未验证 提交 cf6cbc34 编写于 作者: W Wang Xin 提交者: GitHub

autogen code support for max_pool[2,3]_with_index op (#53359)

上级 8bfd978f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
namespace paddle {
namespace operators {
inline int MaxPoolOutputSize(int input_size,
int filter_size,
int padding,
int stride) {
PADDLE_ENFORCE_NE(
stride,
0,
phi::errors::InvalidArgument(
"The stride of MaxPool shall not be 0, but received %d.", stride));
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
return output_size;
}
class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context().GetPlace());
}
};
class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context().GetPlace());
}
};
class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"X",
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the image, "
"and W is the width of the image.");
AddOutput("Out",
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCHW, "
"where N is batch size, C is "
"the number of channels, H is the height of the image "
"and W is the width of the image.");
AddOutput("Mask",
"(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCHW, "
"where N is batch size, C is the number of channels, "
"H is the height of the image, "
"and W is the width of the image. "
"It represents the index in the current feature map.");
AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window size(height, "
"width) of pooling operator. "
"If global_pooling = true, ksize and paddings "
"will be ignored."); // TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<bool>(
"global_pooling",
"(bool, default:false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false);
AddAttr<bool>(
"adaptive",
"(bool, default False) When true, will perform adaptive pooling "
"instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value.")
.SetDefault(false);
AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1, 1}), strides(height, "
"width) of pooling operator.")
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>(
"paddings",
"(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
"operator. "
"If global_pooling = true, paddings and will be ignored.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment(R"DOC(
MaxPool2d Operator.
The maxPooling2d with index operation calculates the output and the mask
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature,
and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: $(N, C, H_{in}, W_{in})$
Output:
Out shape: $(N, C, H_{out}, W_{out})$
Mask shape: $(N, C, H_{out}, W_{out})$
Where
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$
For adaptive = true:
$$
H_{out} = ksize[0] W_{out} = ksize[1]
$$
)DOC");
}
};
class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW, where N is batch size, C is "
"the number of channels, and D, H and W are the depth, height and "
"width of "
"the image, respectively");
AddOutput("Out",
"(Tensor) The output tensor of pooling operator. "
"The format of output tensor is also NCDHW, "
"where N is the batch size, C is the number of channels, "
"and D, H and W are the depth, height and "
"width of the image, respectively.");
AddOutput("Mask",
"(Tensor) The Mask tensor of pooling operator. "
"The format of output tensor is also NCDHW, "
"where N is the batch size, C is the number of channels, and "
"D, H and W are the depth, height and width "
"of the image, respectively. "
"It represents the index in the current feature map.");
AddAttr<std::vector<int>>("ksize",
"(vector<int>) The pooling window size(depth, "
"height, width) of pooling operator. "
"If global_pooling = true, ksize and paddings "
"will be ignored."); // TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<bool>(
"global_pooling",
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings will be ignored.")
.SetDefault(false);
AddAttr<bool>(
"adaptive",
"(bool, default False) When true, will perform adaptive pooling "
"instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value.")
.SetDefault(false);
AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1,1,1}), strides(depth, "
"height, width) of pooling operator.")
.SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>(
"paddings",
"(vector, default {0,0,0}), paddings(depth, "
"height, width) of pooling operator. "
"If global_pooling = true, paddings and ksize will be ignored.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment(R"DOC(
MaxPool3d Operator.
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively.
Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
Where
$$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
For adaptive = true:
$$
D_{out} = ksize[0] H_{out} = ksize[1] W_{out} = ksize[2]
$$
)DOC");
}
};
template <typename T>
class MaxPoolWithIndexGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType(this->ForwardOpType() + "_grad");
op->SetAttrMap(this->Attrs());
op->SetInput("X", this->Input("X"));
op->SetInput("Mask", this->Output("Mask"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
MaxPoolWithIndexOpGradNoNeedBufferVarsInferer, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(max_pool2d_with_index,
MaxPool2dWithIndexInferShapeFunctor,
PD_INFER_META(phi::MaxPoolWithIndexInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(max_pool2d_with_index_grad,
MaxPool2dWithIndexGradInferShapeFunctor,
PD_INFER_META(phi::MaxPoolWithIndexGradInferMeta));
REGISTER_OPERATOR(max_pool2d_with_index,
ops::MaxPoolWithIndexOp,
ops::MaxPool2dWithIndexOpMaker,
ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>,
MaxPool2dWithIndexInferShapeFunctor);
REGISTER_OPERATOR(max_pool2d_with_index_grad,
ops::MaxPoolWithIndexOpGrad,
ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInferer,
MaxPool2dWithIndexGradInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(max_pool3d_with_index,
MaxPool3dWithIndexInferShapeFunctor,
PD_INFER_META(phi::MaxPoolWithIndexInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(max_pool3d_with_index_grad,
MaxPool3dWithIndexGradInferShapeFunctor,
PD_INFER_META(phi::MaxPoolWithIndexGradInferMeta));
REGISTER_OPERATOR(max_pool3d_with_index,
ops::MaxPoolWithIndexOp,
ops::MaxPool3dWithIndexOpMaker,
ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>,
MaxPool3dWithIndexInferShapeFunctor);
REGISTER_OPERATOR(max_pool3d_with_index_grad,
ops::MaxPoolWithIndexOpGrad,
ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInferer,
MaxPool3dWithIndexGradInferShapeFunctor);
...@@ -1092,6 +1092,24 @@ ...@@ -1092,6 +1092,24 @@
kernel : kernel :
func : matrix_power_grad func : matrix_power_grad
- backward_op : max_pool2d_with_index_grad
forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides = {1, 1}, int[] paddings = {0, 0}, bool global_pooling = false, bool adaptive = false) -> Tensor(out), Tensor(mask)
args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output : Tensor(x_grad)
infer_meta :
func : MaxPoolWithIndexGradInferMeta
kernel :
func : max_pool2d_with_index_grad
- backward_op : max_pool3d_with_index_grad
forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides = {1, 1, 1}, int[] paddings = {0, 0, 0}, bool global_pooling = false, bool adaptive = false) -> Tensor(out), Tensor(mask)
args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output : Tensor(x_grad)
infer_meta :
func : MaxPoolWithIndexGradInferMeta
kernel :
func : max_pool3d_with_index_grad
- backward_op : maxout_grad - backward_op : maxout_grad
forward : maxout(Tensor x, int groups, int axis) -> Tensor(out) forward : maxout(Tensor x, int groups, int axis) -> Tensor(out)
args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis) args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
......
...@@ -557,24 +557,6 @@ ...@@ -557,24 +557,6 @@
func : max_grad func : max_grad
composite : max_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad) composite : max_grad(x, out, out_grad, axis, keepdim, reduce_all, x_grad)
- backward_op : max_pool2d_with_index_grad
forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output : Tensor(x_grad)
infer_meta :
func : MaxPoolWithIndexGradInferMeta
kernel :
func : max_pool2d_with_index_grad
- backward_op : max_pool3d_with_index_grad
forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output : Tensor(x_grad)
infer_meta :
func : MaxPoolWithIndexGradInferMeta
kernel :
func : max_pool3d_with_index_grad
- backward_op : maximum_grad - backward_op : maximum_grad
forward : maximum(Tensor x, Tensor y) -> Tensor(out) forward : maximum(Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad) args : (Tensor x, Tensor y, Tensor out_grad)
......
...@@ -732,24 +732,6 @@ ...@@ -732,24 +732,6 @@
func : max func : max
backward : max_grad backward : max_grad
- op : max_pool2d_with_index
args : (Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output : Tensor(out), Tensor(mask)
infer_meta :
func : MaxPoolWithIndexInferMeta
kernel :
func : max_pool2d_with_index
backward : max_pool2d_with_index_grad
- op : max_pool3d_with_index
args : (Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
output : Tensor(out), Tensor(mask)
infer_meta :
func : MaxPoolWithIndexInferMeta
kernel :
func : max_pool3d_with_index
backward : max_pool3d_with_index_grad
- op : maximum - op : maximum
args : (Tensor x, Tensor y) args : (Tensor x, Tensor y)
output : Tensor(out) output : Tensor(out)
......
...@@ -1469,6 +1469,22 @@ ...@@ -1469,6 +1469,22 @@
extra : extra :
attrs : [bool use_mkldnn = false] attrs : [bool use_mkldnn = false]
- op : max_pool2d_with_index
inputs :
{x : X}
outputs :
{out : Out, mask : Mask}
attrs :
kernel_size : ksize
- op : max_pool3d_with_index
inputs :
{x : X}
outputs :
{out : Out, mask : Mask}
attrs :
kernel_size : ksize
- op : maximum (elementwise_max) - op : maximum (elementwise_max)
backward : maximum_grad (elementwise_max_grad) backward : maximum_grad (elementwise_max_grad)
extra : extra :
......
