1; + int height_col = (height + 2 * paddingH - filterH) / strideH + 1; + int width_col = (width + 2 * paddingW - filterW) / strideW + 1; + int num_kernels = channels * depth * height * width; + + const int threads = 512; + const int blocks = DIVUP(num_kernels, threads); + + keMatrixCol2Vol<<>>(num_kernels, + dataDst, + dataSrc, + depth, + height, + width, + filterD, + filterH, + filterW, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + depth_col, + height_col, + width_col, + alpha, + beta); + + CHECK_SYNC("hl_matrix_col2Vol failed"); +} diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md index 8aa6728a95bc464ab8884986f0cec6c817d3303b..9500c92a265d60a696e1e2c422d0f2bd1621ef71 100644 --- a/paddle/framework/backward.md +++ b/paddle/framework/backward.md @@ -18,7 +18,7 @@ A backward network is built up with several backward operators. Backward operato For example, we have got a `mul_op`, and we can register it's information and corresponding backward operator by the following macro: ```cpp -REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad); +REGISTER_OP(mul, MulOp, MulOpMaker, MulOpGrad); ``` `mul` is the operator's type. `MulOp` and `MulOpMaker` are the operator class and the operator maker class respectively. diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index f100c4d05489ac3bd4ceb5f11ae871985f0e5d83..bf8b11e5f5ae801621f84bdbeffb5c4cf2dd8905 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -127,8 +127,8 @@ class FillZeroOpMaker : public OpProtoAndCheckerMaker { public: FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("x", "x"); - AddOutput("out", "out"); + AddInput("Src", "x"); + AddOutput("Dst", "out"); AddComment(""); } }; @@ -138,7 +138,7 @@ class AddOpMaker : public OpProtoAndCheckerMaker { AddOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "x").AsDuplicable(); - AddOutput("Y", "y"); + AddOutput("Out", "out"); AddComment(""); } }; @@ -148,16 +148,14 @@ class AddOpMaker : public OpProtoAndCheckerMaker { namespace f = paddle::framework; namespace ops = paddle::operators; using EnforceNotMet = paddle::platform::EnforceNotMet; -REGISTER_OP(rowwise_add, f::NOP, f::RowWiseAddOpMaker, rowwise_add_grad, - f::NOP); -REGISTER_OP(mul, f::NOP, f::MulOpMaker, mul_grad, f::NOP); -REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, sigmoid_grad, f::NOP); +REGISTER_OP(rowwise_add, f::NOP, f::RowWiseAddOpMaker, f::NOP); +REGISTER_OP(mul, f::NOP, f::MulOpMaker, f::NOP); +REGISTER_OP(sigmoid, f::NOP, f::SigmoidOpMaker, f::NOP); REGISTER_OP_WITHOUT_GRADIENT(nograd, f::NOP, f::NoGradOpMaker); REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, f::NOP, f::FillZeroOpMaker); -REGISTER_OP(add, f::NOP, f::AddOpMaker, add_grad, f::NOP); +REGISTER_OP(add, f::NOP, f::AddOpMaker, f::NOP); REGISTER_OP_WITHOUT_GRADIENT(fc, f::FcOp, f::FcOpMaker); -REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, many_output_op_grad, - f::NOP); +REGISTER_OP(many_output_op, f::NOP, f::ManyOutputOpMaker, f::NOP); TEST(Backward, simple_op_grad) { auto fwd = f::OpRegistry::CreateOp( diff --git a/paddle/framework/grad_op_builder_test.cc b/paddle/framework/grad_op_builder_test.cc index 902c2655e9182d74a48ad13e17a39a3304d5fa57..8a817a3e13ca64d6f8df566891a1059995e041ae 100644 --- a/paddle/framework/grad_op_builder_test.cc +++ b/paddle/framework/grad_op_builder_test.cc @@ -54,8 +54,8 @@ TEST(GradOpBuilder, AddTwo) { EXPECT_EQ(grad_add_op->Output(f::GradVarName("Y")), f::GradVarName("y")); } -REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker, mult_io_grad, f::NOP); -REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker, io_ignored_grad, f::NOP); +REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker, f::NOP); +REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker, f::NOP); TEST(GradOpBuilder, MutiInOut) { std::shared_ptr test_op(f::OpRegistry::CreateOp( diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index 2b178907747b3911292b070b65160a24c120b726..71eac4a10b34c3010a2758120c25754af58f669d 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -19,25 +19,24 @@ namespace paddle { namespace framework { -LODTensor::LOD LODTensor::LOD::SliceLevels(size_t level_begin, - size_t level_end) const { +LOD SliceLevels(const LOD& in, size_t level_begin, size_t level_end) { LOD new_lod; new_lod.reserve(level_end - level_begin); for (size_t i = level_begin; i < level_end; i++) { - new_lod.emplace_back(at(i)); + new_lod.emplace_back(in.at(i)); } return new_lod; } -LODTensor::LOD LODTensor::LOD::SliceInLevel(size_t level, size_t elem_begin, - size_t elem_end) const { +LOD SliceInLevel(const LOD& in, size_t level, size_t elem_begin, + size_t elem_end) { // slice the lod. LOD new_lod; - new_lod.reserve(size() - level); - auto start = this->at(level)[elem_begin]; - auto end = this->at(level)[elem_end]; + new_lod.reserve(in.size() - level); + auto start = in.at(level)[elem_begin]; + auto end = in.at(level)[elem_end]; - for (auto it = this->begin() + level; it != this->end(); it++) { + for (auto it = in.begin() + level; it != in.end(); it++) { auto it_begin = std::find(it->begin(), it->end(), start); auto it_end = std::find(it_begin, it->end(), end); PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info"); @@ -49,11 +48,11 @@ LODTensor::LOD LODTensor::LOD::SliceInLevel(size_t level, size_t elem_begin, [start](int v) { return v - start; }); PADDLE_ENFORCE_EQ(new_lod.back().front(), 0, "error in slice LOD"); } - PADDLE_ENFORCE_LE(new_lod.size(), this->size()); + PADDLE_ENFORCE_LE(new_lod.size(), in.size()); return new_lod; } -bool operator==(const LODTensor::LOD& a, const LODTensor::LOD& b) { +bool operator==(const LOD& a, const LOD& b) { if (a.size() != b.size()) { return false; } @@ -70,9 +69,27 @@ bool operator==(const LODTensor::LOD& a, const LODTensor::LOD& b) { } } } - return true; } +void LODTensor::SliceLevels(size_t level_begin, size_t level_end) { + auto new_lod = framework::SliceLevels(lod_, level_begin, level_end); + lod_ = new_lod; +} + +void LODTensor::SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) { + PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, + NumLevels()); + PADDLE_ENFORCE(elem_begin < NumElements(level), + "element begin [%d] out of range [%d]", elem_begin, + NumElements(level)); + PADDLE_ENFORCE(elem_end < NumElements(level) + 1, + "element end [%d] out of range [%d]", elem_end, + NumElements(level)); + + auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end); + lod_ = new_lod; +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 9e27aec38d336db8a4f0adbed098d299aa741356..9e6b6b4aca41ed464292b56bf6f2d27514f874f7 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -15,7 +15,7 @@ #pragma once #include -#if !defined(PADDLE_ONLY_CPU) +#ifndef PADDLE_ONLY_CPU #include #include #endif @@ -27,33 +27,39 @@ namespace paddle { namespace framework { +#ifdef PADDLE_ONLY_CPU +template +using Vector = std::vector; +#else +template +using Vector = thrust::host_vector; +#endif + +using LOD = std::vector>; + +LOD SliceLevels(const LOD& in, size_t level_begin, size_t level_end); + +LOD SliceInLevel(const LOD& in, size_t level, size_t elem_begin, + size_t elem_end); + +bool operator==(const LOD& a, const LOD& b); + /* * LODTensor (Level of details Tensor) * see https://en.wikipedia.org/wiki/Level_of_details for reference. */ -class LODTensor : public Tensor { +class LODTensor { public: -// Level save offsets of each unit. -#ifdef PADDLE_ONLY_CPU - template - using Vector = std::vector; -#else - template - using Vector = thrust::host_vector; -#endif - // LoD stores offsets of each level of units, the largest units level first, - // then the smaller units level. Each Level stores the offsets of units in - // Tesor. - class LOD : public std::vector> { - public: - LOD SliceLevels(size_t level_begin, size_t level_end) const; - LOD SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) const; - }; - LODTensor() {} - explicit LODTensor(const LOD &lod) : lod_(lod) {} + LODTensor(const LOD& lod, Tensor* t) : lod_(lod), tensor_(t) {} + + void set_lod(const LOD& lod) { lod_ = lod; } - virtual Tensor *Clone() const { return new LODTensor(lod_); } + void set_tensor(Tensor* tensor) { tensor_ = tensor; } + + Tensor& tensor() { return *tensor_; } + + LOD lod() { return lod_; } /* * Get a element from LOD. @@ -79,71 +85,23 @@ class LODTensor : public Tensor { PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, NumLevels()); // the last offset is the end of last element - return lod_[level].size() - 1; + return (lod_)[level].size() - 1; } /* - * Slice of levels[level_begin:level_end], with tensor shared. + * Slice of levels[level_begin:level_end] */ - template - LODTensor SliceLevels(size_t level_begin, size_t level_end) const; + void SliceLevels(size_t level_begin, size_t level_end); /* - * Slice of elements of a level, [elem_begin: elem_end], with tensor shared. + * Slice of elements of a level, [elem_begin: elem_end] * @note: low performance in slice lod_. */ - template - LODTensor SliceInLevel(size_t level, size_t elem_begin, - size_t elem_end) const; - - /* - * Copy other's lod_'s content, free to mutate. - */ - void CopyLOD(const LODTensor &other) { lod_ = other.lod_; } - /* - * Determine whether LODTensor has a valid LOD info. - */ - const LOD &lod() const { return lod_; } - LOD *mutable_lod() { return &lod_; } - - virtual ~LODTensor() {} + void SliceInLevel(size_t level, size_t elem_begin, size_t elem_end); private: LOD lod_; + Tensor* tensor_; // not owned }; - -bool operator==(const LODTensor::LOD &a, const LODTensor::LOD &b); - -template -LODTensor LODTensor::SliceLevels(size_t level_begin, size_t level_end) const { - auto new_lod = lod_.SliceLevels(level_begin, level_end); - // slice levels just need to update LOD info, each level will contains the - // whole tensor_, so no need to modify tensor_. - LODTensor new_tensor(new_lod); - new_tensor.ShareDataWith(*this); - return new_tensor; -} - -template -LODTensor LODTensor::SliceInLevel(size_t level, size_t elem_begin, - size_t elem_end) const { - PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, - NumLevels()); - PADDLE_ENFORCE(elem_begin < NumElements(level), - "element begin [%d] out of range [%d]", elem_begin, - NumElements(level)); - PADDLE_ENFORCE(elem_end < NumElements(level) + 1, - "element end [%d] out of range [%d]", elem_end, - NumElements(level)); - - auto new_lod = lod_.SliceInLevel(level, elem_begin, elem_end); - - // slice elements just need to update LOD info, because offsets are not - // changed, so the original tensor_ can be reused. - LODTensor new_tensor(new_lod); - new_tensor.ShareDataWith(*this); - return new_tensor; -} - } // namespace framework } // namespace paddle diff --git a/paddle/framework/lod_tensor.md b/paddle/framework/lod_tensor.md new file mode 100644 index 0000000000000000000000000000000000000000..8dfe3ee823084cb8c38550a82e761a741eabe135 --- /dev/null +++ b/paddle/framework/lod_tensor.md @@ -0,0 +1,122 @@ +# Design Doc: LoD (Level-of-Detail) Tensor + +PaddlePaddle's RNN doesn't require that all instances have the same length. To do so, we introduce an extension to Tensor, namely, LoD Tensor. + +## Challenge of Variable-length Inputs + +People usually represent a mini-batch by a Tensor. For example, a mini-batch of 32 images, each of size 32x32, is a 10x32x32 Tensor. So a transformation, T, of all images can be a matrix multiplication of the 32x32xO-dimensional tensor T and the 10x32x32 Tensor. + +Another example is that each mini-batch contains 32 sentences, where each word is a D-dimensional one-hot vector. If all sentences have the same length L, we can represent this mini-batch by a 32xLxD tensor. However, in most cases, sentences have variable lengths, and we will need an index data structure to record these variable lengths. + +## LoD as a Solution + +### Mini-Batch of variable-length sentenses + +Let's imagine a mini-batch of 3 variable lengths sentences, containing 3, 1, and 2 words respectively. We can represent it by a (3+1+2)xD tensor plus some index information: + +``` + 3 +3 1 2 +||| | || +``` + +Each `|` represents a D-dimensional word vectors. The number 3 on top indicate 3 sentences, and numbers 3, 1, and 2 on the second level represent the number of words in each sentence. + +### Mini-Batch of variable-length videos + +This approach generalizes to the case where elements are not words, but higher dimensional objects, like images. Suppose that a mini-batch contains videos of the same frame size 640x480. If a mini-batch contains 3 videos of 3, 1, and 2 frames respectively. The underlying tensor is of size (3+1+2)x640x480. The index information illustrates as: + +``` + 3 +3 1 2 +口口口 口 口口 +``` + +where each `口` represents an image. + +### Mini-Batch of fixed-size images + +Let's get back to a typical example, image classification, where each mini-batch has M fixed-sized images. The LoD Tensor representation is + +``` + M +1 1 1 1 1 +口口口口 ... 口 +``` + +The many 1's on the second level seem duplicated. For this particular case of 2 levels and the second level always have length 1, we can ignore the LoD index. + +### Design and summarization + +In summary, as long as that the essential elements (words or images) have the same size, we can represent mini-batches by a LoD Tensor: + +- The underlying tensor has size LxD1xD2x..., where D1xD2... is the size of the essential elements, and +- the first dimension size L has an additon property -- a LoD index as a nested vector: + + ```c++ + typedef std::vector > LoD; + ``` + +- The LoD index can is not necessary when there are only two levels and all elements of the second level have length 1. + +## Slicing of LoD Tensor + +Consider that we have a network with three levels of RNN: the top level one handles articles, the second level one handles sentences, and the basic level one handles words. This network requires that mini-batches represented by 4 level LoD Tensor, for example, + +``` + 3 +3 1 2 +3 2 4 1 2 3 +||| || |||| | || ||| +``` + +To allow each level of RNN to handle its input, we define **the slicing of a LoD Tensor is defined as getting the j-th sequence on level i, or the -slice** + +For example, the <2,1>-slice of above slice is + +``` +2 +|| +``` + +and the <1,2>-slice of above example is + +``` +2 +2 3 +|| ||| +``` + +Let's go on slicing this slice. Its <1,1>-slice is + +``` +3 +||| +``` + +### The General Slicing Algorithm + +The algorithm, with over-simplified data structure, is defined as + +```c++ +typedef vector > LoD; + +struct LoDTensor { + LoD lod_; + float* tensor_; +}; + +LoDTensor Slice(const LoDTensor& lodt, int level, int sequence) { + +} +``` + +### Slicing the Top Level + +Please be aware that an RNN operator only slices the top level of a LoD Tensor to get the step inputs. + +```c++ +LoDTensor Slice(const LoDTensor& lodt, int sequence) { + +} +``` diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc index 2881136ced6ef957a192e303e529b9b2867b3dda..9a351605edb5013bdab2c6193bdd9ce401acc937 100644 --- a/paddle/framework/lod_tensor_test.cc +++ b/paddle/framework/lod_tensor_test.cc @@ -24,13 +24,12 @@ namespace framework { class LODTensorTester : public ::testing::Test { public: virtual void SetUp() override { - lod_tensor.reset(new LODTensor); // tensor's batch_size: 30 // 3 levels // 0 10 20 // 0 5 10 15 20 // 0 2 5 7 10 12 15 20 - LODTensor::LOD lod; + LOD lod; lod.push_back(std::vector{0, 10, 20}); lod.push_back(std::vector{0, 5, 10, 15, 20}); lod.push_back(std::vector{0, 2, 5, 7, 10, 12, 15, 17, 20}); @@ -41,75 +40,65 @@ class LODTensorTester : public ::testing::Test { // malloc memory tensor.mutable_data(place); - lod_tensor.reset(new LODTensor(lod)); - lod_tensor->Resize({20 /*batch size*/, 128 /*dim*/}); - - lod_tensor->ShareDataWith(tensor); - // lod_tensor->ShareDataWith(tensor); + lod_tensor.set_lod(lod); + lod_tensor.set_tensor(&tensor); } protected: - std::unique_ptr lod_tensor; platform::CPUPlace place; Tensor tensor; + LODTensor lod_tensor; }; -TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor->NumLevels(), 3UL); } +TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor.NumLevels(), 3UL); } TEST_F(LODTensorTester, NumElements) { - ASSERT_EQ(lod_tensor->NumElements(0), 2UL); - ASSERT_EQ(lod_tensor->NumElements(1), 4UL); - ASSERT_EQ(lod_tensor->NumElements(2), 8UL); + ASSERT_EQ(lod_tensor.NumElements(0), 2UL); + ASSERT_EQ(lod_tensor.NumElements(1), 4UL); + ASSERT_EQ(lod_tensor.NumElements(2), 8UL); } TEST_F(LODTensorTester, SliceLevels) { // slice 1 level for (size_t level = 0; level < 3UL; ++level) { - auto new_lod_tensor = lod_tensor->SliceLevels(level, level + 1); + LODTensor new_lod_tensor = lod_tensor; + new_lod_tensor.SliceLevels(level, level + 1); ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); - ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level)); - // ASSERT_EQ(new_lod_tensor, *lod_tensor); + ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level)); + ASSERT_EQ(new_lod_tensor.tensor().data(), + lod_tensor.tensor().data()); } // slice 2 level for (size_t level = 0; level < 2UL; ++level) { - auto new_lod_tensor = lod_tensor->SliceLevels(level, level + 2); + LODTensor new_lod_tensor = lod_tensor; + new_lod_tensor.SliceLevels(level, level + 2); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); - ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level)); - ASSERT_EQ(new_lod_tensor.NumElements(1), - lod_tensor->NumElements(level + 1)); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor->data()); + ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor.NumElements(level)); + ASSERT_EQ(new_lod_tensor.NumElements(1), lod_tensor.NumElements(level + 1)); + ASSERT_EQ(new_lod_tensor.tensor().data(), + lod_tensor.tensor().data()); } } TEST_F(LODTensorTester, SliceInLevel) { size_t level = 0; - auto new_lod_tensor = lod_tensor->SliceInLevel(level, 0, 2); + LODTensor new_lod_tensor = lod_tensor; + new_lod_tensor.SliceInLevel(level, 0, 2); EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL); EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL); EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL); EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor->data()); + ASSERT_EQ(new_lod_tensor.tensor().data(), + lod_tensor.tensor().data()); level = 1; - new_lod_tensor = lod_tensor->SliceInLevel(level, 0, 2); + new_lod_tensor = lod_tensor; + new_lod_tensor.SliceInLevel(level, 0, 2); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); - ASSERT_EQ(new_lod_tensor.data(), lod_tensor->data()); -} - -TEST_F(LODTensorTester, ShareLOD) { - LODTensor new_lod_tensor; - new_lod_tensor.CopyLOD(*lod_tensor); - ASSERT_EQ(new_lod_tensor.lod(), lod_tensor->lod()); -} - -TEST_F(LODTensorTester, CopyLOD) { - LODTensor new_lod_tensor; - new_lod_tensor.CopyLOD(*lod_tensor); - bool equals = std::equal(lod_tensor->lod().begin(), lod_tensor->lod().end(), - new_lod_tensor.lod().begin()); - ASSERT_TRUE(equals); + ASSERT_EQ(new_lod_tensor.tensor().data(), + lod_tensor.tensor().data()); } } // namespace framework diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h index 94245c6c44aca962b0db890947a9dc5550ac0799..b98d8f23a14cf6fbe787953ad16b5c9ab99222ad 100644 --- a/paddle/framework/op_info.h +++ b/paddle/framework/op_info.h @@ -80,9 +80,19 @@ class OpInfoMap { } const OpInfo& Get(const std::string& type) const { + auto op_info_ptr = GetNullable(type); + PADDLE_ENFORCE_NOT_NULL(op_info_ptr, "Operator %s has not been registered", + type); + return *op_info_ptr; + } + + const OpInfo* GetNullable(const std::string& type) const { auto it = map_.find(type); - PADDLE_ENFORCE(it != map_.end(), "Operator %s are not found", type); - return it->second; + if (it == map_.end()) { + return nullptr; + } else { + return &it->second; + } } template diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 2d09cde41e3f5086279f9441e0fdc52549bed5ab..64c7f23ab6b79bad9533f566ca39db3cfd5ac5c5 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -33,8 +33,7 @@ namespace framework { class OpRegistry { public: template - static void RegisterOp(const std::string& op_type, - const std::string& grad_op_type) { + static void RegisterOp(const std::string& op_type) { PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), "'%s' is registered more than once.", op_type); OpInfo op_info; @@ -43,9 +42,9 @@ class OpRegistry { const VariableNameMap& outputs, const AttributeMap& attrs) { return new OpType(type, inputs, outputs, attrs); }; - op_info.grad_op_type_ = grad_op_type; if (std::type_index(typeid(ProtoMakerType)) != std::type_index(typeid(NOPMaker))) { + op_info.grad_op_type_ = op_type + "_grad"; op_info.proto_ = new OpProto; op_info.checker_ = new OpAttrChecker; auto maker = ProtoMakerType(op_info.proto_, op_info.checker_); @@ -55,15 +54,14 @@ class OpRegistry { op_info.proto_->IsInitialized(), "Fail to initialize %s's OpProto, because %s is not initialized", op_type, op_info.proto_->InitializationErrorString()); + // register gradient op + RegisterOp(op_info.grad_op_type_); } else { + op_info.grad_op_type_ = ""; op_info.proto_ = nullptr; op_info.checker_ = nullptr; } OpInfoMap::Instance().Insert(op_type, op_info); - // register gradient op - if (!grad_op_type.empty()) { - RegisterOp(grad_op_type, ""); - } } static std::unique_ptr CreateOp(const std::string& type, @@ -92,10 +90,8 @@ class Registrar { template class OpRegistrar : public Registrar { public: - explicit OpRegistrar(const char* op_type) { OpRegistrar(op_type, ""); } - OpRegistrar(const char* op_type, const char* grad_op_type) { - OpRegistry::RegisterOp(op_type, - grad_op_type); + explicit OpRegistrar(const char* op_type) { + OpRegistry::RegisterOp(op_type); } }; @@ -121,8 +117,7 @@ class OpKernelRegistrar : public Registrar { /** * Macro to register Operator. */ -#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \ - grad_op_class) \ +#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_class) \ STATIC_ASSERT_GLOBAL_NAMESPACE( \ __reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \ class _OpClass_##op_type##_ : public op_class { \ @@ -137,14 +132,14 @@ class OpKernelRegistrar : public Registrar { }; \ static ::paddle::framework::OpRegistrar< \ _OpClass_##op_type##_, op_maker_class, _OpGradClass_##op_type##_> \ - __op_registrar_##op_type##__(#op_type, #grad_op_type); \ + __op_registrar_##op_type##__(#op_type); \ int TouchOpRegistrar_##op_type() { \ __op_registrar_##op_type##__.Touch(); \ return 0; \ } #define REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) \ - REGISTER_OP(op_type, op_class, op_maker_class, , ::paddle::framework::NOP) + REGISTER_OP(op_type, op_class, op_maker_class, ::paddle::framework::NOP) /** * Macro to register OperatorKernel. diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 7abbde610f1e9c530393b9a9cabe40b826712212..790cfc4746b1d34da413fa3c29a266f962c6dde6 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -33,12 +33,12 @@ ExecutionContext::GetEigenDevice() const { } #endif -const std::string& OperatorBase::Input(const std::string& name) const { +std::string OperatorBase::Input(const std::string& name) const { auto& ins = Inputs(name); - PADDLE_ENFORCE_EQ(ins.size(), 1UL, + PADDLE_ENFORCE_LE(ins.size(), 1UL, "Op %s input %s should contain only one variable", type_, name); - return ins[0]; + return ins.empty() ? kEmptyVarName : ins[0]; } const std::vector& OperatorBase::Inputs( @@ -49,12 +49,12 @@ const std::vector& OperatorBase::Inputs( return it->second; } -const std::string& OperatorBase::Output(const std::string& name) const { +std::string OperatorBase::Output(const std::string& name) const { auto& outs = Outputs(name); - PADDLE_ENFORCE_EQ(outs.size(), 1UL, + PADDLE_ENFORCE_LE(outs.size(), 1UL, "Op %s output %s should contain only one variable", type_, name); - return outs[0]; + return outs.empty() ? kEmptyVarName : outs[0]; } const std::vector& OperatorBase::Outputs( @@ -119,16 +119,8 @@ OperatorBase::OperatorBase(const std::string& type, const VariableNameMap& outputs, const AttributeMap& attrs) : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) { - static std::atomic gUniqId(0UL); - for (auto& output : outputs_) { - for (auto& output_name : output.second) { - if (output_name == kTempVarName) { - output_name += type_; - output_name += "@"; - output_name += std::to_string(gUniqId.fetch_add(1)); - } - } - } + GenerateTemporaryNames(); + CheckAllInputOutputSet(); } std::vector OperatorBase::OutputVars(bool has_intermediate) const { @@ -156,6 +148,35 @@ std::vector OperatorBase::OutputVars(bool has_intermediate) const { return ret_val; } +void OperatorBase::CheckAllInputOutputSet() const { + auto& info_map = OpInfoMap::Instance(); + auto* op_info = info_map.GetNullable(Type()); + if (op_info == nullptr || op_info->proto_ == nullptr) return; + + for (auto& in : op_info->Proto().inputs()) { + PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(), + "Type %s's input %s is not set", Type(), in.name()); + } + + for (auto& out : op_info->Proto().outputs()) { + PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(), + "Type %s's output %s is not set", Type(), out.name()); + } +} + +void OperatorBase::GenerateTemporaryNames() { + static std::atomic gUniqId(0UL); + for (auto& output : outputs_) { + for (auto& output_name : output.second) { + if (output_name == kTempVarName) { + output_name += type_; + output_name += "@"; + output_name += std::to_string(gUniqId.fetch_add(1)); + } + } + } +} + void OpProtoAndCheckerMaker::Validate() { validated_ = true; CheckNoDuplicatedInOutAttrs(); diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 8397570d26f06f0238e9c5afc85d721df7679257..590e335fdc8843ed9edd01a09605163de93f52d9 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -95,12 +95,12 @@ class OperatorBase { const VariableNameMap& Inputs() const { return inputs_; } const VariableNameMap& Outputs() const { return outputs_; } //! Get a input with argument's name described in `op_proto` - const std::string& Input(const std::string& name) const; + std::string Input(const std::string& name) const; //! Get a input which has multiple variables. const std::vector& Inputs(const std::string& name) const; //! Get a output with argument's name described in `op_proto` - const std::string& Output(const std::string& name) const; + std::string Output(const std::string& name) const; //! Get an output which has multiple variables. //! TODO add a vector_view to prevent memory copy. const std::vector& Outputs(const std::string& name) const; @@ -127,6 +127,10 @@ class OperatorBase { // IG (Inputs Gradients) VariableNameMap outputs_; AttributeMap attrs_; + + private: + void GenerateTemporaryNames(); + void CheckAllInputOutputSet() const; }; // Macro for define a clone method. @@ -238,11 +242,13 @@ class InferShapeContext { } const Variable* InputVar(const std::string& name) const { - return scope_.FindVar(op_.Input(name)); + auto ipt = op_.Input(name); + return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); } Variable* OutputVar(const std::string& name) const { - return scope_.FindVar(op_.Output(name)); + auto opt = op_.Output(name); + return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt); } const std::vector MultiInputVar( @@ -250,9 +256,11 @@ class InferShapeContext { auto names = op_.Inputs(name); std::vector res; res.reserve(names.size()); - std::transform( - names.begin(), names.end(), std::back_inserter(res), - [this](const std::string& name) { return scope_.FindVar(name); }); + std::transform(names.begin(), names.end(), std::back_inserter(res), + [this](const std::string& name) { + return name == kEmptyVarName ? nullptr + : scope_.FindVar(name); + }); return res; } @@ -260,24 +268,24 @@ class InferShapeContext { auto names = op_.Outputs(name); std::vector res; res.reserve(names.size()); - std::transform( - names.begin(), names.end(), std::back_inserter(res), - [this](const std::string& name) { return scope_.FindVar(name); }); + std::transform(names.begin(), names.end(), std::back_inserter(res), + [this](const std::string& name) { + return name == kEmptyVarName ? nullptr + : scope_.FindVar(name); + }); return res; } template const T* Input(const std::string& name) const { auto* var = InputVar(name); - PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name); - return &var->Get(); + return var == nullptr ? nullptr : &var->Get(); } template T* Output(const std::string& name) const { auto var = OutputVar(name); - PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name); - return var->GetMutable(); + return var == nullptr ? nullptr : var->GetMutable(); } template @@ -288,10 +296,7 @@ class InferShapeContext { std::transform(names.begin(), names.end(), std::back_inserter(res), [&](const std::string& sub_name) { auto var = scope_.FindVar(sub_name); - PADDLE_ENFORCE_NOT_NULL( - var, "MultiInput(%s:%s) should not be nullptr", name, - sub_name); - return &var->Get(); + return var == nullptr ? nullptr : &var->Get(); }); return res; } @@ -304,10 +309,7 @@ class InferShapeContext { std::transform(names.begin(), names.end(), std::back_inserter(res), [&](const std::string& sub_name) { auto var = scope_.FindVar(sub_name); - PADDLE_ENFORCE_NOT_NULL( - var, "MultiOutput(%s:%s) should not be nullptr.", name, - sub_name); - return var->GetMutable(); + return var == nullptr ? nullptr : var->GetMutable(); }); return res; } diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index 7d7263b899afb7a2128548f264065a8013b6f0c9..7893e233b776425a61d9e3edd43d944a27743188 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -117,6 +117,8 @@ inline void Tensor::CopyFrom(const Tensor& src, memory::Copy(boost::get(dst_place), dst_ptr, boost::get(src_place), src_ptr, size, 0); } + PADDLE_ENFORCE(cudaStreamSynchronize(0), + "cudaStreamSynchronize failed in Tensor CopyFrom"); #endif } diff --git a/paddle/gserver/layers/Conv3DLayer.cpp b/paddle/gserver/layers/Conv3DLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7cc9937cce37cbbc4640fbb88312841c23b757c0 --- /dev/null +++ b/paddle/gserver/layers/Conv3DLayer.cpp @@ -0,0 +1,244 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Conv3DLayer.h" +#include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +REGISTER_LAYER(conv3d, Conv3DLayer); + +bool Conv3DLayer::init(const LayerMap &layerMap, + const ParameterMap ¶meterMap) { + if (!ConvBaseLayer::init(layerMap, parameterMap)) return false; + int index = 0; + for (auto &inputConfig : config_.inputs()) { + const ConvConfig &conf = inputConfig.conv_conf(); + M_.push_back(numFilters_ / conf.groups()); + K_.push_back(filterPixels_[index] * filterChannels_[index]); + + // create a new weight + size_t height, width; + width = filterPixels_[index] * filterChannels_[index]; + height = numFilters_; + CHECK_EQ(parameters_[index]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[index]); + weights_.emplace_back(w); + ++index; + } + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = + std::unique_ptr(new Weight(1, numFilters_, biasParameter_)); + } else { + biases_ = + std::unique_ptr(new Weight(1, getSize(), biasParameter_)); + } + } + return true; +} + +size_t Conv3DLayer::getSize() { + CHECK_NE(inputLayers_.size(), 0UL); + outputH_.clear(); + outputW_.clear(); + outputD_.clear(); + N_.clear(); + size_t layerSize = 0; + for (size_t i = 0; i < inputLayers_.size(); ++i) { + outputW_.push_back(outputSize( + imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true)); + outputH_.push_back(outputSize( + imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true)); + outputD_.push_back(outputSize( + imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true)); + + N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]); + CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize); + layerSize += N_[i] * numFilters_; + } + getOutput().setFrameHeight(outputH_[0]); + getOutput().setFrameWidth(outputW_[0]); + getOutput().setFrameDepth(outputD_[0]); + return layerSize; +} + +void Conv3DLayer::forward(PassType passType) { + Layer::forward(passType); + + int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + int outWidth = getSize(); + resetOutput(batchSize, outWidth); + + for (size_t i = 0; i != inputLayers_.size(); ++i) { + REGISTER_TIMER_INFO("FwdConv3D", getName().c_str()); + const MatrixPtr &inMat = getInputValue(i); + const MatrixPtr &outMat = getOutputValue(); + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + MatrixPtr wMat = weights_[i]->getW(); + for (int n = 0; n < batchSize; ++n) { + colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(), + channels_[i], + imgSizeD_[i], + imgSizeH_[i], + imgSizeW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i]); + + real *outData = outMat->getData() + n * outMat->getStride(); + MatrixPtr outMatSub = + Matrix::create(outData, groups_[i] * M, N, false, useGpu_); + for (int g = 0; g < groups_[i]; g++) { + MatrixPtr wMatSub = wMat->subMatrix(g * M, M); + MatrixPtr in = colBuf_->subMatrix(g * K, K); + MatrixPtr out = outMatSub->subMatrix(g * M, M); + out->mul(*wMatSub, *in, 1.0, 1.0); + } + } + } + if (nullptr != this->biasParameter_) { + REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str()); + this->addBias(); + } + forwardActivation(); +} + +void Conv3DLayer::backward(const UpdateCallback &callback) { + backwardActivation(); + + if (biases_ && biases_->getWGrad()) { + bpropBiases(); + biases_->getParameterPtr()->incUpdate(callback); + } + + for (size_t i = 0; i != inputLayers_.size(); ++i) { + REGISTER_TIMER_INFO("BwdConv3D", getName().c_str()); + if (weights_[i]->getWGrad()) { + bpropWeights(i); + } + if (getInputGrad(i)) { + bpropData(i); + } + REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); + weights_[i]->getParameterPtr()->incUpdate(callback); + } +} + +void Conv3DLayer::bpropWeights(int i) { + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + const MatrixPtr &inMat = getInputValue(i); + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + MatrixPtr wGradMat = weights_[i]->getWGrad(); + int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + for (int n = 0; n < batchSize; ++n) { + colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(), + channels_[i], + imgSizeD_[i], + imgSizeH_[i], + imgSizeW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i]); + + real *outGradData = + getOutputGrad()->getData() + n * getOutputGrad()->getStride(); + MatrixPtr outGradSub = + Matrix::create(outGradData, groups_[i] * M, N, false, useGpu_); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr inMatSub = colBuf_->subMatrix(g * K, K); + MatrixPtr outG = outGradSub->subMatrix(g * M, M); + MatrixPtr wGradSub = wGradMat->subMatrix(g * M, M); + wGradSub->mul(*outG, *(inMatSub->getTranspose()), 1.0, 1.0); + } + } +} + +void Conv3DLayer::bpropData(int i) { + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + MatrixPtr wMat = weights_[i]->getW(); + int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + for (int n = 0; n < batchSize; ++n) { + real *outGradData = + getOutputGrad()->getData() + n * getOutputGrad()->getStride(); + real *preGradData = + getInputGrad(i)->getData() + n * getInputGrad(i)->getStride(); + MatrixPtr outGradSub = + Matrix::create(outGradData, M * groups_[i], N, false, useGpu_); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr wMatSub = wMat->subMatrix(g * M, M); + MatrixPtr outG = outGradSub->subMatrix(g * M, M); + MatrixPtr inGradMatSub = colBuf_->subMatrix(g * K, K); + inGradMatSub->mul(*(wMatSub->getTranspose()), *outG, 1.0, 0.0); + } + colBuf_->col2Vol(preGradData, + channels_[i], + imgSizeD_[i], + imgSizeH_[i], + imgSizeW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i], + 1.0, + 1.0); + } +} + +void Conv3DLayer::bpropBiases() { + MatrixPtr outGradMat = getOutputGrad(); + if (this->sharedBiases_) { + biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f); + } else { + biases_->getWGrad()->collectBias(*outGradMat, 1.0f); + } +} + +void Conv3DLayer::addBias() { + MatrixPtr outMat = getOutputValue(); + if (this->sharedBiases_) { + outMat->addSharedBias(*(biases_->getW()), 