Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cf6cbc34
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cf6cbc34
编写于
4月 27, 2023
作者:
W
Wang Xin
提交者:
GitHub
4月 27, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
autogen code support for max_pool[2,3]_with_index op (#53359)
上级
8bfd978f
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
52 addition
and
384 deletion
+52
-384
paddle/fluid/operators/pool_with_index_op.cc
paddle/fluid/operators/pool_with_index_op.cc
+0
-302
paddle/phi/api/yaml/backward.yaml
paddle/phi/api/yaml/backward.yaml
+18
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+0
-18
paddle/phi/api/yaml/legacy_ops.yaml
paddle/phi/api/yaml/legacy_ops.yaml
+0
-18
paddle/phi/api/yaml/op_compat.yaml
paddle/phi/api/yaml/op_compat.yaml
+16
-0
paddle/phi/api/yaml/ops.yaml
paddle/phi/api/yaml/ops.yaml
+18
-0
paddle/phi/ops/compat/pool_sig.cc
paddle/phi/ops/compat/pool_sig.cc
+0
-46
未找到文件。
paddle/fluid/operators/pool_with_index_op.cc
已删除
100644 → 0
浏览文件 @
8bfd978f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
namespace
paddle
{
namespace
operators
{
inline
int
MaxPoolOutputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
)
{
PADDLE_ENFORCE_NE
(
stride
,
0
,
phi
::
errors
::
InvalidArgument
(
"The stride of MaxPool shall not be 0, but received %d."
,
stride
));
int
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
return
output_size
;
}
class
MaxPoolWithIndexOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
phi
::
KernelKey
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
phi
::
KernelKey
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
device_context
().
GetPlace
());
}
};
class
MaxPoolWithIndexOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
phi
::
KernelKey
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
phi
::
KernelKey
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
device_context
().
GetPlace
());
}
};
class
MaxPool2dWithIndexOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the image, "
"and W is the width of the image."
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCHW, "
"where N is batch size, C is "
"the number of channels, H is the height of the image "
"and W is the width of the image."
);
AddOutput
(
"Mask"
,
"(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCHW, "
"where N is batch size, C is the number of channels, "
"H is the height of the image, "
"and W is the width of the image. "
"It represents the index in the current feature map."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window size(height, "
"width) of pooling operator. "
"If global_pooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default:false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool, default False) When true, will perform adaptive pooling "
"instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
"width) of pooling operator."
)
.
SetDefault
({
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
"operator. "
"If global_pooling = true, paddings and will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
MaxPool2d Operator.
The maxPooling2d with index operation calculates the output and the mask
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature,
and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: $(N, C, H_{in}, W_{in})$
Output:
Out shape: $(N, C, H_{out}, W_{out})$
Mask shape: $(N, C, H_{out}, W_{out})$
Where
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$
For adaptive = true:
$$
H_{out} = ksize[0] W_{out} = ksize[1]
$$
)DOC"
);
}
};
class
MaxPool3dWithIndexOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW, where N is batch size, C is "
"the number of channels, and D, H and W are the depth, height and "
"width of "
"the image, respectively"
);
AddOutput
(
"Out"
,
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCDHW, "
"where N is the batch size, C is the number of channels, "
"and D, H and W are the depth, height and "
"width of the image, respectively."
);
AddOutput
(
"Mask"
,
"(Tensor) The Mask tensor of pooling operator. "
"The format of output tensor is also NCDHW, "
"where N is the batch size, C is the number of channels, and "
"D, H and W are the depth, height and width "
"of the image, respectively. "
"It represents the index in the current feature map."
);
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window size(depth, "
"height, width) of pooling operator. "
"If global_pooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool, default False) When true, will perform adaptive pooling "
"instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1,1,1}), strides(depth, "
"height, width) of pooling operator."
)
.
SetDefault
({
1
,
1
,
1
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector, default {0,0,0}), paddings(depth, "
"height, width) of pooling operator. "
"If global_pooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment
(
R"DOC(
MaxPool3d Operator.
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively.
Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
Where
$$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
For adaptive = true:
$$
D_{out} = ksize[0] H_{out} = ksize[1] W_{out} = ksize[2]
$$
)DOC"
);
}
};
template
<
typename
T
>
class
MaxPoolWithIndexGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
this
->
ForwardOpType
()
+
"_grad"
);
op
->
SetAttrMap
(
this
->
Attrs
());
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"Mask"
,
this
->
Output
(
"Mask"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER
(
MaxPoolWithIndexOpGradNoNeedBufferVarsInferer
,
"X"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
DECLARE_INFER_SHAPE_FUNCTOR
(
max_pool2d_with_index
,
MaxPool2dWithIndexInferShapeFunctor
,
PD_INFER_META
(
phi
::
MaxPoolWithIndexInferMeta
));
DECLARE_INFER_SHAPE_FUNCTOR
(
max_pool2d_with_index_grad
,
MaxPool2dWithIndexGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
MaxPoolWithIndexGradInferMeta
));
REGISTER_OPERATOR
(
max_pool2d_with_index
,
ops
::
MaxPoolWithIndexOp
,
ops
::
MaxPool2dWithIndexOpMaker
,
ops
::
MaxPoolWithIndexGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
MaxPoolWithIndexGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
MaxPool2dWithIndexInferShapeFunctor
);
REGISTER_OPERATOR
(
max_pool2d_with_index_grad
,
ops
::
MaxPoolWithIndexOpGrad
,
ops
::
MaxPoolWithIndexOpGradNoNeedBufferVarsInferer
,
MaxPool2dWithIndexGradInferShapeFunctor
);
DECLARE_INFER_SHAPE_FUNCTOR
(
max_pool3d_with_index
,
MaxPool3dWithIndexInferShapeFunctor
,
PD_INFER_META
(
phi
::
MaxPoolWithIndexInferMeta
));
DECLARE_INFER_SHAPE_FUNCTOR
(
max_pool3d_with_index_grad
,
MaxPool3dWithIndexGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
MaxPoolWithIndexGradInferMeta
));
REGISTER_OPERATOR
(
max_pool3d_with_index
,
ops
::
MaxPoolWithIndexOp
,
ops
::
MaxPool3dWithIndexOpMaker
,
ops
::
MaxPoolWithIndexGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
MaxPoolWithIndexGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
MaxPool3dWithIndexInferShapeFunctor
);
REGISTER_OPERATOR
(
max_pool3d_with_index_grad
,
ops
::
MaxPoolWithIndexOpGrad
,
ops
::
MaxPoolWithIndexOpGradNoNeedBufferVarsInferer
,
MaxPool3dWithIndexGradInferShapeFunctor
);
paddle/phi/api/yaml/backward.yaml
浏览文件 @
cf6cbc34
...
...
@@ -1092,6 +1092,24 @@
kernel
:
func
:
matrix_power_grad
-
backward_op
:
max_pool2d_with_index_grad
forward
:
max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides = {1, 1}, int[] paddings = {0, 0}, bool global_pooling =
false
, bool adaptive =
false
) -> Tensor(out), Tensor(mask)
args
:
(Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output
:
Tensor(x_grad)
infer_meta
:
func
:
MaxPoolWithIndexGradInferMeta
kernel
:
func
:
max_pool2d_with_index_grad
-
backward_op
:
max_pool3d_with_index_grad
forward
:
max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides = {1, 1, 1}, int[] paddings = {0, 0, 0}, bool global_pooling =
false
, bool adaptive =
false
) -> Tensor(out), Tensor(mask)
args
:
(Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output
:
Tensor(x_grad)
infer_meta
:
func
:
MaxPoolWithIndexGradInferMeta
kernel
:
func
:
max_pool3d_with_index_grad
-
backward_op
:
maxout_grad
forward
:
maxout(Tensor x, int groups, int axis) -> Tensor(out)
args
:
(Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
cf6cbc34
...
...
@@ -557,24 +557,6 @@
func
:
max_grad
composite
:
max_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad)
-
backward_op
:
max_pool2d_with_index_grad
forward
:
max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
args
:
(Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output
:
Tensor(x_grad)
infer_meta
:
func
:
MaxPoolWithIndexGradInferMeta
kernel
:
func
:
max_pool2d_with_index_grad
-
backward_op
:
max_pool3d_with_index_grad
forward
:
max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
args
:
(Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output
:
Tensor(x_grad)
infer_meta
:
func
:
MaxPoolWithIndexGradInferMeta
kernel
:
func
:
max_pool3d_with_index_grad
-
backward_op
:
maximum_grad
forward
:
maximum(Tensor x, Tensor y) -> Tensor(out)
args
:
(Tensor x, Tensor y, Tensor out_grad)
...
...
paddle/phi/api/yaml/legacy_ops.yaml
浏览文件 @
cf6cbc34
...
...
@@ -732,24 +732,6 @@
func
:
max
backward
:
max_grad
-
op
:
max_pool2d_with_index
args
:
(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output
:
Tensor(out), Tensor(mask)
infer_meta
:
func
:
MaxPoolWithIndexInferMeta
kernel
:
func
:
max_pool2d_with_index
backward
:
max_pool2d_with_index_grad
-
op
:
max_pool3d_with_index
args
:
(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output
:
Tensor(out), Tensor(mask)
infer_meta
:
func
:
MaxPoolWithIndexInferMeta
kernel
:
func
:
max_pool3d_with_index
backward
:
max_pool3d_with_index_grad
-
op
:
maximum
args
:
(Tensor x, Tensor y)
output
:
Tensor(out)
...