...@@ -1271,6 +1271,24 @@ ...@@ -1271,6 +1271,24 @@
func : matrix_power func : matrix_power
backward : matrix_power_grad backward : matrix_power_grad
- op : max_pool2d_with_index
args : (Tensor x, int[] kernel_size, int[] strides= {1, 1}, int[] paddings = {0, 0}, bool global_pooling = false, bool adaptive = false)
output : Tensor(out), Tensor(mask)
infer_meta :
func : MaxPoolWithIndexInferMeta
kernel :
func : max_pool2d_with_index
backward : max_pool2d_with_index_grad
- op : max_pool3d_with_index
args : (Tensor x, int[] kernel_size, int[] strides = {1, 1, 1}, int[] paddings = {0, 0, 0}, bool global_pooling = false, bool adaptive = false)
output : Tensor(out), Tensor(mask)
infer_meta :
func : MaxPoolWithIndexInferMeta
kernel :
func : max_pool3d_with_index
backward : max_pool3d_with_index_grad
- op : maxout - op : maxout
args : (Tensor x, int groups, int axis = 1) args : (Tensor x, int groups, int axis = 1)
output : Tensor(out) output : Tensor(out)
......
...@@ -65,24 +65,6 @@ KernelSignature Pool2dDoubleGradOpArgumentMapping( ...@@ -65,24 +65,6 @@ KernelSignature Pool2dDoubleGradOpArgumentMapping(
{"Out"}); {"Out"});
} }
KernelSignature MaxPool2dWithIndexOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature(
"max_pool2d_with_index",
{"X"},
{"ksize", "strides", "paddings", "global_pooling", "adaptive"},
{"Out", "Mask"});
}
KernelSignature MaxPool2dWithIndexGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature(
"max_pool2d_with_index_grad",
{"X", "Mask", "Out@GRAD"},
{"ksize", "strides", "paddings", "global_pooling", "adaptive"},
{"X@GRAD"});
}
KernelSignature Pool3dOpArgumentMapping(const ArgumentMappingContext& ctx) { KernelSignature Pool3dOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature("pool3d", return KernelSignature("pool3d",
{"X"}, {"X"},
...@@ -115,24 +97,6 @@ KernelSignature Pool3dGradOpArgumentMapping(const ArgumentMappingContext& ctx) { ...@@ -115,24 +97,6 @@ KernelSignature Pool3dGradOpArgumentMapping(const ArgumentMappingContext& ctx) {
{"X@GRAD"}); {"X@GRAD"});
} }
KernelSignature MaxPool3dWithIndexOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature(
"max_pool3d_with_index",
{"X"},
{"ksize", "strides", "paddings", "global_pooling", "adaptive"},
{"Out", "Mask"});
}
KernelSignature MaxPool3dWithIndexGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature(
"max_pool3d_with_index_grad",
{"X", "Mask", "Out@GRAD"},
{"ksize", "strides", "paddings", "global_pooling", "adaptive"},
{"X@GRAD"});
}
} // namespace phi } // namespace phi
PD_REGISTER_ARG_MAPPING_FN(pool2d, phi::Pool2dOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(pool2d, phi::Pool2dOpArgumentMapping);
...@@ -140,15 +104,5 @@ PD_REGISTER_ARG_MAPPING_FN(pool2d_grad, phi::Pool2dGradOpArgumentMapping); ...@@ -140,15 +104,5 @@ PD_REGISTER_ARG_MAPPING_FN(pool2d_grad, phi::Pool2dGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(pool2d_double_grad, PD_REGISTER_ARG_MAPPING_FN(pool2d_double_grad,
phi::Pool2dDoubleGradOpArgumentMapping); phi::Pool2dDoubleGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(max_pool2d_with_index,
phi::MaxPool2dWithIndexOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(max_pool2d_with_index_grad,
phi::MaxPool2dWithIndexGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(pool3d, phi::Pool3dOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(pool3d, phi::Pool3dOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(pool3d_grad, phi::Pool3dGradOpArgumentMapping); PD_REGISTER_ARG_MAPPING_FN(pool3d_grad, phi::Pool3dGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(max_pool3d_with_index,
phi::MaxPool3dWithIndexOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(max_pool3d_with_index_grad,
phi::MaxPool3dWithIndexGradOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册