1.0f); + } else { + outMat->addBias(*(biases_->getW()), 1.0f); + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/Conv3DLayer.h b/paddle/gserver/layers/Conv3DLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..b622508d0ce1b0938c44f5c7f1371a34c86b2c1d --- /dev/null +++ b/paddle/gserver/layers/Conv3DLayer.h @@ -0,0 +1,51 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "ConvBaseLayer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/math/Matrix.h" + +namespace paddle { + +/** + * @brief A subclass of convolution layer. + * This layer expands input and use matrix multiplication to + * calculate convolution operation. + */ +class Conv3DLayer : public ConvBaseLayer { +public: + explicit Conv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {} + ~Conv3DLayer() {} + + bool init(const LayerMap& layerMap, const ParameterMap& parameterMap); + + void forward(PassType passType); + void addBias(); + void backward(const UpdateCallback& callback); + void bpropBiases(); + void bpropData(int i); + void bpropWeights(int i); + size_t getSize(); + +protected: + // Figure out the dimensions for individual gemms. + IntV M_; /// numFilters_ / filter_group_; + IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_ + IntV K_; /// outputD_ * outputH_ * outputW_ + MatrixPtr colBuf_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/ConvBaseLayer.cpp b/paddle/gserver/layers/ConvBaseLayer.cpp index a5328ef8343e1050352fc48530e041fb6ce12a8b..b848ab6bdd44f8fe81cbbf63b35a321599fd93fe 100644 --- a/paddle/gserver/layers/ConvBaseLayer.cpp +++ b/paddle/gserver/layers/ConvBaseLayer.cpp @@ -38,7 +38,6 @@ bool ConvBaseLayer::init(const LayerMap& layerMap, strideY_.push_back(conf.stride_y()); dilationY_.push_back(conf.dilation_y()); filterSizeY_.push_back(conf.filter_size_y()); - filterPixels_.push_back(filterSize_.back() * filterSizeY_.back()); channels_.push_back(conf.channels()); imgSizeH_.push_back(conf.has_img_size_y() ? conf.img_size_y() : conf.img_size()); @@ -47,31 +46,20 @@ bool ConvBaseLayer::init(const LayerMap& layerMap, filterChannels_.push_back(conf.filter_channels()); outputH_.push_back(conf.has_output_y() ? conf.output_y() : conf.output_x()); outputW_.push_back(conf.output_x()); + + paddingZ_.push_back(conf.padding_z()); + strideZ_.push_back(conf.stride_z()); + filterSizeZ_.push_back(conf.filter_size_z()); + imgSizeD_.push_back(conf.img_size_z()); + outputD_.push_back(conf.output_z()); + filterPixels_.push_back(filterSize_.back() * filterSizeY_.back() * + filterSizeZ_.back()); } CHECK(inputLayers_.size() == parameters_.size()); - for (size_t i = 0; i < inputLayers_.size(); i++) { - size_t height, width; - height = filterPixels_[i] * filterChannels_[i]; - width = (!isDeconv_) ? numFilters_ : channels_[i]; - - // create a new weight - CHECK_EQ(parameters_[i]->getSize(), width * height); - Weight* w = new Weight(height, width, parameters_[i]); - weights_.emplace_back(w); - } - /* initialize the biases_ */ - if (biasParameter_.get()) { - if (sharedBiases_) { - CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); - biases_ = - std::unique_ptr(new Weight(numFilters_, 1, biasParameter_)); - } else { - biases_ = - std::unique_ptr(new Weight(getSize(), 1, biasParameter_)); - } - } + // create new weights_ in derived class + // create new biases_ in derived class // default caffe model caffeMode_ = true; diff --git a/paddle/gserver/layers/ConvBaseLayer.h b/paddle/gserver/layers/ConvBaseLayer.h index 223bce8e296d748c8e17eb105aa67e8a1c1219b6..ccd170d9d85f573dff7340c26b2038c17a548471 100644 --- a/paddle/gserver/layers/ConvBaseLayer.h +++ b/paddle/gserver/layers/ConvBaseLayer.h @@ -62,6 +62,13 @@ protected: IntV outputH_; /// The spatial dimensions of output feature map width. IntV outputW_; + + IntV outputD_; + IntV imgSizeD_; + IntV filterSizeZ_; + IntV strideZ_; + IntV paddingZ_; + /// Group size, refer to grouped convolution in /// Alex Krizhevsky's paper: when group=2, the first half of the /// filters are only connected to the first half of the input channels, diff --git a/paddle/gserver/layers/CrossEntropyOverBeam.cpp b/paddle/gserver/layers/CrossEntropyOverBeam.cpp index 4acc077035b17fdf5ec06e0d4d916fa0a62f6cba..578bdbbe72120abccc63ed13d11e1dec65d41e44 100644 --- a/paddle/gserver/layers/CrossEntropyOverBeam.cpp +++ b/paddle/gserver/layers/CrossEntropyOverBeam.cpp @@ -223,7 +223,7 @@ void CrossEntropyOverBeam::checkInputs() { << inputLayers_[i * 3]->getName() << " should be a nested sequence"; CHECK_EQ(getInputValue(i * 3 + 1)->getWidth(), beamSize_); - CHECK_EQ(scores.getNumSequences(), batchSize_); + CHECK_EQ(batchSize_, static_cast(scores.getNumSequences())); CHECK_EQ(scores.getNumSubSequences(), selCandidates.getBatchSize()); } else { CHECK(scores.hasSeq()) << "input " << i << " " @@ -231,10 +231,10 @@ void CrossEntropyOverBeam::checkInputs() { << " should be a sequence"; batchSize_ = scores.getNumSequences(); beamSize_ = getInputValue(i * 3 + 1)->getWidth(); - CHECK_EQ(batchSize_, selCandidates.getBatchSize()); + CHECK_EQ(batchSize_, static_cast(selCandidates.getBatchSize())); } CHECK_EQ(1U, scores.value->getWidth()); - CHECK_EQ(batchSize_, goldSeq.getBatchSize()); + CHECK_EQ(batchSize_, static_cast(goldSeq.getBatchSize())); } } @@ -377,8 +377,8 @@ void CrossEntropyOverBeam::forward(PassType passType) { MatrixPtr outputValue = getOutputValue(); for (size_t i = 0; i < batchSize_; ++i) { - beamCosts_[i].setData( - std::move(std::make_shared(beamPerSeq_[i])), beamSize_); + BeamExpansionPtr ptr = std::make_shared(beamPerSeq_[i]); + beamCosts_[i].setData(std::move(ptr), beamSize_); outputValue->getData()[i] = beamCosts_[i].forward(); } } diff --git a/paddle/gserver/layers/CudnnConvBaseLayer.cpp b/paddle/gserver/layers/CudnnConvBaseLayer.cpp index c056bbe4d1d354751d4f85f8d0743cf30486c087..9e954615cddf2566ea336d1c947985fd916e8cc4 100644 --- a/paddle/gserver/layers/CudnnConvBaseLayer.cpp +++ b/paddle/gserver/layers/CudnnConvBaseLayer.cpp @@ -46,8 +46,26 @@ bool CudnnConvBaseLayer::init(const LayerMap &layerMap, projConf_.emplace_back(conf); projections_.emplace_back( Projection::create(*projConf_[i], parameters_[i], useGpu_)); + + // create a new weight + size_t height, width; + height = filterPixels_[i] * filterChannels_[i]; + width = (!isDeconv_) ? numFilters_ : channels_[i]; + CHECK_EQ(parameters_[i]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[i]); + weights_.emplace_back(w); } + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = + std::unique_ptr(new Weight(numFilters_, 1, biasParameter_)); + } else { + biases_ = + std::unique_ptr(new Weight(getSize(), 1, biasParameter_)); + } + } if (biases_.get() && sharedBiases_) { hl_create_tensor_descriptor(&biasDesc_); hl_create_tensor_descriptor(&outputDesc_); diff --git a/paddle/gserver/layers/DeConv3DLayer.cpp b/paddle/gserver/layers/DeConv3DLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7d5c772c89d260264a59f4cc4439bb8a44c605a4 --- /dev/null +++ b/paddle/gserver/layers/DeConv3DLayer.cpp @@ -0,0 +1,212 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "DeConv3DLayer.h" +#include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +REGISTER_LAYER(deconv3d, DeConv3DLayer); + +bool DeConv3DLayer::init(const LayerMap &layerMap, + const ParameterMap ¶meterMap) { + if (!ConvBaseLayer::init(layerMap, parameterMap)) return false; + // for Deconv, the dimension of Kernel is + // channel * output * depth * height * weigth + // Matrix storage format: (output * depth * height * weigth) x channel + for (int index = 0; index < config_.inputs().size(); ++index) { + M_.push_back(filterChannels_[index]); + K_.push_back(filterPixels_[index] * (numFilters_ / groups_[index])); + + // create a new weight + size_t height, width; + height = filterPixels_[index] * numFilters_; + width = filterChannels_[index]; + CHECK_EQ(parameters_[index]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[index]); + weights_.emplace_back(w); + } + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = + std::unique_ptr(new Weight(1, numFilters_, biasParameter_)); + } else { + biases_ = + std::unique_ptr(new Weight(1, getSize(), biasParameter_)); + } + } + return true; +} + +size_t DeConv3DLayer::getSize() { + CHECK_NE(inputLayers_.size(), 0UL); + outputH_.clear(); + outputW_.clear(); + outputD_.clear(); + N_.clear(); + NOut_.clear(); + size_t layerSize = 0; + for (size_t i = 0; i < inputLayers_.size(); ++i) { + outputW_.push_back( + imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true)); + outputH_.push_back(imageSize( + imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true)); + outputD_.push_back(imageSize( + imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true)); + NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]); + N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]); + CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize); + layerSize += NOut_[i] * numFilters_; + } + getOutput().setFrameHeight(outputH_[0]); + getOutput().setFrameWidth(outputW_[0]); + getOutput().setFrameDepth(outputD_[0]); + return layerSize; +} + +void DeConv3DLayer::forward(PassType passType) { + Layer::forward(passType); + int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + int outWidth = getSize(); + resetOutput(batchSize, outWidth); + const MatrixPtr outMat = getOutputValue(); + + for (size_t i = 0; i != inputLayers_.size(); ++i) { + REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str()); + const MatrixPtr &inMat = getInputValue(i); + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + MatrixPtr wMat = weights_[i]->getW(); + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + for (int n = 0; n < batchSize; ++n) { + real *inData = inMat->getData() + n * inMat->getStride(); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_); + MatrixPtr wMatSub = wMat->subMatrix(g * K, K); + MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K); + colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0); + inData += M * N; + } + colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(), + numFilters_, + outputD_[i], + outputH_[i], + outputW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i], + 1.0, + 1.0); + } + } + if (nullptr != this->biasParameter_) { + REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str()); + this->addBias(); + } + forwardActivation(); +} + +void DeConv3DLayer::backward(const UpdateCallback &callback) { + backwardActivation(); + int batchSize = getOutputGrad()->getHeight(); + if (biases_ && biases_->getWGrad()) { + bpropBiases(); + biases_->getParameterPtr()->incUpdate(callback); + } + for (size_t i = 0; i < inputLayers_.size(); ++i) { + if (weights_[i]->getWGrad() || this->needGradient_) { + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str()); + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + const MatrixPtr &inMat = getInputValue(i); + for (int n = 0; n < batchSize; ++n) { + colBuf_->vol2Col( + getOutputGrad()->getData() + n * getOutputGrad()->getStride(), + numFilters_, + outputD_[i], + outputH_[i], + outputW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i]); + if (weights_[i]->getWGrad()) { + real *inData = inMat->getData() + n * inMat->getStride(); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K); + MatrixPtr wGradMatSub = + weights_[i]->getWGrad()->subMatrix(g * K, K); + MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_); + wGradMatSub->mul( + *colBufDataSub, *(inMatSub->getTranspose()), 1.0, 1.0); + inData += M * N; + } + } + if (getInputGrad(i)) { + real *preGrad = + getInputGrad(i)->getData() + n * getInputGrad(i)->getStride(); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K); + MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K); + MatrixPtr inGradMatSub = + Matrix::create(preGrad, M, N, false, useGpu_); + inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 1.0); + preGrad += M * N; + } + } + } + REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); + weights_[i]->getParameterPtr()->incUpdate(callback); + } + } +} +void DeConv3DLayer::bpropWeights(int i) {} +void DeConv3DLayer::bpropData(int i) {} + +void DeConv3DLayer::bpropBiases() { + const MatrixPtr &outGradMat = getOutputGrad(); + + if (this->sharedBiases_) { + biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f); + } else { + biases_->getWGrad()->collectBias(*outGradMat, 1.0f); + } +} + +void DeConv3DLayer::addBias() { + MatrixPtr outMat = getOutputValue(); + if (this->sharedBiases_) { + outMat->addSharedBias(*(biases_->getW()), 1.0f); + } else { + outMat->addBias(*(biases_->getW()), 1.0f); + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/DeConv3DLayer.h b/paddle/gserver/layers/DeConv3DLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..a2a3d3f8273ed77065224c27df6f711f09f34bbc --- /dev/null +++ b/paddle/gserver/layers/DeConv3DLayer.h @@ -0,0 +1,52 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "ConvBaseLayer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/math/Matrix.h" + +namespace paddle { + +/** + * @brief A subclass of deconvolution3D layer. + * This layer expands input and use matrix multiplication to + * calculate deconvolution3D operation. + */ +class DeConv3DLayer : public ConvBaseLayer { +public: + explicit DeConv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {} + ~DeConv3DLayer() {} + bool init(const LayerMap& layerMap, const ParameterMap& parameterMap); + + void forward(PassType passType); + void addBias(); + void backward(const UpdateCallback& callback); + void bpropBiases(); + void bpropData(int i); + void bpropWeights(int i); + size_t getSize(); + +protected: + // Figure out the dimensions for individual gemms. + IntV M_; /// numFilters_ / filter_group_; + IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_ + IntV K_; /// outputD_ * outputH_ * outputW_ + IntV NOut_; + MatrixPtr colBuf_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.cpp b/paddle/gserver/layers/ExpandConvBaseLayer.cpp index 77736e78f9349c0393e1e53ac700817a70893e53..2b7bef0a757d7c706be3815c539b036b094596cf 100644 --- a/paddle/gserver/layers/ExpandConvBaseLayer.cpp +++ b/paddle/gserver/layers/ExpandConvBaseLayer.cpp @@ -22,12 +22,31 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap, /* Initialize the basic convolutional parent class */ ConvBaseLayer::init(layerMap, parameterMap); + int index = 0; for (auto &inputConfig : config_.inputs()) { const ConvConfig &conf = inputConfig.conv_conf(); /* Consistent caffe mode for multiple input */ caffeMode_ = conf.caffe_mode(); - } + // create a new weight + size_t height, width; + height = filterPixels_[index] * filterChannels_[index]; + width = (!isDeconv_) ? numFilters_ : channels_[index]; + CHECK_EQ(parameters_[index]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[index]); + weights_.emplace_back(w); + index++; + } + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = + std::unique_ptr(new Weight(numFilters_, 1, biasParameter_)); + } else { + biases_ = + std::unique_ptr(new Weight(getSize(), 1, biasParameter_)); + } + } getOutputSize(); return true; diff --git a/paddle/gserver/layers/Pool3DLayer.cpp b/paddle/gserver/layers/Pool3DLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..199f21adb1a5923b590e4f0e716fc67effb2a2d1 --- /dev/null +++ b/paddle/gserver/layers/Pool3DLayer.cpp @@ -0,0 +1,178 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Pool3DLayer.h" +#include "PoolProjectionLayer.h" +#include "paddle/utils/Logging.h" + +namespace paddle { + +REGISTER_LAYER(pool3d, Pool3DLayer); + +bool Pool3DLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + Layer::init(layerMap, parameterMap); + + /* the size of inputs for pool-layer is 1 */ + CHECK_EQ(config_.inputs_size(), 1); + + const PoolConfig& conf = config_.inputs(0).pool_conf(); + poolType_ = conf.pool_type(); + channels_ = conf.channels(); + + sizeX_ = conf.size_x(); + sizeY_ = conf.size_y(); + sizeZ_ = conf.size_z(); + + strideW_ = conf.stride(); + strideH_ = conf.stride_y(); + strideD_ = conf.stride_z(); + + imgSizeW_ = conf.img_size(); + imgSizeH_ = conf.img_size_y(); + imgSizeD_ = conf.img_size_z(); + + paddingW_ = conf.padding(); + paddingH_ = conf.padding_y(); + paddingD_ = conf.padding_z(); + + outputW_ = conf.output_x(); + outputH_ = conf.output_y(); + outputD_ = conf.output_z(); + + return true; +} + +size_t Pool3DLayer::getSize() { + CHECK_EQ(inputLayers_.size(), 1UL); + + size_t layerSize = 0; + outputD_ = outputSize(imgSizeD_, sizeZ_, paddingD_, strideD_, false); + outputH_ = outputSize(imgSizeH_, sizeY_, paddingH_, strideH_, false); + outputW_ = outputSize(imgSizeW_, sizeX_, paddingW_, strideW_, false); + + layerSize = outputD_ * outputH_ * outputW_ * channels_; + getOutput().setFrameHeight(outputH_); + getOutput().setFrameWidth(outputW_); + getOutput().setFrameDepth(outputD_); + return layerSize; +} + +void Pool3DLayer::forward(PassType passType) { + Layer::forward(passType); + const MatrixPtr& inMat = inputLayers_[0]->getOutputValue(); + size_t batchSize = inMat->getHeight(); + size_t outWidth = getSize(); + resetOutput(batchSize, outWidth); + Matrix::resizeOrCreate(maxPoolIdx_, batchSize, outWidth, false, useGpu_); + const MatrixPtr outMat = getOutputValue(); + + if (poolType_ == "avg") { + outMat->avgPool3DForward(*inMat, + channels_, + imgSizeD_, + imgSizeH_, + imgSizeW_, + outputD_, + outputH_, + outputW_, + sizeZ_, + sizeY_, + sizeX_, + strideD_, + strideH_, + strideW_, + paddingD_, + paddingH_, + paddingW_); + } else if (poolType_ == "max") { + outMat->maxPool3DForward(*inMat, + *maxPoolIdx_, + channels_, + imgSizeD_, + imgSizeH_, + imgSizeW_, + outputD_, + outputH_, + outputW_, + sizeZ_, + sizeY_, + sizeX_, + strideD_, + strideH_, + strideW_, + paddingD_, + paddingH_, + paddingW_); + } else { + LOG(FATAL) << "Unknown pool type: " << poolType_; + } + forwardActivation(); +} + +void Pool3DLayer::backward(const UpdateCallback& callback) { + backwardActivation(); + + (void)callback; + if (NULL == getInputGrad(0)) return; + MatrixPtr inMat = inputLayers_[0]->getOutputValue(); + MatrixPtr inGradMat = inputLayers_[0]->getOutputGrad(); + MatrixPtr outMat = getOutputValue(); + MatrixPtr outGradMat = getOutputGrad(); + + if (poolType_ == "avg") { + inGradMat->avgPool3DBackward(*outGradMat, + imgSizeD_, + imgSizeH_, + imgSizeW_, + outputD_, + outputH_, + outputW_, + sizeZ_, + sizeY_, + sizeZ_, + strideD_, + strideH_, + strideW_, + paddingD_, + paddingH_, + paddingW_, + 1.0, + 1.0); + } else if (poolType_ == "max") { + inGradMat->maxPool3DBackward(*outGradMat, + *maxPoolIdx_, + imgSizeD_, + imgSizeH_, + imgSizeW_, + outputD_, + outputH_, + outputW_, + sizeZ_, + sizeY_, + sizeZ_, + strideD_, + strideH_, + strideW_, + paddingD_, + paddingH_, + paddingW_, + 1.0, + 1.0); + } else { + LOG(FATAL) << "Unknown pool type: " << poolType_; + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/Pool3DLayer.h b/paddle/gserver/layers/Pool3DLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..8329a02f571bf3b5422134c756c248f77fd517b1 --- /dev/null +++ b/paddle/gserver/layers/Pool3DLayer.h @@ -0,0 +1,49 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "Layer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/math/Matrix.h" + +namespace paddle { + +/** + * @brief Basic parent layer of pooling + * Pools the input within regions + */ +class Pool3DLayer : public Layer { +public: + explicit Pool3DLayer(const LayerConfig& config) : Layer(config) {} + ~Pool3DLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + void forward(PassType passType) override; + void backward(const UpdateCallback& callback) override; + size_t getSize(); + +protected: + int channels_; + int sizeX_, sizeY_, sizeZ_; + int strideW_, strideH_, strideD_; + int paddingW_, paddingH_, paddingD_; + int imgSizeW_, imgSizeH_, imgSizeD_; + int outputW_, outputH_, outputD_; + std::string poolType_; + MatrixPtr maxPoolIdx_; +}; +} // namespace paddle diff --git a/paddle/gserver/layers/PrintLayer.cpp b/paddle/gserver/layers/PrintLayer.cpp index 0a1e17b9aa57b373f0df6e079341729539f4e193..e83ae34bbe7d31b9bb7c16bc3fa84db7bd4e33d2 100644 --- a/paddle/gserver/layers/PrintLayer.cpp +++ b/paddle/gserver/layers/PrintLayer.cpp @@ -48,7 +48,16 @@ public: << inputLayers_.size() << ") at " << getName(); } s << format.substr(pos); - LOG(INFO) << s.str(); + + const std::string delimiter("\n"); + std::string content = s.str(); + std::string::size_type foundPos = 0; + std::string::size_type prevPos = 0; + while ((foundPos = content.find(delimiter, prevPos)) != std::string::npos) { + LOG(INFO) << content.substr(prevPos, foundPos - prevPos); + prevPos = foundPos + delimiter.size(); + } + LOG(INFO) << content.substr(prevPos); } void backward(const UpdateCallback& callback) override {} diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index 93b6e3cc5bd7a87aa854052277772904d70de802..a831ffbc73fbd6ad42fa31b2d6d583718474e59b 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -1246,6 +1246,75 @@ TEST(Layer, PoolLayer) { #endif } +void setPool3DConfig(TestConfig* config, + PoolConfig* pool, + const string& poolType) { + // filter size + const int NUM_FILTERS = 16; + const int FILTER_SIZE = 3; + const int FILTER_SIZE_Y = 3; + const int FILTER_SIZE_Z = 3; + const int CHANNELS = 16; + + (*config).biasSize = 0; + (*config).layerConfig.set_type("pool3d"); + (*config).layerConfig.set_num_filters(NUM_FILTERS); + + int kw = FILTER_SIZE, kh = FILTER_SIZE_Y, kd = FILTER_SIZE_Z; + int pw = 0, ph = 0, pd = 0; + int sw = 2, sh = 2, sd = 2; + + pool->set_pool_type(poolType); + pool->set_pool_type("avg"); + pool->set_channels(CHANNELS); + pool->set_size_x(kw); + pool->set_size_y(kh); + pool->set_size_z(kd); + pool->set_padding(0); + pool->set_padding_y(0); + pool->set_padding_z(0); + pool->set_stride(sw); + pool->set_stride_y(sh); + pool->set_stride_z(sd); + pool->set_start(0); + int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false); + int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false); + int od = outputSize(pool->img_size_z(), kd, pd, sd, /* caffeMode */ false); + pool->set_output_x(ow); + pool->set_output_y(oh); + pool->set_output_z(od); +} + +void testPool3DLayer(const string& poolType, bool trans, bool useGpu) { + TestConfig config; + config.inputDefs.push_back({INPUT_DATA, "layer_0", 11664, 0}); + LayerInputConfig* input = config.layerConfig.add_inputs(); + PoolConfig* pool = input->mutable_pool_conf(); + + const int IMAGE_SIZE = 9; + const int IMAGE_SIZE_Y = 9; + const int IMAGE_SIZE_Z = 9; + + pool->set_img_size(IMAGE_SIZE); + pool->set_img_size_y(IMAGE_SIZE_Y); + pool->set_img_size_z(IMAGE_SIZE_Z); + + setPool3DConfig(&config, pool, poolType); + config.layerConfig.set_size(pool->output_x() * pool->output_y() * + pool->channels()); + + testLayerGrad(config, "pool3d", 100, trans, useGpu); +} + +TEST(Layer, Pool3DLayer) { + testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ false); + testPool3DLayer("max", /* trans= */ false, /* useGpu= */ false); +#ifndef PADDLE_ONLY_CPU + testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ true); + testPool3DLayer("max", /* trans= */ false, /* useGpu= */ true); +#endif +} + void testSppLayer(const string& poolType, const int pyramidHeight, bool trans, @@ -2047,6 +2116,159 @@ TEST(Layer, RowL2NormLayer) { } } +void test3DConvLayer(const string& type, bool trans, bool useGpu) { + // filter size + const int NUM_FILTERS = 6; + // const int CHANNELS = 3; + const int FILTER_SIZE = 3; + const int FILTER_SIZE_Y = 3; + const int FILTER_SIZE_Z = 3; + + // input image + const int CHANNELS = 3; + const int IMAGE_SIZE = 9; + const int IMAGE_SIZE_Y = 9; + const int IMAGE_SIZE_Z = 9; + + TestConfig config; + config.biasSize = NUM_FILTERS; + config.layerConfig.set_type(type); + config.layerConfig.set_num_filters(NUM_FILTERS); + config.layerConfig.set_partial_sum(1); + config.layerConfig.set_shared_biases(true); + + // Setting up conv3D-trans layer + LayerInputConfig* input = config.layerConfig.add_inputs(); + ConvConfig* conv = input->mutable_conv_conf(); + + conv->set_channels(CHANNELS); + conv->set_filter_size(FILTER_SIZE); + conv->set_filter_size_y(FILTER_SIZE_Y); + conv->set_filter_size_z(FILTER_SIZE_Z); + conv->set_padding(0); + conv->set_padding_y(0); + conv->set_padding_z(0); + conv->set_stride(2); + conv->set_stride_y(2); + conv->set_stride_z(2); + conv->set_img_size(IMAGE_SIZE); + conv->set_img_size_y(IMAGE_SIZE_Y); + conv->set_img_size_z(IMAGE_SIZE_Z); + conv->set_output_x(outputSize(conv->img_size(), + conv->filter_size(), + conv->padding(), + conv->stride(), + /* caffeMode */ true)); + conv->set_output_y(outputSize(conv->img_size_y(), + conv->filter_size_y(), + conv->padding_y(), + conv->stride_y(), + /* caffeMode */ true)); + conv->set_output_z(outputSize(conv->img_size_z(), + conv->filter_size_z(), + conv->padding_z(), + conv->stride_z(), + /* caffeMode */ true)); + + config.layerConfig.set_size(conv->output_x() * conv->output_y() * + conv->output_z() * NUM_FILTERS); + conv->set_groups(1); + conv->set_filter_channels(conv->channels() / conv->groups()); + config.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z, + conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z * + NUM_FILTERS}); + + testLayerGrad(config, "conv3D", 10, trans, useGpu); + // Use small batch_size and useWeight=true to test biasGrad + testLayerGrad(config, "conv3D", 2, trans, useGpu, true, 0.02); +} + +TEST(Layer, test3DConvLayer) { + test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ false); +#ifndef PADDLE_ONLY_CPU + test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ true); +#endif +} + +void test3DDeConvLayer(const string& type, bool trans, bool useGpu) { + // filter size + const int NUM_FILTERS = 6; + // const int CHANNELS = 3; + const int FILTER_SIZE = 3; + const int FILTER_SIZE_Y = 3; + const int FILTER_SIZE_Z = 3; + + // input image + const int CHANNELS = 3; + const int IMAGE_SIZE = 4; + const int IMAGE_SIZE_Y = 6; + const int IMAGE_SIZE_Z = 6; + + // Setting up conv-trans layer + TestConfig config; + config.biasSize = NUM_FILTERS; + config.layerConfig.set_type("deconv3d"); + config.layerConfig.set_num_filters(NUM_FILTERS); + config.layerConfig.set_partial_sum(1); + config.layerConfig.set_shared_biases(true); + + LayerInputConfig* input = config.layerConfig.add_inputs(); + ConvConfig* conv = input->mutable_conv_conf(); + + conv->set_channels(CHANNELS); + conv->set_filter_size(FILTER_SIZE); + conv->set_filter_size_y(FILTER_SIZE_Y); + conv->set_filter_size_z(FILTER_SIZE_Z); + conv->set_padding(0); + conv->set_padding_y(0); + conv->set_padding_z(0); + conv->set_stride(2); + conv->set_stride_y(2); + conv->set_stride_z(2); + conv->set_img_size(IMAGE_SIZE); + conv->set_img_size_y(IMAGE_SIZE_Y); + conv->set_img_size_z(IMAGE_SIZE_Z); + conv->set_output_x(imageSize(conv->img_size(), + conv->filter_size(), + conv->padding(), + conv->stride(), + true)); + conv->set_output_y(imageSize(conv->img_size_y(), + conv->filter_size_y(), + conv->padding_y(), + conv->stride_y(), + true)); + conv->set_output_z(imageSize(conv->img_size_z(), + conv->filter_size_z(), + conv->padding_z(), + conv->stride_z(), + true)); + config.layerConfig.set_size(conv->output_x() * conv->output_y() * + conv->output_z() * NUM_FILTERS); + conv->set_groups(1); + conv->set_filter_channels(conv->channels() / conv->groups()); + config.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z, + conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z * + NUM_FILTERS}); + + testLayerGrad(config, "deconv3D", 10, trans, useGpu); + // Use small batch_size and useWeight=true to test biasGrad + testLayerGrad(config, "deconv3D", 2, trans, useGpu, true, 0.02); +} + +TEST(Layer, test3DDeConvLayer) { + test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ false); +#ifndef PADDLE_ONLY_CPU + test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ true); +#endif +} + TEST(Layer, ScaleShiftLayer) { const size_t batchSize = 16; const size_t size = 32; diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp index 27f7d95b752d4a423bf99fa425b10b2816575d6a..8bc42571f7c141aa31e18d0504b95b2ed4f0da77 100644 --- a/paddle/math/Matrix.cpp +++ b/paddle/math/Matrix.cpp @@ -1190,6 +1190,221 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad, outGrad.getStride()); } +void GpuMatrix::maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + CHECK(inputMat.useGpu_) << "Matrix type are not correct"; + + real* inputData = inputMat.getData(); + real* maxPoolIdxData = maxPoolIdx.getData(); + size_t num = inputMat.getHeight(); + size_t width = imgSizeW; + size_t height = imgSizeH; + size_t depth = imgSizeD; + CHECK(depth * height * width * channels == inputMat.getWidth()); + CHECK(height_ == inputMat.getHeight()); + CHECK(width_ == outputD * outputH * outputW * channels); + + hl_maxpool3D_forward(num, + inputData, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + getData(), + maxPoolIdxData, + getStride()); +} + +void GpuMatrix::maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + CHECK(outGrad.useGpu_ && maxPoolIdx.useGpu_) << "Matrix type are not equal"; + + real* outDiff = outGrad.getData(); + real* maxPoolIdxData = maxPoolIdx.getData(); + size_t frameNum = getHeight(); + size_t channels = outGrad.getWidth() / outputD / outputH / outputW; + size_t width = imgSizeW; + size_t height = imgSizeH; + size_t depth = imgSizeD; + CHECK(depth * height * width * channels == getWidth()); + CHECK(width_ == depth * width * height * channels); + CHECK(outGrad.getHeight() == maxPoolIdx.getHeight() && + outGrad.getWidth() == maxPoolIdx.getWidth()); + + hl_maxpool3D_backward(frameNum, + outDiff, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + scaleTargets, + scaleOutput, + getData(), + maxPoolIdxData, + outGrad.getStride()); +} + +void GpuMatrix::avgPool3DForward(Matrix& inputMat, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + CHECK(inputMat.useGpu_) << "Matrix type are not equal"; + + real* inputData = inputMat.getData(); + size_t frameNum = inputMat.getHeight(); + size_t height = imgSizeH; + size_t width = imgSizeW; + size_t depth = imgSizeD; + CHECK(depth * height * width * channels == inputMat.getWidth()); + CHECK(height_ == inputMat.getHeight()); + CHECK(width_ == outputD * outputH * outputW * channels); + + hl_avgpool3D_forward(frameNum, + inputData, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + getData(), + getStride()); +} + +void GpuMatrix::avgPool3DBackward(Matrix& outGrad, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + CHECK(outGrad.useGpu_) << "Matrix type are not equal"; + + real* outDiff = outGrad.getData(); + size_t frameNum = outGrad.getHeight(); + size_t channels = outGrad.getWidth() / outputD / outputH / outputW; + size_t height = imgSizeH; + size_t width = imgSizeW; + size_t depth = imgSizeD; + CHECK(depth * height * width * channels == width_); + CHECK(height_ == outGrad.getHeight()); + CHECK(outGrad.getWidth() == outputD * outputH * outputW * channels); + + hl_avgpool3D_backward(frameNum, + outDiff, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + scaleTargets, + scaleOutput, + getData(), + outGrad.getStride()); +} + void GpuMatrix::maxSequenceForward(Matrix& input, const IVector& sequence, IVector& index) { @@ -1389,6 +1604,72 @@ void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) { output_d, grad_d, mat_d, height_, width_); } +void GpuMatrix::vol2Col(real* dataSrc, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW) { + hl_matrix_vol2Col(dataSrc, + channels, + depth, + height, + width, + filterD, + filterH, + filterW, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + getData()); +} + +void GpuMatrix::col2Vol(real* dataDst, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta) { + hl_matrix_col2Vol(dataDst, + channels, + depth, + height, + width, + filterD, + filterH, + filterW, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + getData(), + alpha, + beta); +} + /** * CpuMatrix */ @@ -1930,6 +2211,276 @@ void CpuMatrix::avgPoolBackward(Matrix& input, } } +void CpuMatrix::maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + real* inputData = inputMat.getData(); + real* outData = getData(); + real* maxPoolIdxData = maxPoolIdx.getData(); + size_t num = inputMat.getHeight(); + size_t inWidth = imgSizeW; + size_t inHeight = imgSizeH; + size_t inDepth = imgSizeD; + CHECK(inHeight * inWidth * inDepth == inputMat.getWidth() / channels); + CHECK_EQ(num, this->getHeight()); + CHECK_EQ(channels * outputH * outputW * outputD, this->getWidth()); + size_t outStride = getStride(); + + /* initialize the data_ */ + for (size_t i = 0; i < height_; i++) { + for (size_t j = 0; j < width_; j++) { + outData[(i)*outStride + j] = -(real)FLT_MAX; + maxPoolIdxData[(i)*outStride + j] = -1; + } + } + + /* pool max one by one */ + for (size_t n = 0; n < num; ++n) { // frame by frame + if (!isContiguous()) { + outData = getData() + n * outStride; + maxPoolIdxData = maxPoolIdx.getData() + n * outStride; + } + for (size_t c = 0; c < channels; ++c) { // channel by channel + for (size_t pd = 0; pd < outputD; ++pd) { + for (size_t ph = 0; ph < outputH; ++ph) { + for (size_t pw = 0; pw < outputW; ++pw) { + int dstart = pd * strideD - paddingD; + int hstart = ph * strideH - paddingH; + int wstart = pw * strideW - paddingW; + int dend = std::min(dstart + sizeZ, inDepth); + int hend = std::min(hstart + sizeY, inHeight); + int wend = std::min(wstart + sizeX, inWidth); + dstart = std::max(dstart, 0); + hstart = std::max(hstart, 0); + wstart = std::max(wstart, 0); + int maxIdx = -1; + real maxOutData = outData[(pd * outputH + ph) * outputW + pw]; + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + if (maxOutData < + inputData[(d * inHeight + h) * inWidth + w]) { + maxOutData = inputData[(d * inHeight + h) * inWidth + w]; + maxIdx = (d * inHeight + h) * inWidth + w; + } + } + } + } + outData[(pd * outputH + ph) * outputW + pw] = maxOutData; + maxPoolIdxData[(pd * outputH + ph) * outputW + pw] = maxIdx; + } + } + } + // compute offset + inputData += inDepth * inHeight * inWidth; + outData += outputD * outputH * outputW; + maxPoolIdxData += outputD * outputH * outputW; + } + } +} + +void CpuMatrix::maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + size_t num = getHeight(); + size_t channels = size_t(width_ / imgSizeD / imgSizeH / imgSizeW); + CHECK(maxPoolIdx.getHeight() == outGrad.getHeight() && + maxPoolIdx.getWidth() == outGrad.getWidth()); + + real* tgtGrad = getData(); + real* otGrad = outGrad.getData(); + real* maxPoolIdxData = maxPoolIdx.getData(); + size_t outStride = outGrad.getStride(); + + for (size_t n = 0; n < num; ++n) { + if (!outGrad.isContiguous()) { + otGrad = outGrad.getData() + n * outStride; + maxPoolIdxData = maxPoolIdx.getData() + n * outStride; + } + for (size_t c = 0; c < channels; ++c) { + for (size_t pd = 0; pd < outputD; ++pd) { + for (size_t ph = 0; ph < outputH; ++ph) { + for (size_t pw = 0; pw < outputW; ++pw) { + const size_t index = (pd * outputH + ph) * outputW + pw; + const size_t tgtIdx = static_cast(maxPoolIdxData[index]); + tgtGrad[tgtIdx] = + scaleTargets * tgtGrad[tgtIdx] + scaleOutput * otGrad[index]; + } + } + } + // offset + tgtGrad += imgSizeD * imgSizeH * imgSizeW; + otGrad += outputD * outputH * outputW; + maxPoolIdxData += outputD * outputH * outputW; + } + } +} + +void CpuMatrix::avgPool3DForward(Matrix& input, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + // The main loop + size_t num = input.getHeight(); + size_t inDepth = imgSizeD; + size_t inHeight = imgSizeH; + size_t inWidth = imgSizeW; + CHECK(inDepth * inHeight * inWidth * channels == input.getWidth()); + CHECK(outputD * outputH * outputW * channels * num == height_ * width_); + real* tgtData = getData(); + real* inData = input.getData(); + + for (size_t n = 0; n < num; ++n) { + if (!isContiguous()) { + tgtData = data_ + n * getStride(); + } + for (size_t c = 0; c < channels; ++c) { + for (size_t pd = 0; pd < outputD; ++pd) { + for (size_t ph = 0; ph < outputH; ++ph) { + for (size_t pw = 0; pw < outputW; ++pw) { + int dstart = pd * strideD - paddingD; + int hstart = ph * strideH - paddingH; + int wstart = pw * strideW - paddingW; + int dend = std::min(dstart + sizeZ, inDepth + paddingD); + int hend = std::min(hstart + sizeY, inHeight + paddingH); + int wend = std::min(wstart + sizeX, inWidth + paddingW); + int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart); + dstart = std::max(dstart, 0); + hstart = std::max(hstart, 0); + wstart = std::max(wstart, 0); + dend = std::min(dend, static_cast(inDepth)); + hend = std::min(hend, static_cast(inHeight)); + wend = std::min(wend, static_cast(inWidth)); + + CHECK(poolSize); + tgtData[(pd * outputH + ph) * outputW + pw] = 0; // clear + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + tgtData[(pd * outputH + ph) * outputW + pw] += + inData[(d * inHeight + h) * inWidth + w]; + } + } + } + tgtData[(pd * outputH + ph) * outputW + pw] /= poolSize; + } + } + } + // compute offset + inData += inDepth * inHeight * inWidth; + tgtData += outputD * outputH * outputW; + } + } +} + +void CpuMatrix::avgPool3DBackward(Matrix& input, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + size_t num = input.getHeight(); + size_t channels = input.getWidth() / outputD / outputH / outputW; + CHECK(imgSizeD * imgSizeH * imgSizeW * channels == getWidth()); + real* inData = input.getData(); + real* outData = getData(); + + for (size_t n = 0; n < num; ++n) { + if (!input.isContiguous()) { + inData = input.getData() + n * input.getStride(); + } + for (size_t c = 0; c < channels; ++c) { + for (size_t pd = 0; pd < outputD; ++pd) { + for (size_t ph = 0; ph < outputH; ++ph) { + for (size_t pw = 0; pw < outputW; ++pw) { + int dstart = pd * strideD - paddingD; + int hstart = ph * strideH - paddingH; + int wstart = pw * strideW - paddingW; + int dend = std::min(dstart + sizeZ, imgSizeD + paddingD); + int hend = std::min(hstart + sizeY, imgSizeH + paddingH); + int wend = std::min(wstart + sizeX, imgSizeW + paddingW); + int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart); + dstart = std::max(dstart, 0); + hstart = std::max(hstart, 0); + wstart = std::max(wstart, 0); + dend = std::min(dend, static_cast(imgSizeD)); + hend = std::min(hend, static_cast(imgSizeH)); + wend = std::min(wend, static_cast(imgSizeW)); + CHECK(poolSize); + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + outData[(d * imgSizeH + h) * imgSizeW + w] += + inData[(pd * outputH + ph) * outputW + pw] / poolSize; + } + } + } + } + } + } + // offset + outData += imgSizeD * imgSizeH * imgSizeW; + inData += outputD * outputH * outputW; + } + } +} + /** * Input: one or more sequences. Each sequence contains some instances. * Output: output size is the number of input sequences (NOT input instances). @@ -3975,6 +4526,95 @@ void CpuMatrix::bilinearBackward(const Matrix& out, } } +void CpuMatrix::vol2Col(real* data, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW) { + real* outData = getData(); + int outHeight = (height + 2 * paddingH - filterH) / strideH + 1; + int outWidth = (width + 2 * paddingW - filterW) / strideW + 1; + int outDepth = (depth + 2 * paddingD - filterD) / strideD + 1; + + int channelsCol = channels * filterD * filterH * filterW; + for (int c = 0; c < channelsCol; ++c) { + int wOffset = c % filterW; + int hOffset = (c / filterW) % filterH; + int dOffset = (c / filterW / filterH) % filterD; + int cIn = c / filterW / filterH / filterD; + for (int d = 0; d < outDepth; ++d) { + for (int h = 0; h < outHeight; ++h) { + for (int w = 0; w < outWidth; ++w) { + int dPad = d * strideD - paddingD + dOffset; + int hPad = h * strideH - paddingH + hOffset; + int wPad = w * strideW - paddingW + wOffset; + + if (hPad >= 0 && hPad < height && wPad >= 0 && wPad < width && + dPad >= 0 && dPad < depth) + outData[((c * outDepth + d) * outHeight + h) * outWidth + w] = + data[((cIn * depth + dPad) * height + hPad) * width + wPad]; + else + outData[((c * outDepth + d) * outHeight + h) * outWidth + w] = 0; + } + } + } + } +} + +void CpuMatrix::col2Vol(real* trg, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta) { + real* src = getData(); + int outDepth = (depth + 2 * paddingD - filterD) / strideD + 1; + int outHeight = (height + 2 * paddingH - filterH) / strideH + 1; + int outWidth = (width + 2 * paddingW - filterW) / strideW + 1; + int channelsCol = channels * filterD * filterH * filterW; + for (int c = 0; c < channelsCol; ++c) { + int wOffset = c % filterW; + int hOffset = (c / filterW) % filterH; + int dOffset = (c / filterW / filterH) % filterD; + int cIm = c / filterW / filterH / filterD; + for (int d = 0; d < outDepth; ++d) { + for (int h = 0; h < outHeight; ++h) { + for (int w = 0; w < outWidth; ++w) { + int dPad = d * strideD - paddingD + dOffset; + int hPad = h * strideH - paddingH + hOffset; + int wPad = w * strideW - paddingW + wOffset; + if (hPad >= 0 && hPad < height && wPad >= 0 && wPad < width && + dPad >= 0 && dPad < depth) + trg[((cIm * depth + dPad) * height + hPad) * width + wPad] = + alpha * + src[((c * outDepth + d) * outHeight + h) * outWidth + w] + + beta * + trg[((cIm * depth + dPad) * height + hPad) * width + wPad]; + } + } + } + } +} + //////////////////////////////////////////////////////////////// // functions executed via cpu // //////////////////////////////////////////////////////////////// diff --git a/paddle/math/Matrix.h b/paddle/math/Matrix.h index bb802bbb2c75289a45d987b22ad41ce8b1e95c98..431d4e071072317c8fdfdc4f0d13e7cd4e3d062b 100644 --- a/paddle/math/Matrix.h +++ b/paddle/math/Matrix.h @@ -928,15 +928,102 @@ public: size_t paddingW) { LOG(FATAL) << "Not implemeted"; } - /** - * Input: one or more sequences. Each sequence contains some instances. - * - * Output: output size is the number of input sequences (NOT input - * instances). - * - * output[i] is set to max_input[i]. + * Pooling 3D forward operation, pick out the largest element + * in the sizeX of value */ + virtual void maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + LOG(FATAL) << "Not implemeted"; + } + + virtual void maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + LOG(FATAL) << "Not implemeted"; + } + + virtual void avgPool3DForward(Matrix& input, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + LOG(FATAL) << "Not implemeted"; + } + + virtual void avgPool3DBackward(Matrix& input, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + LOG(FATAL) << "Not implemeted"; + } + + /** + * Input: one or more sequences. Each sequence contains some instances. + * + * Output: output size is the number of input sequences (NOT input + * instances). + * + * output[i] is set to max_input[i]. + */ virtual void maxSequenceForward(Matrix& input, const IVector& sequence, IVector& index) { @@ -1039,6 +1126,42 @@ public: LOG(FATAL) << "Not implemented"; } + virtual void vol2Col(real* data, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW) { + LOG(FATAL) << "Not implemeted"; + } + + virtual void col2Vol(real* trg, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta) { + LOG(FATAL) << "Not implemeted"; + } + virtual void bilinearForward(const Matrix& in, const size_t inImgH, const size_t inImgW, @@ -1348,6 +1471,82 @@ public: size_t paddingH, size_t paddingW); + void maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW); + + void maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput); + + void avgPool3DForward(Matrix& input, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW); + + void avgPool3DBackward(Matrix& input, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput); + void maxSequenceForward(Matrix& input, const IVector& sequence, IVector& index); @@ -1374,6 +1573,38 @@ public: const real ratioH, const real ratioW); + void vol2Col(real* data, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW); + + void col2Vol(real* trg, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta); + void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label); void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label); @@ -1507,6 +1738,82 @@ public: size_t paddingH, size_t paddingW); + void maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW); + + void maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput); + + void avgPool3DForward(Matrix& input, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW); + + void avgPool3DBackward(Matrix& input, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput); + void maxSequenceForward(Matrix& input, const IVector& sequence, IVector& index); @@ -1715,6 +2022,38 @@ public: const real ratioH, const real ratioW); + void vol2Col(real* data, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW); + + void col2Vol(real* trg, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta); + template void operator=(const ExpressionType& expr) { TensorCpuApply(*this, expr); diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp index d77478f345df97b37b214b5978f51ce47c1d791c..103f06acc57d7a23f019f5e713f6cacf2179e9e0 100644 --- a/paddle/math/tests/test_matrixCompare.cpp +++ b/paddle/math/tests/test_matrixCompare.cpp @@ -18,6 +18,7 @@ limitations under the License. */ #include #include "TensorCheck.h" +#include "paddle/math/MathUtils.h" #include "paddle/math/Matrix.h" #include "paddle/math/SparseMatrix.h" #include "paddle/testing/TestUtil.h" @@ -1203,4 +1204,497 @@ TEST(Matrix, warpCTC) { } } +void testMaxPool3DFwdBwd(int numSamples, + int channels, + int imgSizeD, + int imgSizeH, + int imgSizeW, + int ksizeD, + int ksizeH, + int ksizeW, + int strideD, + int strideH, + int strideW, + int padD, + int padH, + int padW) { + int outD = outputSize(imgSizeD, ksizeD, padD, strideD, true); + int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true); + int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true); + + int inWidth = channels * imgSizeD * imgSizeH * imgSizeW; + MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); + MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true); + + int outWidth = channels * outD * outH * outW; + MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true); + MatrixPtr maxIdx = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr maxIdxGpu = GpuMatrix::create(numSamples, outWidth, false, true); + + input->randomizeUniform(); + target->randomizeUniform(); + inputGpu->copyFrom(*input); + targetGpu->copyFrom(*target); + + target->maxPool3DForward(*input, + *maxIdx, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW); + targetGpu->maxPool3DForward(*inputGpu, + *maxIdxGpu, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW); + MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false); + targetCheck->copyFrom(*targetGpu); + checkMatrixEqual(target, targetCheck); + + MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false); + MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true); + MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr targetGpuGrad = + GpuMatrix::create(numSamples, outWidth, false, true); + + inputGrad->randomizeUniform(); + targetGrad->randomizeUniform(); + inputGpuGrad->copyFrom(*inputGrad); + targetGpuGrad->copyFrom(*targetGrad); + + inputGrad->maxPool3DBackward(*targetGrad, + *maxIdx, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW, + 1.0, + 1.0); + inputGpuGrad->maxPool3DBackward(*targetGpuGrad, + *maxIdxGpu, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW, + 1.0, + 1.0); + MatrixPtr targetBwdCheck = + CpuMatrix::create(numSamples, inWidth, false, false); + targetBwdCheck->copyFrom(*inputGpuGrad); + checkMatrixEqual(inputGrad, targetBwdCheck); +} + +void testAvgPool3DFwdBwd(int numSamples, + int channels, + int imgSizeD, + int imgSizeH, + int imgSizeW, + int ksizeD, + int ksizeH, + int ksizeW, + int strideD, + int strideH, + int strideW, + int padD, + int padH, + int padW) { + int outD = outputSize(imgSizeD, ksizeD, padD, strideD, true); + int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true); + int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true); + + int inWidth = imgSizeD * imgSizeH * imgSizeW * channels; + MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); + MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true); + + int outWidth = channels * outD * outH * outW; + MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true); + + input->randomizeUniform(); + target->randomizeUniform(); + inputGpu->copyFrom(*input); + targetGpu->copyFrom(*target); + + target->avgPool3DForward(*input, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW); + + targetGpu->avgPool3DForward(*inputGpu, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW); + + TensorCheckErr(*target, *targetGpu); + + MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false); + MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true); + MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr targetGpuGrad = + GpuMatrix::create(numSamples, outWidth, false, true); + + inputGrad->randomizeUniform(); + targetGrad->randomizeUniform(); + inputGpuGrad->copyFrom(*inputGrad); + targetGpuGrad->copyFrom(*targetGrad); + + inputGrad->avgPool3DBackward(*targetGrad, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW, + 1.0, + 1.0); + + inputGpuGrad->avgPool3DBackward(*targetGpuGrad, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW, + 1.0, + 1.0); + TensorCheckErr(*inputGrad, *inputGpuGrad); +} + +// TODO(yi): I noticed many such blindly combinatorial tests in this +// file. They are no help to locate defects at all. +TEST(Matrix, Pool3DFwdBwd) { + for (auto numSamples : {1, 3}) { + for (auto channels : {3}) { + for (auto imgSizeD : {9, 16}) { + for (auto imgSizeH : {9, 32}) { + for (auto imgSizeW : {9, 32}) { + for (auto sizeX : {3}) { + for (auto sizeY : {3}) { + for (auto sizeZ : {3}) { + for (auto sD : {2}) { + for (auto sH : {2}) { + for (auto sW : {2}) { + for (auto pD : {0, (sizeZ - 1) / 2}) { + for (auto pH : {0, (sizeY - 1) / 2}) { + for (auto pW : {0, (sizeX - 1) / 2}) { + VLOG(3) << " numSamples=" << numSamples + << " channels=" << channels + << " imgSizeD=" << imgSizeD + << " imgSizeH=" << imgSizeH + << " imgSizeW=" << imgSizeW + << " sizeX=" << sizeX + << " sizeY=" << sizeY + << " sizeZ=" << sizeZ << " strideD=" << sD + << " strideH=" << sH << " strideW=" << sW + << " padingD=" << pD << " padingH=" << pH + << " padingW=" << pW; + + testMaxPool3DFwdBwd(numSamples, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + sizeX, + sizeY, + sizeZ, + sD, + sH, + sW, + pD, + pH, + pW); + testAvgPool3DFwdBwd(numSamples, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + sizeX, + sizeY, + sizeZ, + sD, + sH, + sW, + pD, + pH, + pW); + } + } + } + } + } + } + } + } + } + } + } + } + } + } + + // for (auto numSamples : {1, 3}) { + // for (auto channels : {1, 3}) { + // for (auto imgSizeD : {9,16}) { + // for (auto imgSizeH : {9, 32}) { + // for (auto imgSizeW : {9, 32}) { + // for (auto sizeX : {2, 3}) { + // for (auto sizeY : {2, 3}) { + // for (auto sizeZ : {2,3}){ + // for (auto sD : {1, 2}) { + // for (auto sH : {1, 2}) { + // for (auto sW : {1, 2}) { + // for (auto pD : {0, (sizeZ - 1) / 2}){ + // for (auto pH : {0, (sizeY - 1) / 2}) { + // for (auto pW : {0, (sizeX - 1) / 2}) { + // VLOG(3) << " numSamples=" << numSamples + // << " channels=" << channels + // << " imgSizeD=" << imgSizeD + // << " imgSizeH=" << imgSizeH + // << " imgSizeW=" << imgSizeW + // << " sizeX=" << sizeX + // << " sizeY=" << sizeY + // << " sizeZ=" << sizeZ + // << " strideD=" << sD + // << " strideH=" << sH + // << " strideW=" << sW + // << " padingD=" << pD + // << " padingH=" << pH + // << " padingW=" << pW; + // + // testMaxPool3DFwdBwd(numSamples, + // channels, + // imgSizeD, + // imgSizeH, + // imgSizeW, + // sizeX, + // sizeY, + // sizeZ, + // sD, + // sH, + // sW, + // pD, + // pH, + // pW); + // testAvgPool3DFwdBwd(numSamples, + // channels, + // imgSizeD, + // imgSizeH, + // imgSizeW, + // sizeX, + // sizeY, + // sizeZ, + // sD, + // sH, + // sW, + // pD, + // pH, + // pW); + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } +} + +void testMatrixCol2Vol(int depth, int height, int width) { + int channel = 3; + int filterX = 3, filterY = 4, filterZ = 5; + int strideX = 2, strideY = 2, strideZ = 2; + int padX = 1, padY = 1, padZ = 1; + + MatrixPtr cpuImage = + std::make_shared(channel, depth * height * width); + MatrixPtr gpuImage = + std::make_shared(channel, depth * height * width); + cpuImage->randomizeUniform(); + gpuImage->copyFrom(*cpuImage); + + int outD = outputSize(depth, filterZ, padZ, strideZ, true); + int outH = outputSize(height, filterY, padY, strideY, true); + int outW = outputSize(width, filterX, padX, strideX, true); + + int colBufHeight = channel * filterZ * filterY * filterX; + int colBufWidth = outD * outH * outW; + MatrixPtr cpuColBuf = std::make_shared(colBufHeight, colBufWidth); + MatrixPtr gpuColBuf = std::make_shared(colBufHeight, colBufWidth); + cpuColBuf->vol2Col(cpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX); + gpuColBuf->vol2Col(gpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX); + TensorCheckEqual(*cpuColBuf, *gpuColBuf); + + cpuColBuf->randomizeUniform(); + gpuColBuf->copyFrom(*cpuColBuf); + cpuColBuf->col2Vol(cpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX, + 1.0, + 1.0); + gpuColBuf->col2Vol(gpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX, + 1.0, + 1.0); + TensorCheckErr(*cpuImage, *gpuImage); +} + +TEST(Matrix, col2Vol) { + for (auto depth : {9, 16, 64}) { + for (auto height : {9, 11, 128}) { + for (auto width : {9, 32, 128}) { + VLOG(3) << "depth=" << depth << " height=" << height + << " width=" << width; + testMatrixCol2Vol(depth, height, width); + } + } + } +} + #endif diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index f0fd12f1b5276d033ea086c60c80616fb1be7585..e5efcccb0e219a1c9df888cfec7f8902806676d4 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -1,7 +1,10 @@ +file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc") +string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}") function(op_library TARGET) # op_library is a function to create op