...
paddle/phi/api/yaml/op_compat.yaml
浏览文件 @
cf6cbc34
...
...
@@ -1469,6 +1469,22 @@
extra
:
attrs
:
[
bool use_mkldnn = false
]
-
op
:
max_pool2d_with_index
inputs
:
{
x
:
X
}
outputs
:
{
out
:
Out
,
mask
:
Mask
}
attrs
:
kernel_size
:
ksize
-
op
:
max_pool3d_with_index
inputs
:
{
x
:
X
}
outputs
:
{
out
:
Out
,
mask
:
Mask
}
attrs
:
kernel_size
:
ksize
-
op
:
maximum (elementwise_max)
backward
:
maximum_grad (elementwise_max_grad)
extra
:
...
...
paddle/phi/api/yaml/ops.yaml
浏览文件 @
cf6cbc34
...
...
@@ -1271,6 +1271,24 @@
func
:
matrix_power
backward
:
matrix_power_grad
-
op
:
max_pool2d_with_index
args
:
(Tensor x, int[] kernel_size, int[] strides= {1, 1}, int[] paddings = {0, 0}, bool global_pooling =
false
, bool adaptive =
false
)
output
:
Tensor(out), Tensor(mask)
infer_meta
:
func
:
MaxPoolWithIndexInferMeta
kernel
:
func
:
max_pool2d_with_index
backward
:
max_pool2d_with_index_grad
-
op
:
max_pool3d_with_index
args
:
(Tensor x, int[] kernel_size, int[] strides = {1, 1, 1}, int[] paddings = {0, 0, 0}, bool global_pooling =
false
, bool adaptive =
false
)
output
:
Tensor(out), Tensor(mask)
infer_meta
:
func
:
MaxPoolWithIndexInferMeta
kernel
:
func
:
max_pool3d_with_index
backward
:
max_pool3d_with_index_grad
-
op
:
maxout
args
:
(Tensor x, int groups, int axis = 1)
output
:
Tensor(out)
...
...
paddle/phi/ops/compat/pool_sig.cc
浏览文件 @
cf6cbc34
...
...
@@ -65,24 +65,6 @@ KernelSignature Pool2dDoubleGradOpArgumentMapping(
{
"Out"
});
}
KernelSignature
MaxPool2dWithIndexOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"max_pool2d_with_index"
,
{
"X"
},
{
"ksize"
,
"strides"
,
"paddings"
,
"global_pooling"
,
"adaptive"
},
{
"Out"
,
"Mask"
});
}
KernelSignature
MaxPool2dWithIndexGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"max_pool2d_with_index_grad"
,
{
"X"
,
"Mask"
,
"Out@GRAD"
},
{
"ksize"
,
"strides"
,
"paddings"
,
"global_pooling"
,
"adaptive"
},
{
"X@GRAD"
});
}
KernelSignature
Pool3dOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"pool3d"
,
{
"X"
},
...
...
@@ -115,24 +97,6 @@ KernelSignature Pool3dGradOpArgumentMapping(const ArgumentMappingContext& ctx) {
{
"X@GRAD"
});
}
KernelSignature
MaxPool3dWithIndexOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"max_pool3d_with_index"
,
{
"X"
},
{
"ksize"
,
"strides"
,
"paddings"
,
"global_pooling"
,
"adaptive"
},
{
"Out"
,
"Mask"
});
}
KernelSignature
MaxPool3dWithIndexGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"max_pool3d_with_index_grad"
,
{
"X"
,
"Mask"
,
"Out@GRAD"
},
{
"ksize"
,
"strides"
,
"paddings"
,
"global_pooling"
,
"adaptive"
},
{
"X@GRAD"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
pool2d
,
phi
::
Pool2dOpArgumentMapping
);
...
...
@@ -140,15 +104,5 @@ PD_REGISTER_ARG_MAPPING_FN(pool2d_grad, phi::Pool2dGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN
(
pool2d_double_grad
,
phi
::
Pool2dDoubleGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
max_pool2d_with_index
,
phi
::
MaxPool2dWithIndexOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
max_pool2d_with_index_grad
,
phi
::
MaxPool2dWithIndexGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
pool3d
,
phi
::
Pool3dOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
pool3d_grad
,
phi
::
Pool3dGradOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
max_pool3d_with_index
,
phi
::
MaxPool3dWithIndexOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
max_pool3d_with_index_grad
,
phi
::
MaxPool3dWithIndexGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录