library. The interface is same as # cc_library. But it handle split GPU/CPU code and link some common library # for ops. + set(OP_LIBRARY ${TARGET} ${OP_LIBRARY} PARENT_SCOPE) set(cc_srcs) set(cu_srcs) set(op_common_deps operator op_registry) @@ -43,33 +46,26 @@ endfunction() add_subdirectory(math) -cc_test(gather_test SRCS gather_test.cc DEPS tensor) -op_library(gather_op SRCS gather_op.cc gather_op.cu) - -cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) -op_library(scatter_op SRCS scatter_op.cc scatter_op.cu) - -cc_library(net_op SRCS net_op.cc DEPS op_registry) -cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) - -op_library(add_op SRCS add_op.cc add_op.cu) - -op_library(mean_op SRCS mean_op.cc mean_op.cu) +list(REMOVE_ITEM GENERAL_OPS + net_op + minus_op + mul_op + recurrent_op + scale_op) +op_library(net_op SRCS net_op.cc) +op_library(minus_op SRCS minus_op.cc minus_op.cu DEPS scale_op) op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) -op_library(rowwise_add_op SRCS rowwise_add_op.cu rowwise_add_op.cc) +op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc + DEPS framework_proto tensor operator net_op) +op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op) -op_library(sigmoid_op SRCS sigmoid_op.cc sigmoid_op.cu) -op_library(softmax_op SRCS softmax_op.cc softmax_op.cu) -op_library(gaussian_random_op SRCS gaussian_random_op.cc gaussian_random_op.cu) -op_library(cross_entropy_op SRCS cross_entropy_op.cc cross_entropy_op.cu) -op_library(fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu) +foreach(src ${GENERAL_OPS}) + op_library(${src} SRCS ${src}.cc ${src}.cu) +endforeach() -op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) +set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") -op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc - DEPS framework_proto tensor op_registry operator net_op) -op_library(uniform_random_op SRCS uniform_random_op.cc uniform_random_op.cu) -op_library(lookup_table_op SRCS lookup_table_op.cc lookup_table_op.cu) -op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op) -op_library(minus_op SRCS minus_op.cc minus_op.cu DEPS scale_op) +cc_test(gather_test SRCS gather_test.cc DEPS tensor) +cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) +cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) diff --git a/paddle/operators/add_op.cc b/paddle/operators/add_op.cc index 8ab748ed71e9a5dc0ee0259a78a2b886870bec5b..6384d8c8ce13dae8b58ed1069d496dd8e93eaa8a 100644 --- a/paddle/operators/add_op.cc +++ b/paddle/operators/add_op.cc @@ -57,7 +57,7 @@ class AddOpGrad : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(add_two, ops::AddOp, ops::AddOpMaker, add_two_grad, ops::AddOpGrad); +REGISTER_OP(add_two, ops::AddOp, ops::AddOpMaker, ops::AddOpGrad); REGISTER_OP_CPU_KERNEL(add_two, ops::AddKernel); diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index ab1e1c101a10e09a81f7785d2f1514822e3bdf15..ac76326262c88e2014cf64f7fb73b5a7338ab3e9 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -67,8 +67,7 @@ OnehotCrossEntropy Operator. namespace ops = paddle::operators; REGISTER_OP(onehot_cross_entropy, ops::OnehotCrossEntropyOp, - ops::OnehotCrossEntropyOpMaker, onehot_cross_entropy_grad, - ops::OnehotCrossEntropyGradientOp); + ops::OnehotCrossEntropyOpMaker, ops::OnehotCrossEntropyGradientOp); REGISTER_OP_CPU_KERNEL(onehot_cross_entropy, ops::OnehotCrossEntropyOpKernel); REGISTER_OP_CPU_KERNEL(onehot_cross_entropy_grad, diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index 123bed296c462c30bddd3bfbd530098fdbfe4856..07fa704824174f939e459093b245036771d9cd4f 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -63,8 +63,7 @@ Out = X[Index] } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(gather, ops::GatherOp, ops::GatherOpMaker, gather_grad, - ops::GatherGradOp); +REGISTER_OP(gather, ops::GatherOp, ops::GatherOpMaker, ops::GatherGradOp); REGISTER_OP_CPU_KERNEL(gather, ops::GatherOpKernel); REGISTER_OP_CPU_KERNEL( diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index 94d40890a765413e88a35a6ad995ca97ac84dcda..c3108ba8ec7ad85bd3485c135bf03e514bc66cd1 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -66,7 +66,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker, - lookup_table_grad, ops::LookupTableOpGrad); + ops::LookupTableOpGrad); REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel); REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel); diff --git a/paddle/operators/mean_op.cc b/paddle/operators/mean_op.cc index d3d0e55a674587fb04f43f24d0790de4358f035a..e66e0abb25f9b933025a6d098ed9dd9eb18a47a5 100644 --- a/paddle/operators/mean_op.cc +++ b/paddle/operators/mean_op.cc @@ -54,7 +54,7 @@ class MeanGradOp : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker, mean_grad, ops::MeanGradOp); +REGISTER_OP(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanGradOp); REGISTER_OP_CPU_KERNEL(mean, ops::MeanKernel); REGISTER_OP_CPU_KERNEL(mean_grad, diff --git a/paddle/operators/minus_op.cc b/paddle/operators/minus_op.cc index 1eee9644babbdfac68821ca774845ad8ebbd5aee..b4afebcd97a8efff70aaaa85bc2ec5455ddd05c5 100644 --- a/paddle/operators/minus_op.cc +++ b/paddle/operators/minus_op.cc @@ -81,7 +81,6 @@ class MinusGradOp : public NetOp { USE_OP(scale); USE_OP_ITSELF(identity); namespace ops = paddle::operators; -REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, minus_grad, - ops::MinusGradOp); +REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, ops::MinusGradOp); REGISTER_OP_CPU_KERNEL(minus, ops::MinusKernel); diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 173cc3850ca9d97200e272ec59d1bd3fe09b5053..559d19e6bdc083fffebe1c82a0bebbb18dd134fd 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -84,7 +84,7 @@ class MulOpGrad : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); +REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpGrad); REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); REGISTER_OP_CPU_KERNEL(mul_grad, ops::MulGradKernel); diff --git a/paddle/operators/rowwise_add_op.cc b/paddle/operators/rowwise_add_op.cc index 6825dce332adc0dc11dda187d1bd367875b8603e..63de91254f4b75587cb2fb29aeb8ff7358ba8e76 100644 --- a/paddle/operators/rowwise_add_op.cc +++ b/paddle/operators/rowwise_add_op.cc @@ -74,7 +74,7 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(rowwise_add, ops::RowwiseAddOp, ops::RowwiseAddOpMaker, - rowwise_add_grad, ops::RowwiseAddGradOp); + ops::RowwiseAddGradOp); REGISTER_OP_CPU_KERNEL( rowwise_add, ops::RowwiseAddKernel); REGISTER_OP_CPU_KERNEL( diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc index 8e96a74c94ab7ff4d8c3266695e5157aff67905b..4e039688d4d74f2a101fc91c747bd1e6ebec7ad2 100644 --- a/paddle/operators/scale_op.cc +++ b/paddle/operators/scale_op.cc @@ -97,7 +97,7 @@ class IdentityOp : public NetOp { namespace ops = paddle::operators; -REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker, scale_grad, +REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker, ops::ScaleGradOp); REGISTER_OP_CPU_KERNEL(scale, ops::ScaleKernel); diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc index f901edefa22dc9a252e87116df756d04767a7162..35c185ad80f93d1005c1616dcffd2e61bcd54222 100644 --- a/paddle/operators/scatter_op.cc +++ b/paddle/operators/scatter_op.cc @@ -77,8 +77,7 @@ Out[Index] = Ref[Index] + Updates } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(scatter, ops::ScatterOp, ops::ScatterOpMaker, scatter_grad, - ops::ScatterGradOp); +REGISTER_OP(scatter, ops::ScatterOp, ops::ScatterOpMaker, ops::ScatterGradOp); REGISTER_OP_CPU_KERNEL(scatter, ops::ScatterOpKernel); REGISTER_OP_CPU_KERNEL( diff --git a/paddle/operators/sigmoid_op.cc b/paddle/operators/sigmoid_op.cc index 761c6de8d4d2150b30b97b58da95da3d5f33db63..f35b7023845bac52887d81a8f5c496cb5e7193aa 100644 --- a/paddle/operators/sigmoid_op.cc +++ b/paddle/operators/sigmoid_op.cc @@ -53,8 +53,7 @@ class SigmoidOpGrad : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(sigmoid, ops::SigmoidOp, ops::SigmoidOpMaker, sigmoid_grad, - ops::SigmoidOpGrad); +REGISTER_OP(sigmoid, ops::SigmoidOp, ops::SigmoidOpMaker, ops::SigmoidOpGrad); REGISTER_OP_CPU_KERNEL(sigmoid, ops::SigmoidKernel); REGISTER_OP_CPU_KERNEL( diff --git a/paddle/operators/softmax_op.cc b/paddle/operators/softmax_op.cc index 40c51a64c49bc064f55975ef6ced1d54070f1291..471bb288fb20f113aefb2a9e13eb805b161b0631 100644 --- a/paddle/operators/softmax_op.cc +++ b/paddle/operators/softmax_op.cc @@ -62,8 +62,7 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; -REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad, - ops::SoftmaxOpGrad); +REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, ops::SoftmaxOpGrad); REGISTER_OP_CPU_KERNEL(softmax, ops::SoftmaxKernel); REGISTER_OP_CPU_KERNEL( diff --git a/paddle/parameter/Argument.cpp b/paddle/parameter/Argument.cpp index b0e9e740c84e6445a59b1edff7272461090c2922..8dbef0b22e7b2f14c62586f86e686356b6e9c68e 100644 --- a/paddle/parameter/Argument.cpp +++ b/paddle/parameter/Argument.cpp @@ -186,6 +186,7 @@ void Argument::resizeAndCopyFrom(const Argument& src, resizeAndCopy(strs, src.strs, useGpu, stream); frameWidth = src.frameWidth; frameHeight = src.frameHeight; + frameDepth = src.frameDepth; } int32_t Argument::resizeAndCopyFrom(const Argument& src, @@ -206,6 +207,7 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src, dataId = src.dataId; frameWidth = src.frameWidth; frameHeight = src.frameHeight; + frameDepth = src.frameDepth; if (!src.sequenceStartPositions) { // non-sequence input, copy samples directly diff --git a/paddle/parameter/Argument.h b/paddle/parameter/Argument.h index 38797a76f55c311070192bd307103143d67cabca..7b59199dded5b3f5d030e389d8bfcac1668fd127 100644 --- a/paddle/parameter/Argument.h +++ b/paddle/parameter/Argument.h @@ -1,11 +1,8 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -35,6 +32,7 @@ struct Argument { strs(nullptr), frameHeight(0), frameWidth(0), + frameDepth(0), sequenceStartPositions(nullptr), subSequenceStartPositions(nullptr), cpuSequenceDims(nullptr), @@ -64,6 +62,7 @@ struct Argument { allCount = argument.allCount; frameHeight = argument.frameHeight; frameWidth = argument.frameWidth; + frameDepth = argument.frameDepth; dataId = argument.dataId; } @@ -76,6 +75,7 @@ struct Argument { // A dataBatch includes batchSize frames, one frame maybe not only vector size_t frameHeight; size_t frameWidth; + size_t frameDepth; // If NULL, each position is treated independently. // Otherwise, its size should be #NumberOfSequences + 1. @@ -136,8 +136,10 @@ struct Argument { } size_t getFrameHeight() const { return frameHeight; } size_t getFrameWidth() const { return frameWidth; } + size_t getFrameDepth() const { return frameDepth; } void setFrameHeight(size_t h) { frameHeight = h; } void setFrameWidth(size_t w) { frameWidth = w; } + void setFrameDepth(size_t d) { frameDepth = d; } int64_t getNumSequences() const { return sequenceStartPositions ? sequenceStartPositions->getSize() - 1 diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt index 37e186a408ff5f560b5878e3e51ea81ca5810bc7..00030050700bfb2cee224124d090b0027d456ba0 100644 --- a/paddle/pybind/CMakeLists.txt +++ b/paddle/pybind/CMakeLists.txt @@ -2,21 +2,5 @@ if(WITH_PYTHON) cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python backward - sgd_op - gather_op - scatter_op - add_op - mul_op - rowwise_add_op - sigmoid_op - softmax_op - mean_op - cross_entropy_op - recurrent_op - uniform_random_op - gaussian_random_op - fill_zeros_like_op - lookup_table_op - scale_op - minus_op) + ${GLOB_OP_LIB}) endif(WITH_PYTHON) diff --git a/proto/ModelConfig.proto b/proto/ModelConfig.proto index 1113d5aded1eb06fc4bd35881530264059daa0cc..4ddf023780c704cb10c51ee9e5d7cb63420f9d73 100644 --- a/proto/ModelConfig.proto +++ b/proto/ModelConfig.proto @@ -85,6 +85,12 @@ message ConvConfig { optional uint32 dilation = 15 [ default = 1 ]; optional uint32 dilation_y = 16 [ default = 1 ]; + + optional uint32 filter_size_z = 17 [ default = 1 ]; + optional uint32 padding_z = 18 [ default = 1 ]; + optional uint32 stride_z = 19 [ default = 1 ]; + optional uint32 output_z = 20 [ default = 1 ]; + optional uint32 img_size_z = 21 [ default = 1 ]; } message PoolConfig { @@ -127,6 +133,12 @@ message PoolConfig { // if not set, use padding optional uint32 padding_y = 13; + + optional uint32 size_z = 14 [ default = 1 ]; + optional uint32 stride_z = 15 [ default = 1 ]; + optional uint32 output_z = 16 [ default = 1 ]; + optional uint32 img_size_z = 17 [ default = 1 ]; + optional uint32 padding_z = 18 [ default = 1 ]; } message SppConfig { @@ -502,6 +514,8 @@ message LayerConfig { // for HuberRegressionLoss optional double delta = 57 [ default = 1.0 ]; + + optional uint64 depth = 58 [ default = 1 ]; } message EvaluatorConfig { diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 0788e3994ebd95993de2d47dd37d1ea23fbdf694..152a56190c1ffddbf9590ed8f71308ceb88403f4 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -886,6 +886,36 @@ class Conv(Cfg): config_assert(output_x <= 0) +# please refer to the comments in proto/ModelConfig.proto +@config_class +class Conv3D(Cfg): + def __init__(self, + filter_size, + channels, + padding=None, + stride=None, + groups=None, + filter_channels=None, + output_x=None, + img_size=None, + caffe_mode=True, + filter_size_y=None, + padding_y=None, + stride_y=None, + filter_size_z=None, + padding_z=None, + stride_z=None): + self.add_keys(locals()) + self.filter_size_y = filter_size_y if filter_size_y else filter_size + self.filter_size_z = filter_size_z if filter_size_z else filter_size + self.padding_y = padding_y if padding_y else padding + self.padding_z = padding_z if padding_z else padding + self.stride_y = stride_y if stride_y else stride + self.stride_z = stride_z if stride_z else stride + if output_x is not None: + config_assert(output_x <= 0) + + @config_class class BilinearInterp(Cfg): def __init__(self, out_size_x=None, out_size_y=None, channels=None): @@ -908,6 +938,31 @@ class Pool(Cfg): self.add_keys(locals()) +@config_class +class Pool3d(Cfg): + def __init__( + self, + pool_type, + channels, + size_x, + size_y=None, + size_z=None, + start=None, + stride=None, # 1 by defalut in protobuf + stride_y=None, + stride_z=None, + padding=None, # 0 by defalut in protobuf + padding_y=None, + padding_z=None): + self.add_keys(locals()) + self.filter_size_y = size_y if size_y else size_x + self.filter_size_z = size_z if size_z else size_x + self.padding_y = padding_y if padding_y else padding + self.padding_z = padding_z if padding_z else padding + self.stride_y = stride_y if stride_y else stride + self.stride_z = stride_z if stride_z else stride + + @config_class class SpatialPyramidPool(Cfg): def __init__(self, pool_type, pyramid_height, channels): @@ -1172,6 +1227,20 @@ def get_img_size(input_layer_name, channels): return img_size, img_size_y +def get_img3d_size(input_layer_name, channels): + input = g_layer_map[input_layer_name] + img_pixels = input.size / channels + img_size = input.width + img_size_y = input.height + img_size_z = input.depth + + config_assert( + img_size * img_size_y * img_size_z == img_pixels, + "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d" + % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels)) + return img_size, img_size_y, img_size_z + + def parse_bilinear(bilinear, input_layer_name, bilinear_conf): parse_image(bilinear, input_layer_name, bilinear_conf.image_conf) bilinear_conf.out_size_x = bilinear.out_size_x @@ -1209,6 +1278,45 @@ def parse_pool(pool, input_layer_name, pool_conf, ceil_mode): pool_conf.stride_y, not ceil_mode) +def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode): + pool_conf.pool_type = pool.pool_type + config_assert(pool.pool_type in ['max-projection', 'avg-projection'], + "pool-type %s is not in " + "['max-projection', 'avg-projection']" % pool.pool_type) + + pool_conf.channels = pool.channels + + pool_conf.size_x = pool.size_x + pool_conf.stride = pool.stride + pool_conf.padding = pool.padding + + pool_conf.size_y = default(pool.size_y, pool_conf.size_x) + pool_conf.size_z = default(pool.size_z, pool_conf.size_x) + pool_conf.stride_y = default(pool.stride_y, pool_conf.stride) + pool_conf.stride_z = default(pool.stride_z, pool_conf.stride) + pool_conf.padding_y = default(pool.padding_y, pool_conf.padding) + pool_conf.padding_z = default(pool.padding_z, pool_conf.padding) + + pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \ + get_img3d_size(input_layer_name, pool.channels) + + config_assert(not pool.start, "start is deprecated in pooling.") + + if pool.padding is not None: + pool_conf.padding = pool.padding + pool_conf.padding_y = default(pool.padding_y, pool_conf.padding) + pool_conf.padding_z = default(pool.padding_z, pool_conf.padding) + pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x, + pool_conf.padding, pool_conf.stride, + not ceil_mode) + pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y, + pool_conf.padding_y, + pool_conf.stride_y, not ceil_mode) + pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z, + pool_conf.padding_z, + pool_conf.stride_z, not ceil_mode) + + def parse_spp(spp, input_layer_name, spp_conf): parse_image(spp, input_layer_name, spp_conf.image_conf) spp_conf.pool_type = spp.pool_type @@ -1282,6 +1390,50 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False): conv_conf.stride_y, conv_conf.caffe_mode) +#caffe_mode: compute the output size using floor instead of ceil, +# which is consistent of caffe and CuDNN's convention. +def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False): + conv_conf.filter_size = conv.filter_size + conv_conf.filter_size_y = conv.filter_size_y + conv_conf.filter_size_z = conv.filter_size_z + conv_conf.channels = conv.channels + conv_conf.padding = conv.padding + conv_conf.padding_y = conv.padding_y + conv_conf.padding_z = conv.padding_z + conv_conf.stride = conv.stride + conv_conf.stride_y = conv.stride_y + conv_conf.stride_z = conv.stride_z + conv_conf.groups = conv.groups + conv_conf.caffe_mode = conv.caffe_mode + + if not trans: + conv_conf.filter_channels = conv.channels / conv.groups + conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \ + get_img3d_size(input_layer_name, conv.channels) + conv_conf.output_x = cnn_output_size( + conv_conf.img_size, conv_conf.filter_size, conv_conf.padding, + conv_conf.stride, conv_conf.caffe_mode) + conv_conf.output_y = cnn_output_size( + conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y, + conv_conf.stride_y, conv_conf.caffe_mode) + conv_conf.output_z = cnn_output_size( + conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z, + conv_conf.stride_z, conv_conf.caffe_mode) + else: + conv_conf.filter_channels = num_filters / conv.groups + conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \ + get_img3d_size(input_layer_name, conv.channels) + conv_conf.img_size = cnn_image_size( + conv_conf.output_x, conv_conf.filter_size, conv_conf.padding, + conv_conf.stride, conv_conf.caffe_mode) + conv_conf.img_size_y = cnn_image_size( + conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y, + conv_conf.stride_y, conv_conf.caffe_mode) + conv_conf.img_size_z = cnn_image_size( + conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z, + conv_conf.stride_z, conv_conf.caffe_mode) + + def parse_block_expand(block_expand, input_layer_name, block_expand_conf): block_expand_conf.channels = block_expand.channels block_expand_conf.stride_x = block_expand.stride_x @@ -1585,6 +1737,9 @@ class LayerBase(object): self.config.height = height self.config.width = width + def set_layer_depth(self, depth): + self.config.depth = depth + def set_cnn_layer(self, input_layer_name, height, @@ -1803,11 +1958,19 @@ class DetectionOutputLayer(LayerBase): @config_layer('data') class DataLayer(LayerBase): - def __init__(self, name, size, height=None, width=None, device=None): + def __init__(self, + name, + size, + depth=None, + height=None, + width=None, + device=None): super(DataLayer, self).__init__( name, 'data', size, inputs=[], device=device) if height and width: self.set_layer_height_width(height, width) + if depth: + self.set_layer_depth(depth) ''' @@ -1922,7 +2085,7 @@ class ConvLayerBase(LayerBase): def calc_parameter_size(self, conv_conf): return self.config.num_filters * conv_conf.filter_channels \ - * (conv_conf.filter_size * conv_conf.filter_size_y) + * (conv_conf.filter_size * conv_conf.filter_size_y) @config_layer('exconv') @@ -2006,6 +2169,87 @@ class ConvTransLayer(ConvTransLayerBase): layer_type = 'cudnn_convt' +@config_layer('conv_3d') +class Conv3DLayerBase(LayerBase): + def __init__(self, + name, + inputs=[], + bias=True, + num_filters=None, + shared_biases=True, + **xargs): + super(Conv3DLayerBase, self).__init__( + name, self.layer_type, 0, inputs=inputs, **xargs) + + if num_filters is not None: + self.config.num_filters = num_filters + + # need to specify layer in config + self.config.type = self.layer_type + + trans = False + if self.config.type == "deconv3d": + trans = True + + if shared_biases is not None: + self.config.shared_biases = shared_biases + + for input_index in xrange(len(self.inputs)): + input_layer = self.get_input_layer(input_index) + conv_conf = self.config.inputs[input_index].conv_conf + parse_conv3d( + self.inputs[input_index].conv, + input_layer.name, + conv_conf, + num_filters, + trans=trans + ) # for z-axis pad:0, strid:1, filter_size:1, img_size:1 + psize = self.calc_parameter_size(conv_conf) + self.create_input_parameter(input_index, psize) + if trans: + self.set_cnn_layer(name, conv_conf.img_size_z, + conv_conf.img_size_y, conv_conf.img_size, + self.config.num_filters) + else: + self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y, + conv_conf.output_x, self.config.num_filters) + + psize = self.config.size + if shared_biases: + psize = self.config.num_filters + self.create_bias_parameter(bias, psize, [psize, 1]) + + def calc_parameter_size(self, conv_conf): + return self.config.num_filters * conv_conf.filter_channels \ + * (conv_conf.filter_size * conv_conf.filter_size_y \ + * conv_conf.filter_size_z) + + def set_cnn_layer(self, + input_layer_name, + depth, + height, + width, + channels, + is_print=True): + size = depth * height * width * channels + self.set_layer_size(size) + self.set_layer_height_width(height, width) + self.set_layer_depth(depth) + if is_print: + print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" % + (input_layer_name, channels, depth, height, width, size)) + + +@config_layer('conv3d') +class Conv3DLayer(Conv3DLayerBase): + layer_type = 'conv3d' + + +@config_layer('deconv3d') +class Conv3DLayer(Conv3DLayerBase): + layer_type = 'deconv3d' + + @config_layer('norm') class NormLayer(LayerBase): def __init__(self, name, inputs, **xargs): @@ -2035,6 +2279,35 @@ class PoolLayer(LayerBase): pool_conf.channels) +@config_layer('pool3d') +class Pool3DLayer(LayerBase): + def __init__(self, name, inputs, ceil_mode=True, **xargs): + super(Pool3DLayer, self).__init__( + name, 'pool3d', 0, inputs=inputs, **xargs) + for input_index in xrange(len(self.inputs)): + input_layer = self.get_input_layer(input_index) + pool_conf = self.config.inputs[input_index].pool_conf + parse_pool3d(self.inputs[input_index].pool, input_layer.name, + pool_conf, ceil_mode) + self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y, + pool_conf.output_x, pool_conf.channels) + + def set_cnn_layer(self, + input_layer_name, + depth, + height, + width, + channels, + is_print=True): + size = depth * height * width * channels + self.set_layer_size(size) + self.set_layer_height_width(height, width) + self.set_layer_depth(depth) + if is_print: + print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" % + (input_layer_name, channels, depth, height, width, size)) + + @config_layer('spp') class SpatialPyramidPoolLayer(LayerBase): def __init__(self, name, inputs, **xargs): diff --git a/python/paddle/trainer/recurrent_units.py b/python/paddle/trainer/recurrent_units.py old mode 100755 new mode 100644 diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py old mode 100755 new mode 100644 index b2ba16333b3280a1956a91d15224f47b9edae979..2bd274fad2ab7eed0902ffe944c6e0670f963233 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -137,8 +137,10 @@ __all__ = [ 'clip_layer', 'slice_projection', 'seq_slice_layer', - 'kmax_sequence_score_layer', + 'kmax_seq_score_layer', + 'img_pool3d_layer', 'scale_shift_layer', + 'img_conv3d_layer', ] @@ -167,6 +169,7 @@ class LayerType(object): EXCONVTRANS_LAYER = 'exconvt' CUDNNCONV_LAYER = 'cudnn_conv' POOL_LAYER = 'pool' + POOL3D_LAYER = 'pool3d' BATCH_NORM_LAYER = 'batch_norm' NORM_LAYER = 'norm' SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm' @@ -220,6 +223,9 @@ class LayerType(object): CRF_DECODING_LAYER = 'crf_decoding' NCE_LAYER = 'nce' + CONV3D_LAYER = 'conv3d' + DECONV3D_LAYER = 'deconv3d' + RANK_COST = 'rank-cost' LAMBDA_COST = 'lambda_cost' HUBER_REGRESSION = 'huber_regression' @@ -896,7 +902,8 @@ def mixed_layer(size=0, @layer_support() -def data_layer(name, size, height=None, width=None, layer_attr=None): +def data_layer(name, size, depth=None, height=None, width=None, + layer_attr=None): """ Define DataLayer For NeuralNetwork. @@ -923,15 +930,18 @@ def data_layer(name, size, height=None, width=None, layer_attr=None): type=LayerType.DATA, name=name, size=size, + depth=depth, height=height, width=width, **ExtraLayerAttribute.to_kwargs(layer_attr)) + if depth is None: + depth = 1 num_filters = None if height is not None and width is not None: - num_filters = size / (width * height) - assert num_filters * width * height == size, \ - "size=%s width=%s height=%s" % (size, width, height) + num_filters = size / (width * height * depth) + assert num_filters * width * height * depth == size, \ + "size=%s width=%s height=%s depth=%s" % (size, width, height, depth) return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters) @@ -2655,6 +2665,146 @@ def img_pool_layer(input, size=l.config.size) +@wrap_name_default("pool3d") +@layer_support() +def img_pool3d_layer(input, + pool_size, + name=None, + num_channels=None, + pool_type=None, + stride=1, + padding=0, + layer_attr=None, + pool_size_y=None, + stride_y=None, + padding_y=None, + pool_size_z=None, + stride_z=None, + padding_z=None, + ceil_mode=True): + """ + Image pooling Layer. + + The details of pooling layer, please refer ufldl's pooling_ . + + .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/ + + - ceil_mode=True: + + .. math:: + + w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) + h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) + d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z)) + + - ceil_mode=False: + + .. math:: + + w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) + h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) + d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z)) + + The example usage is: + + .. code-block:: python + + maxpool = img_pool3d_layer(input=conv, + pool_size=3, + num_channels=8, + stride=1, + padding=1, + pool_type=MaxPooling()) + + :param padding: pooling padding width. + :type padding: int|tuple|list + :param name: name of pooling layer + :type name: basestring. + :param input: layer's input + :type input: LayerOutput + :param pool_size: pooling window width + :type pool_size: int|tuple|list + :param num_channels: number of input channel. + :type num_channels: int + :param pool_type: pooling type. MaxPooling or AvgPooling. Default is + MaxPooling. + :type pool_type: BasePoolingType + :param stride: stride width of pooling. + :type stride: int|tuple|list + :param layer_attr: Extra Layer attribute. + :type layer_attr: ExtraLayerAttribute + :param ceil_mode: Wether to use ceil mode to calculate output height and with. + Defalut is True. If set false, Otherwise use floor. + + :type ceil_mode: bool + :return: LayerOutput object. + :rtype: LayerOutput + """ + if num_channels is None: + assert input.num_filters is not None + num_channels = input.num_filters + + if pool_type is None: + pool_type = MaxPooling() + elif isinstance(pool_type, AvgPooling): + pool_type.name = 'avg' + + type_name = pool_type.name + '-projection' \ + if ( + isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \ + else pool_type.name + + if isinstance(pool_size, collections.Sequence): + assert len(pool_size) == 3 + pool_size, pool_size_y, pool_size_z = pool_size + else: + pool_size_y = pool_size + pool_size_z = pool_size + + if isinstance(stride, collections.Sequence): + assert len(stride) == 3 + stride, stride_y, stride_z = stride + else: + stride_y = stride + stride_z = stride + + if isinstance(padding, collections.Sequence): + assert len(padding) == 3 + padding, padding_y, padding_y = padding + else: + padding_y = padding + padding_z = padding + + l = Layer( + name=name, + type=LayerType.POOL3D_LAYER, + inputs=[ + Input( + input.name, + pool=Pool3d( + pool_type=type_name, + channels=num_channels, + size_x=pool_size, + start=None, + stride=stride, + padding=padding, + size_y=pool_size_y, + stride_y=stride_y, + padding_y=padding_y, + size_z=pool_size_z, + stride_z=stride_z, + padding_z=padding_z)) + ], + ceil_mode=ceil_mode, + **ExtraLayerAttribute.to_kwargs(layer_attr)) + return LayerOutput( + name, + LayerType.POOL_LAYER, + parents=[input], + num_filters=num_channels, + size=l.config.size) + + @wrap_name_default("spp") @layer_support() def spp_layer(input, @@ -5844,7 +5994,7 @@ def cross_entropy_over_beam(input, name=None): Note that, if gold falls off the beam at search step t, then the cost is calculated over the beam at step t. - This cost layer always works together with kmax_sequence_score_layer, + This cost layer always works together with kmax_seq_score_layer, sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a sub-search space. @@ -6447,14 +6597,14 @@ def seq_slice_layer(input, starts, ends, name=None): @wrap_name_default() @layer_support() -def kmax_sequence_score_layer(input, name=None, beam_size=1): +def kmax_seq_score_layer(input, name=None, beam_size=1): """ This layer accepts one input which are scores over a sequence or a nested sequence, and returns indices of beam_size sequences with highest scores. .. code-block:: python - kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size) + kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size) :param name: The Layer Name. @@ -6467,10 +6617,10 @@ def kmax_sequence_score_layer(input, name=None, beam_size=1): :return: LayerOutput object. :rtype: LayerOutput """ - assert isinstance(input, LayerOutput), ("kmax_sequence_score_layer " + assert isinstance(input, LayerOutput), ("kmax_seq_score_layer " "accepts only one input.") assert input.size == 1, ( - "input of kmax_sequence_score_layer is a score" + "input of kmax_seq_score_layer is a score " "over a sequence or a nested sequence, so its width must be 1.") Layer( @@ -6483,6 +6633,149 @@ def kmax_sequence_score_layer(input, name=None, beam_size=1): name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size) +@wrap_name_default("conv3d") +@wrap_param_attr_default() +@wrap_bias_attr_default() +@wrap_act_default(act=ReluActivation()) +@layer_support(DROPOUT) +def img_conv3d_layer(input, + filter_size, + num_filters, + name=None, + num_channels=None, + act=None, + groups=1, + stride=1, + padding=0, + bias_attr=None, + param_attr=None, + shared_biases=True, + layer_attr=None, + trans=False, + layer_type=None): + """ + + The example usage is: + + .. code-block:: python + + conv = img_conv3d_layer(input=data, filter_size=1, + num_channels=8, + num_filters=16, stride=1, + bias_attr=False, + act=ReluActivation()) + + :param name: Layer name. + :type name: basestring + :param input: Layer Input. + :type input: LayerOutput + :param filter_size: The x dimension of a filter kernel. Or input a list. + :type filter_size: int|tuple|list + :param num_filters: Each filter group's number of filter + :param act: Activation type. Default is tanh + :type act: BaseActivation + :param groups: Group size of filters. + :type groups: int + :param stride: The x dimension of the stride. Or input a tuple for two image + dimension. + :type stride: int|tuple|list + :param padding: The x dimension of the padding. Or input a tuple for two + image dimension + :type padding: int|tuple|list + :param bias_attr: Convolution bias attribute. None means default bias. + False means no bias. + :type bias_attr: ParameterAttribute|False + :param num_channels: number of input channels. If None will be set + automatically from previous output. + :type num_channels: int + :param param_attr: Convolution param attribute. None means default attribute + :type param_attr: ParameterAttribute + :param shared_biases: Is biases will be shared between filters or not. + :type shared_biases: bool + :param layer_attr: Layer Extra Attribute. + :type layer_attr: ExtraLayerAttribute + :param trans: true if it is a convTransLayer, false if it is a convLayer + :type trans: bool + :param layer_type: specify the layer_type, default is None. If trans=True, + layer_type has to be "exconvt" or "cudnn_convt", + otherwise layer_type has to be either "exconv" or + "cudnn_conv" + :type layer_type: String + :return: LayerOutput object. + :rtype: LayerOutput + """ + if num_channels is None: + assert input.num_filters is not None + num_channels = input.num_filters + + if isinstance(filter_size, collections.Sequence): + assert len(filter_size) == 3 + filter_size, filter_size_y, filter_size_z = filter_size + else: + filter_size_y = filter_size + filter_size_z = filter_size + + if isinstance(stride, collections.Sequence): + assert len(stride) == 3 + stride, stride_y, stride_z = stride + else: + stride_y = stride + stride_z = stride + + if isinstance(padding, collections.Sequence): + assert len(padding) == 3 + padding, padding_y, padding_z = padding + else: + padding_y = padding + padding_z = padding + + if param_attr.attr.get('initial_smart'): + # special initial for conv layers. + init_w = (2.0 / (filter_size**2 * num_channels))**0.5 + param_attr.attr["initial_mean"] = 0.0 + param_attr.attr["initial_std"] = init_w + param_attr.attr["initial_strategy"] = 0 + param_attr.attr["initial_smart"] = False + + if layer_type: + if trans: + assert layer_type in ["deconv3d"] + lt = layer_type + else: + lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER + + l = Layer( + name=name, + inputs=Input( + input.name, + conv=Conv3D( + filter_size=filter_size, + padding=padding, + stride=stride, + channels=num_channels, + groups=groups, + filter_size_y=filter_size_y, + padding_y=padding_y, + stride_y=stride_y, + filter_size_z=filter_size_z, + padding_z=padding_z, + stride_z=stride_z), + **param_attr.attr), + active_type=act.name, + num_filters=num_filters, + bias=ParamAttr.to_bias(bias_attr), + shared_biases=shared_biases, + type=lt, + **ExtraLayerAttribute.to_kwargs(layer_attr)) + return LayerOutput( + name, + lt, + parents=[input], + activation=act, + num_filters=num_filters, + size=l.config.size) + + @wrap_name_default("scale_shift") @wrap_param_attr_default() @wrap_bias_attr_default() diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py old mode 100755 new mode 100644 diff --git a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh index e87ee6a432592faf5e1501118e3eb2c4bca0a717..df872a90ff388f0d96cef44763dbd076bc768ab9 100755 --- a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh +++ b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh @@ -8,7 +8,8 @@ test_spp_layer test_bilinear_interp test_maxout test_bi_grumemory math_ops test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer -test_kmax_seq_socre_layer test_seq_select_layers test_scale_shift_layer -test_seq_slice_layer test_cross_entropy_over_beam) +test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer +test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer +test_conv3d_layer test_deconv3d_layer) export whole_configs=(test_split_datasource) diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_conv3d_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_conv3d_layer.protostr new file mode 100644 index 0000000000000000000000000000000000000000..9fe2bc29d3cd06231b67102e28f7a49c28306958 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_conv3d_layer.protostr @@ -0,0 +1,132 @@ +type: "nn" +layers { + name: "data" + type: "data" + size: 36288 + active_type: "" + height: 48 + width: 42 + depth: 6 +} +layers { + name: "conv3d_1" + type: "conv3d" + size: 24192 + active_type: "" + inputs { + input_layer_name: "data" + input_parameter_name: "_conv3d_1.w0" + conv_conf { + filter_size: 3 + channels: 3 + stride: 2 + padding: 1 + groups: 1 + filter_channels: 3 + output_x: 21 + img_size: 42 + caffe_mode: true + filter_size_y: 3 + padding_y: 1 + stride_y: 2 + output_y: 24 + img_size_y: 48 + filter_size_z: 3 + padding_z: 1 + stride_z: 2 + output_z: 3 + img_size_z: 6 + } + } + bias_parameter_name: "_conv3d_1.wbias" + num_filters: 16 + shared_biases: true + height: 24 + width: 21 + depth: 3 +} +layers { + name: "conv3d_2" + type: "conv3d" + size: 24192 + active_type: "" + inputs { + input_layer_name: "data" + input_parameter_name: "_conv3d_2.w0" + conv_conf { + filter_size: 3 + channels: 3 + stride: 2 + padding: 1 + groups: 1 + filter_channels: 3 + output_x: 21 + img_size: 42 + caffe_mode: true + filter_size_y: 3 + padding_y: 1 + stride_y: 2 + output_y: 24 + img_size_y: 48 + filter_size_z: 3 + padding_z: 1 + stride_z: 2 + output_z: 3 + img_size_z: 6 + } + } + bias_parameter_name: "_conv3d_2.wbias" + num_filters: 16 + shared_biases: true + height: 24 + width: 21 + depth: 3 +} +parameters { + name: "_conv3d_1.w0" + size: 1296 + initial_mean: 0.0 + initial_std: 0.272165526976 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "_conv3d_1.wbias" + size: 16 + initial_mean: 0.0 + initial_std: 0.0 + dims: 16 + dims: 1 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "_conv3d_2.w0" + size: 1296 + initial_mean: 0.0 + initial_std: 0.272165526976 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "_conv3d_2.wbias" + size: 16 + initial_mean: 0.0 + initial_std: 0.0 + dims: 16 + dims: 1 + initial_strategy: 0 + initial_smart: false +} +input_layer_names: "data" +output_layer_names: "conv3d_2" +sub_models { + name: "root" + layer_names: "data" + layer_names: "conv3d_1" + layer_names: "conv3d_2" + input_layer_names: "data" + output_layer_names: "conv3d_2" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_cross_entropy_over_beam.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_cross_entropy_over_beam.protostr index c43fc48e222044b65d83b6162e7dc3954e119887..a602569697e91b11b8d421ac359c2e523a00fa98 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_cross_entropy_over_beam.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_cross_entropy_over_beam.protostr @@ -12,7 +12,7 @@ layers { active_type: "" } layers { - name: "__kmax_sequence_score_layer_0__" + name: "__kmax_seq_score_layer_0__" type: "kmax_seq_score" active_type: "" inputs { @@ -29,7 +29,7 @@ layers { input_layer_name: "sentence_states" } inputs { - input_layer_name: "__kmax_sequence_score_layer_0__" + input_layer_name: "__kmax_seq_score_layer_0__" } } layers { @@ -44,7 +44,7 @@ layers { bias_parameter_name: "___fc_layer_0__.wbias" } layers { - name: "__kmax_sequence_score_layer_1__" + name: "__kmax_seq_score_layer_1__" type: "kmax_seq_score" active_type: "" inputs { @@ -61,7 +61,7 @@ layers { input_layer_name: "__sub_nested_seq_layer_0__" } inputs { - input_layer_name: "__kmax_sequence_score_layer_1__" + input_layer_name: "__kmax_seq_score_layer_1__" } select_first: true } @@ -77,7 +77,7 @@ layers { bias_parameter_name: "___fc_layer_1__.wbias" } layers { - name: "__kmax_sequence_score_layer_2__" + name: "__kmax_seq_score_layer_2__" type: "kmax_seq_score" active_type: "" inputs { @@ -111,7 +111,7 @@ layers { input_layer_name: "sentence_scores" } inputs { - input_layer_name: "__kmax_sequence_score_layer_0__" + input_layer_name: "__kmax_seq_score_layer_0__" } inputs { input_layer_name: "sentences_ids" @@ -120,7 +120,7 @@ layers { input_layer_name: "__fc_layer_0__" } inputs { - input_layer_name: "__kmax_sequence_score_layer_1__" + input_layer_name: "__kmax_seq_score_layer_1__" } inputs { input_layer_name: "start_ids" @@ -129,7 +129,7 @@ layers { input_layer_name: "__fc_layer_1__" } inputs { - input_layer_name: "__kmax_sequence_score_layer_2__" + input_layer_name: "__kmax_seq_score_layer_2__" } inputs { input_layer_name: "end_ids" @@ -185,13 +185,13 @@ sub_models { name: "root" layer_names: "sentence_states" layer_names: "sentence_scores" - layer_names: "__kmax_sequence_score_layer_0__" + layer_names: "__kmax_seq_score_layer_0__" layer_names: "__sub_nested_seq_layer_0__" layer_names: "__fc_layer_0__" - layer_names: "__kmax_sequence_score_layer_1__" + layer_names: "__kmax_seq_score_layer_1__" layer_names: "__seq_slice_layer_0__" layer_names: "__fc_layer_1__" - layer_names: "__kmax_sequence_score_layer_2__" + layer_names: "__kmax_seq_score_layer_2__" layer_names: "sentences_ids" layer_names: "start_ids" layer_names: "end_ids" diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_deconv3d_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_deconv3d_layer.protostr new file mode 100644 index 0000000000000000000000000000000000000000..7bf409731cbf8d5d98341b03c7c09d91fa8328d9 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_deconv3d_layer.protostr @@ -0,0 +1,132 @@ +type: "nn" +layers { + name: "data" + type: "data" + size: 36288 + active_type: "" + height: 48 + width: 42 + depth: 6 +} +layers { + name: "deconv3d_1" + type: "deconv3d" + size: 1387760 + active_type: "" + inputs { + input_layer_name: "data" + input_parameter_name: "_deconv3d_1.w0" + conv_conf { + filter_size: 3 + channels: 3 + stride: 2 + padding: 1 + groups: 1 + filter_channels: 16 + output_x: 42 + img_size: 83 + caffe_mode: true + filter_size_y: 3 + padding_y: 1 + stride_y: 2 + output_y: 48 + img_size_y: 95 + filter_size_z: 3 + padding_z: 1 + stride_z: 2 + output_z: 6 + img_size_z: 11 + } + } + bias_parameter_name: "_deconv3d_1.wbias" + num_filters: 16 + shared_biases: true + height: 95 + width: 83 + depth: 11 +} +layers { + name: "deconv3d_2" + type: "deconv3d" + size: 1387760 + active_type: "" + inputs { + input_layer_name: "data" + input_parameter_name: "_deconv3d_2.w0" + conv_conf { + filter_size: 3 + channels: 3 + stride: 2 + padding: 1 + groups: 1 + filter_channels: 16 + output_x: 42 + img_size: 83 + caffe_mode: true + filter_size_y: 3 + padding_y: 1 + stride_y: 2 + output_y: 48 + img_size_y: 95 + filter_size_z: 3 + padding_z: 1 + stride_z: 2 + output_z: 6 + img_size_z: 11 + } + } + bias_parameter_name: "_deconv3d_2.wbias" + num_filters: 16 + shared_biases: true + height: 95 + width: 83 + depth: 11 +} +parameters { + name: "_deconv3d_1.w0" + size: 6912 + initial_mean: 0.0 + initial_std: 0.272165526976 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "_deconv3d_1.wbias" + size: 16 + initial_mean: 0.0 + initial_std: 0.0 + dims: 16 + dims: 1 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "_deconv3d_2.w0" + size: 6912 + initial_mean: 0.0 + initial_std: 0.272165526976 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "_deconv3d_2.wbias" + size: 16 + initial_mean: 0.0 + initial_std: 0.0 + dims: 16 + dims: 1 + initial_strategy: 0 + initial_smart: false +} +input_layer_names: "data" +output_layer_names: "deconv3d_2" +sub_models { + name: "root" + layer_names: "data" + layer_names: "deconv3d_1" + layer_names: "deconv3d_2" + input_layer_names: "data" + output_layer_names: "deconv3d_2" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr index 3d32220bfbf5f4c67f88303cb9773ecfa484da4b..f93d368c8687573db80106b9cc4defa56a881e46 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_kmax_seq_socre_layer.protostr @@ -17,7 +17,7 @@ layers { bias_parameter_name: "___fc_layer_0__.wbias" } layers { - name: "__kmax_sequence_score_layer_0__" + name: "__kmax_seq_score_layer_0__" type: "kmax_seq_score" active_type: "" inputs { @@ -46,14 +46,14 @@ parameters { initial_smart: false } input_layer_names: "input_seq" -output_layer_names: "__kmax_sequence_score_layer_0__" +output_layer_names: "__kmax_seq_score_layer_0__" sub_models { name: "root" layer_names: "input_seq" layer_names: "__fc_layer_0__" - layer_names: "__kmax_sequence_score_layer_0__" + layer_names: "__kmax_seq_score_layer_0__" input_layer_names: "input_seq" - output_layer_names: "__kmax_sequence_score_layer_0__" + output_layer_names: "__kmax_seq_score_layer_0__" is_recurrent_layer_group: false } diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_pooling3D_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_pooling3D_layer.protostr new file mode 100644 index 0000000000000000000000000000000000000000..8eb98593f6f692a445cf5088e101e9da3763b41d --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_pooling3D_layer.protostr @@ -0,0 +1,123 @@ +type: "nn" +layers { + name: "data_2d" + type: "data" + size: 6000 + active_type: "" + height: 20 + width: 10 +} +layers { + name: "pool___2d" + type: "pool" + size: 840 + active_type: "" + inputs { + input_layer_name: "data_2d" + pool_conf { + pool_type: "avg-projection" + channels: 30 + size_x: 5 + stride: 3 + output_x: 4 + img_size: 10 + padding: 1 + size_y: 5 + stride_y: 3 + output_y: 7 + img_size_y: 20 + padding_y: 1 + } + } + height: 7 + width: 4 +} +layers { + name: "data_3d_1" + type: "data" + size: 60000 + active_type: "" + height: 20 + width: 10 + depth: 10 +} +layers { + name: "pool_3d_1" + type: "pool3d" + size: 3360 + active_type: "" + inputs { + input_layer_name: "data_3d_1" + pool_conf { + pool_type: "avg-projection" + channels: 30 + size_x: 5 + stride: 3 + output_x: 4 + img_size: 10 + padding: 1 + size_y: 5 + stride_y: 3 + output_y: 7 + img_size_y: 20 + padding_y: 1 + size_z: 5 + stride_z: 3 + output_z: 4 + img_size_z: 10 + padding_z: 1 + } + } + height: 7 + width: 4 + depth: 4 +} +layers { + name: "pool_3d_2" + type: "pool3d" + size: 3360 + active_type: "" + inputs { + input_layer_name: "data_3d_1" + pool_conf { + pool_type: "max-projection" + channels: 30 + size_x: 5 + stride: 3 + output_x: 4 + img_size: 10 + padding: 1 + size_y: 5 + stride_y: 3 + output_y: 7 + img_size_y: 20 + padding_y: 1 + size_z: 5 + stride_z: 3 + output_z: 4 + img_size_z: 10 + padding_z: 1 + } + } + height: 7 + width: 4 + depth: 4 +} +input_layer_names: "data_2d" +output_layer_names: "pool___2d" +output_layer_names: "pool_3d_1" +output_layer_names: "pool_3d_2" +sub_models { + name: "root" + layer_names: "data_2d" + layer_names: "pool___2d" + layer_names: "data_3d_1" + layer_names: "pool_3d_1" + layer_names: "pool_3d_2" + input_layer_names: "data_2d" + output_layer_names: "pool___2d" + output_layer_names: "pool_3d_1" + output_layer_names: "pool_3d_2" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_conv3d_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_conv3d_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..aa0a2c0d5fe19b6c414acd708bb6e82d9fb6568f --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_conv3d_layer.py @@ -0,0 +1,49 @@ +from paddle.trainer_config_helpers import * + +settings(batch_size=1000, learning_rate=1e-5) + +num_channels = 3 +filter_size = 3 +filter_size_y = 3 +filter_size_z = 3 +stride = 2 +stride_y = 2 +stride_z = 2 +padding = 1 +padding_y = 1 +padding_z = 1 +groups = 1 + +data = data_layer( + name='data', size=12096 * num_channels, height=48, width=42, depth=6) +# first +conv3d_1 = img_conv3d_layer( + input=data, + name='conv3d_1', + num_filters=16, + num_channels=num_channels, + filter_size=filter_size, + stride=stride, + padding=padding, + groups=groups, + bias_attr=True, + shared_biases=True, + trans=False, + layer_type="conv3d", + act=LinearActivation()) +# second +conv3d_2 = img_conv3d_layer( + input=data, + name='conv3d_2', + num_filters=16, + num_channels=num_channels, + filter_size=[filter_size, filter_size_y, filter_size_z], + stride=[stride, stride_y, stride_z], + padding=[padding, padding_y, padding_z], + groups=groups, + bias_attr=True, + shared_biases=True, + trans=False, + layer_type="conv3d", + act=LinearActivation()) +outputs(conv3d_2) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_cross_entropy_over_beam.py b/python/paddle/trainer_config_helpers/tests/configs/test_cross_entropy_over_beam.py index 240e703dc904e718c2c1ddaf2b6d7dccb4dabf41..4a5bdf1181dc4538418a8b89b41a1ff713e423c8 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_cross_entropy_over_beam.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_cross_entropy_over_beam.py @@ -7,14 +7,14 @@ beam_size = 5 # the first beam expansion. sentence_states = data_layer(name="sentence_states", size=32) sentence_scores = data_layer(name="sentence_scores", size=1) -topk_sentence_ids = kmax_sequence_score_layer( +topk_sentence_ids = kmax_seq_score_layer( input=sentence_scores, beam_size=beam_size) # the second beam expansion. topk_sen = sub_nested_seq_layer( input=sentence_states, selected_indices=topk_sentence_ids) start_pos_scores = fc_layer(input=topk_sen, size=1, act=LinearActivation()) -topk_start_pos_ids = kmax_sequence_score_layer( +topk_start_pos_ids = kmax_seq_score_layer( input=sentence_scores, beam_size=beam_size) # the final beam expansion. @@ -22,7 +22,7 @@ topk_start_spans = seq_slice_layer( input=topk_sen, starts=topk_start_pos_ids, ends=None) end_pos_scores = fc_layer( input=topk_start_spans, size=1, act=LinearActivation()) -topk_end_pos_ids = kmax_sequence_score_layer( +topk_end_pos_ids = kmax_seq_score_layer( input=end_pos_scores, beam_size=beam_size) # define the cost diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_deconv3d_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_deconv3d_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..a113279fc17b49ad01b8860b61180af0f35694fb --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_deconv3d_layer.py @@ -0,0 +1,50 @@ +from paddle.trainer_config_helpers import * + +settings(batch_size=1000, learning_rate=1e-5) + +num_channels = 3 +filter_size = 3 +filter_size_y = 3 +filter_size_z = 3 +stride = 2 +stride_y = 2 +stride_z = 2 +padding = 1 +padding_y = 1 +padding_z = 1 +groups = 1 + +data = data_layer( + name='data', size=12096 * num_channels, height=48, width=42, depth=6) + +# first +deconv3d_1 = img_conv3d_layer( + input=data, + name='deconv3d_1', + num_filters=16, + num_channels=num_channels, + filter_size=filter_size, + stride=stride, + padding=padding, + groups=groups, + bias_attr=True, + shared_biases=True, + trans=True, + layer_type="deconv3d", + act=LinearActivation()) +# second +deconv3d_2 = img_conv3d_layer( + input=data, + name='deconv3d_2', + num_filters=16, + num_channels=num_channels, + filter_size=[filter_size, filter_size_y, filter_size_z], + stride=[stride, stride_y, stride_z], + padding=[padding, padding_y, padding_z], + groups=groups, + bias_attr=True, + shared_biases=True, + trans=True, + layer_type="deconv3d", + act=LinearActivation()) +outputs(deconv3d_2) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py index 48d0cd55da2481743de66ea95190c0856e7ddc39..171da10f75dae03eed7e110d0efd07d6a18e1ecf 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_kmax_seq_socre_layer.py @@ -4,6 +4,6 @@ from paddle.trainer_config_helpers import * data = data_layer(name="input_seq", size=128) scores = fc_layer(input=data, size=1, act=ExpActivation()) -kmax_seq_id = kmax_sequence_score_layer(input=scores, beam_size=5) +kmax_seq_id = kmax_seq_score_layer(input=scores, beam_size=5) outputs(kmax_seq_id) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..0dbb921d41986e711d5b8b31caab1f8b6bdc47b8 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py @@ -0,0 +1,38 @@ +from paddle.trainer_config_helpers import * + +settings(batch_size=100, learning_rate=1e-5) + +data_2d = data_layer(name='data_2d', size=6000, height=20, width=10) + +pool_2d = img_pool_layer( + name="pool___2d", + input=data_2d, + num_channels=30, + pool_size=5, + stride=3, + padding=1, + pool_type=AvgPooling()) +outputs(pool_2d) + +data_3d = data_layer( + name='data_3d_1', size=60000, depth=10, height=20, width=10) + +pool_3d_1 = img_pool3d_layer( + name="pool_3d_1", + input=data_3d, + num_channels=30, + pool_size=5, + stride=3, + padding=1, + pool_type=AvgPooling()) +outputs(pool_3d_1) + +pool_3d_2 = img_pool3d_layer( + name="pool_3d_2", + input=data_3d, + num_channels=30, + pool_size=[5, 5, 5], + stride=[3, 3, 3], + padding=[1, 1, 1], + pool_type=MaxPooling()) +outputs(pool_3d_2) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_seq_select_layers.py b/python/paddle/trainer_config_helpers/tests/configs/test_sub_nested_seq_select_layer.py similarity index 100% rename from python/paddle/trainer_config_helpers/tests/configs/test_seq_select_layers.py rename to python/paddle/trainer_config_helpers/tests/configs/test_sub_nested_seq_select_layer.py diff --git a/python/paddle/trainer_config_helpers/tests/layers_test.py b/python/paddle/trainer_config_helpers/tests/layers_test.py index 05902ea293df5a3e9c10f6700930ca6a343603c2..b3dd8f8fc784754e749240e1b895b11ef6aba438 100644 --- a/python/paddle/trainer_config_helpers/tests/layers_test.py +++ b/python/paddle/trainer_config_helpers/tests/layers_test.py @@ -17,3 +17,4 @@ from paddle.trainer.config_parser import parse_config_and_serialize if __name__ == '__main__': parse_config_and_serialize( 'trainer_config_helpers/tests/layers_test_config.py', '') +# layers_test_config.py diff --git a/python/paddle/v2/__init__.py b/python/paddle/v2/__init__.py index 5bea980611904b37a4a5d4e2cbbee13503a61ff0..1c8d8f4b2f626bea5d9a44d01de7c2c9c45dc2fb 100644 --- a/python/paddle/v2/__init__.py +++ b/python/paddle/v2/__init__.py @@ -78,6 +78,8 @@ def init(**kwargs): if 'use_gpu' in kwargs: cp.g_command_config_args['use_gpu'] = kwargs['use_gpu'] + if 'use_mkldnn' in kwargs: + cp.g_command_config_args['use_mkldnn'] = kwargs['use_mkldnn'] assert 'parallel_nn' not in kwargs, ("currently 'parallel_nn' is not " "supported in v2 APIs.")